油井分层采油桥式分采器单流球阀流量系数的确定方法与流程

文档序号:14365463阅读:181来源:国知局
油井分层采油桥式分采器单流球阀流量系数的确定方法与流程
本发明涉及石油开采
技术领域
,特别涉及一种油井分层采油桥式分采器单流球阀流量系数的确定方法。
背景技术
:油井中有多油层合采时,由于油层之间的压力、油层物理性质、原油性质等差异,往往相互干扰,使部分油层不能发挥应有的作用。为了减少或消除层间干扰,通常会采用分层开采技术,提高采油速度和采收率。桥式分采器是一种实现油井分层采油的工具,桥式分采器包括单流球阀,单流球阀的流量系数的确定是确保桥式分采器分层采油成功的关键。但是流量系数一个十分复杂的量,它的确定大多数依赖于实验方法,目前还没有计算流量参数的理论计算式和通用的经验或半经验公式,给单流球阀的设计与应用带来很大不便,进而造成石油的分层开采的成功率较低,采油速度和采收率较低。技术实现要素:为了解决现有技术的问题,本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定方法。所述技术方案如下:一方面,本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定方法,所述确定方法包括:步骤一:确定单流球阀前后的压差;油层产出液流经所述单流球阀时,所述油层产出液顺序流经所述单流球阀的阀座、阀罩和阀球间的环形空间、阀罩孔,所述油层产出液的过流通道截面发生突变,所述油层产出液绕所述单流球阀的阀球流动,整个过程伴随着局部的能量损失,所述单流球阀前后的能量损失采用所述单流球阀前后的压差表征;其中,(1)、(2)式中,P1,单流球阀阀座前的压力,MPa;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;H1,桥式分采器下接头到单流球阀阀座的长度,m;H2,单流球阀阀座到桥式分采器上接头的长度,m;g,重力加速度,m/s2;v1,产出液的流速,m/s;v2,单流球阀阀座后的流速,m/s;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;VP,上下产层产出液混合后在油管内的流速,与v2在数值上相等,m/s;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;Hq,桥式分采器的下入深度,m;Hd,油井动液面,m;PL,下产层流压,MPa;Hl,分采器下端到下产层顶界的距离,m;步骤二、确定所述油层产出液流过所述单流球阀的体积流量;其中,(3)、(4)式中,Q,油层产出液流过单流球阀的体积流量,即桥式分采器下层的产液量,m3/s;Ap,油管内截面积,m2;e是一个无理数,约等于2.718281828;AV,单流球阀阀孔的截面积,m2;g,重力加速度,m/s2;H1,桥式分采器下接头到单流球阀阀座的长度,m;H2,单流球阀阀座到桥式分采器上接头的长度,m;v1,产出液的流速,m/s;P1,单流球阀阀座前的压力,MPa;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;v2,单流球阀阀座后的流速,m/s;步骤三、确定所述油层产出液流过所述单流球阀的阻力系数;所述油层产出液流过所述单流球阀的阻力系数用所述单流球阀的开启程度来表示,所述单流球阀的阀隙过流面积与所述单流球阀的阀孔截面积的比值,所述单流球阀的开启程度是影响所述单流球阀的流量系数和过阀流量的最直接因素;其中,(5)、(6)、(7)、(8)、(9)式中,ξ,产出液流过单流球阀时的阻力系数;As,单流球阀阀隙的过流面积,m2;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;π,圆周率,约等于3.141592654;Rhu,单流球阀阀座孔端面半径,m;Rh,单流球阀阀座孔半径,m;B,单流球阀阀座口宽度,m;α,单流球阀阀座锥角,度;Rvb,单流球阀半径,m;Hb,球阀上升高度。步骤四:确定所述单流球阀的流量系数;所述油层产出液流过所述单流球阀时,单位压力损失对应的所述油层产出液的流量是所述单流球阀的流量系数,所述单流球阀的流量系数越大,所述油层产出液的压力损失越小;其中,(10)式中,KV,单流球阀的流量系数,无量纲;e是一个无理数,约等于2.718281828;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;AV,单流球阀阀孔的截面积,m2。具体地,通过计算机编程或人工求解(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)式得到As、ξ、KV三个参数。另一方面,本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定方法,所述确定方法包括:获取参数的数值,所述参数包括单流球阀阀座前的压力、流过桥式分采器下接头到单流球阀阀座的油层产出液的密度、下层产出液流过单流球阀后与上层产出液混合后的流体密度、桥式分采器下接头到单流球阀阀座的长度、单流球阀阀座到桥式分采器上接头的长度、油管内截面积、单流球阀阀孔的截面积、单流球阀阀隙的过流面积、单流球阀半径、单流球阀阀座孔端面半径、油层产出液流过单流球阀的体积流量;根据获取的所述参数,采用以下公式计算单流球阀的流量系数的数值:其中,(1)、(2)、(3)、(4)、(5)、(6)式中,P1为单流球阀阀座前的压力,单位为MPa;P2为单流球阀阀座后的压力,单位为MPa;ρ1为流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,单位为kg/m3;ρ2为下层产出液流过单流球阀后与上层产出液混合后的流体密度,单位为kg/m3;H1为桥式分采器下接头到单流球阀阀座的长度,单位为m;H2为单流球阀阀座到桥式分采器上接头的长度,单位为m;g为重力加速度,单位为m/s2;v1为产出液的流速,单位为m/s;v2为单流球阀阀座后的流速,单位为m/s;ξ为产出液流过单流球阀时的阻力系数;Ap为油管内截面积,单位为m2;VP为上下产层产出液混合后在油管内的流速,VP=v2,单位为m/s;AV为单流球阀阀孔的截面积,单位为m2;e为自然底数,Q为油层产出液流过单流球阀的体积流量,单位为m3/s;As为单流球阀阀隙的过流面积,单位为m2;π为圆周率;Rvb,单流球阀半径,单位m;Rhu为单流球阀阀座孔端面半径,单位为m;Hb,单流球阀上升高度,单位m;KV为单流球阀的流量系数。可选地,所述根据获取的所述参数,采用公式计算单流球阀的流量系数的数值,包括:在设定范围内选取一个单流球阀上升高度的数值;根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值不满足地质方案时,在设定范围内选取另一个单流球阀上升高度的数值,并根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值满足地质方案时,根据选取的单流球阀上升高度的数值采用(4)、(5)、(6)式计算单流球阀的流量系数的数值。可选地,所述获取参数的数值,包括:采用(7)、(8)、(9)式求解(1)、(2)、(3)、(4)、(5)、(6)式中的参数:其中,(7)、(8)、(9)式中,Rhu为单流球阀阀座孔端面半径,单位为m;Rh为单流球阀阀座孔半径,单位为m;B为单流球阀阀座口宽度,单位为m;Rvb,单流球阀半径,单位m;α为单流球阀阀座锥角,单位为度;AV为单流球阀阀孔的截面积,单位为m2;π为圆周率。可选地,所述获取参数的数值,包括:采用(10)式求解(1)式中的参数:其中,(10)式中,P1为单流球阀阀座前的压力,单位为MPa;Hq为桥式分采器的下入深度,单位为m;Hd为油井动液面,单位为m;100为冲程与压强的转换值,100m的冲程相当于1MPa的压力;PL为下产层流压,单位为MPa;Hl为分采器下端到下产层顶界的距离,单位为m。又一方面,本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定装置,所述确定装置包括:获取模块,用于获取参数的数值,所述参数包括单流球阀阀座前的压力、流过桥式分采器下接头到单流球阀阀座的油层产出液的密度、下层产出液流过单流球阀后与上层产出液混合后的流体密度、桥式分采器下接头到单流球阀阀座的长度、单流球阀阀座到桥式分采器上接头的长度、油管内截面积、单流球阀阀孔的截面积、单流球阀阀隙的过流面积、单流球阀半径、单流球阀阀座孔端面半径、油层产出液流过单流球阀的体积流量;计算模块,用于根据获取的所述参数,采用以下公式计算单流球阀的流量系数的数值:其中,(1)、(2)、(3)、(4)、(5)、(6)式中,P1为单流球阀阀座前的压力,单位为MPa;P2为单流球阀阀座后的压力,单位为MPa;ρ1为流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,单位为kg/m3;ρ2为下层产出液流过单流球阀后与上层产出液混合后的流体密度,单位为kg/m3;H1为桥式分采器下接头到单流球阀阀座的长度,单位为m;H2为单流球阀阀座到桥式分采器上接头的长度,单位为m;g为重力加速度,单位为m/s2;v1为产出液的流速,单位为m/s;v2为单流球阀阀座后的流速,单位为m/s;ξ为产出液流过单流球阀时的阻力系数;Ap为油管内截面积,单位为m2;VP为上下产层产出液混合后在油管内的流速,VP=v2,单位为m/s;AV为单流球阀阀孔的截面积,单位为m2;e为自然底数,Q为油层产出液流过单流球阀的体积流量,单位为m3/s;As为单流球阀阀隙的过流面积,单位为m2;π为圆周率;Rvb,单流球阀半径,单位m;Rhu为单流球阀阀座孔端面半径,单位为m;Hb,单流球阀上升高度,单位m;KV为单流球阀的流量系数。可选地,所述计算模块用于,在设定范围内选取一个单流球阀上升高度的数值;在设定范围内选取一个单流球阀上升高度的数值;根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值不满足地质方案时,在设定范围内选取另一个单流球阀上升高度的数值,并根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值满足地质方案时,根据选取的单流球阀上升高度的数值采用(4)、(5)、(6)式计算单流球阀的流量系数的数值。可选地,所述获取模块用于,采用(7)、(8)、(9)式求解(1)、(2)、(3)、(4)、(5)、(6)式中的参数:其中,(7)、(8)、(9)式中,Rhu为单流球阀阀座孔端面半径,单位为m;Rh为单流球阀阀座孔半径,单位为m;B为单流球阀阀座口宽度,单位为m;Rvb,单流球阀半径,单位m;α为单流球阀阀座锥角,单位为度;AV为单流球阀阀孔的截面积,单位为m2;π为圆周率。可选地,所述获取模块用于,采用(10)式求解(1)式中的参数:其中,(10)式中,P1为单流球阀阀座前的压力,单位为MPa;Hq为桥式分采器的下入深度,单位为m;Hd为油井动液面,单位为m;100为冲程与压强的转换值,100m的冲程相当于1MPa的压力;PL为下产层流压,单位为MPa;Hl为分采器下端到下产层顶界的距离,单位为m。本发明实施例提供的技术方案带来的有益效果是:通过依据分层采油各层的含水量、需要控制各产层的产液量,通过确定桥式分采器单流球阀的流量系数,达到降水增油的目的,现场10余口油井应用,平均日增油2.7t/d,平均日降水5.1m3/d。附图说明为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是本发明实施例二提供的一种油井分层采油桥式分采器单流球阀流量系数的确定方法的流程图;图2是本发明实施例三提供的一种油井分层采油桥式分采器单流球阀流量系数的确定装置的结构示意图。具体实施方式为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。实施例一本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定方法,本实施例的确定方法应用在华北有添加的10余口油井,依次成功率100%。特别是晋XXX-344油井施工后,油井单井产量日平均增加6.5吨以上,平均日降水7.1m3。该井于2014年04月地质方案要求上段37#、39#层,与下段41#、42#、45#进行分层采油;分层采油要求:上段37#、39#层,20m3/d;下段41#、42#、45#层,10m3/d;下泵要求:日产液30m3,液面1500m。具体要求如下表一所示:表一层号井段厚度(m)372166.0-2169.63.6392171.0-2175.84.8412569.0-2570.01422570.0-2572.02452572.0-2578.06采油工程依据地质方案,采用桥式分采器进行分采施工。具体地,该确定方法包括:步骤一:确定单流球阀前后的压差。油层产出液流经单流球阀时,油层产出液顺序流经单流球阀的阀座、阀罩和阀球间的环形空间、阀罩孔,油层产出液的过流通道截面发生突变,油层产出液绕单流球阀的阀球流动,整个过程伴随着局部的能量损失,单流球阀前后的能量损失采用单流球阀前后的压差表征;其中,(1)、(2)式中:P1,单流球阀阀座前的压力,MPa,通过(2)式求得;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;现场施工取样测得,863.9kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;现场施工取样测得,8618.1kg/m3;H1,桥式分采器下接头到单流球阀阀座的长度,m;例如,0.35m;H2,单流球阀阀座到桥式分采器上接头的长度,m;例如,1.5m;g,重力加速度,m/s2;具体为9.8m/s2;v1,产出液的流速,m/s;v2,单流球阀阀座后的流速,m/s;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;使用本体直径73mm,内直径62mm的油管,油管内截面积为0.00301754m2;VP,上下产层产出液混合后在油管内的流速,与v2在数值上相等,m/s;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;Hq,桥式分采器的下入深度,m;例如,2350m;Hd,油井动液面,m;例如,1500m;PL,下产层流压,MPa;地质资料中查询;Hl,分采器下端到下产层顶界的距离,m。步骤二、确定油层产出液流过单流球阀的体积流量。其中,(3)、(4)式中:Q,油层产出液流过单流球阀的体积流量,即桥式分采器下层的产液量,m3/s;Ap,油管内截面积,m2;使用本体直径73mm,内直径62mm的油管,油管内截面积为0.00301754m2;e是一个无理数,约等于2.718281828;AV,单流球阀阀孔的截面积,m2;g,重力加速度,m/s2;具体为9.8m/s2;H1,桥式分采器下接头到单流球阀阀座的长度,m;例如,0.35mH2,单流球阀阀座到桥式分采器上接头的长度,m;例如,1.5m;v1,产出液的流速,m/s;P1,单流球阀阀座前的压力,MPa,通过(2)式求得;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;现场施工取样测得,863.9kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;现场施工取样测得,8618.1kg/m3;v2,单流球阀阀座后的流速,m/s。步骤三、确定油层产出液流过单流球阀的阻力系数。油层产出液流过单流球阀的阻力系数用单流球阀的开启程度来表示,单流球阀的阀隙过流面积与单流球阀的阀孔截面积的比值,单流球阀的开启程度是影响单流球阀的流量系数和过阀流量的最直接因素。其中,(5)、(6)、(7)、(8)、(9)式中:ξ,产出液流过单流球阀时的阻力系数;As,单流球阀阀隙的过流面积,m2;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;π,圆周率,约等于3.141592654;Rhu,单流球阀阀座孔端面半径,m;Rh,单流球阀阀座孔半径,m,通过室内试验得到;B,单流球阀阀座口宽度,m,通过室内试验得到;α,单流球阀阀座锥角,度,取70度;Rvb,单流球阀半径,m;Hb,单流球阀上升高度;根据经验确定取值范围(如10-20cm),在取值范围内依次选择各个取值,当选择某个取值时若计算出的产出液的流速、单流球阀阀座后的流速、产出液流过单流球阀时的阻力系数满足地质方案,则将该取值作为单流球阀上升高度的数值。步骤四:确定单流球阀的流量系数。油层产出液流过单流球阀时,单位压力损失对应的油层产出液的流量是单流球阀的流量系数,单流球阀的流量系数越大,油层产出液的压力损失越小;其中,(10)式中:KV,单流球阀的流量系数,无量纲;e是一个无理数,约等于2.718281828;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;使用本体直径73mm,内直径62mm的油管,油管内截面积为0.00301754m2;AV,单流球阀阀孔的截面积,m2。具体地,可以通过计算机编程或人工求解(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)式得到As、ξ、Q、KV四个参数,(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)式中的其他参数通过实际测得或实验得到。本发明实施例的油井分层采油桥式分采器单流球阀流量系数的确定方法,依据分层采油各层的含水量、需要控制各产层的产液量,通过确定桥式分采器单流球阀的流量系数,达到降水增油的目的,现场10余口油井应用,平均日增油2.7t/d,平均日降水5.1m3/d。实施例二本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定方法,参见图1,该确定方法包括:步骤101:获取参数的数值。在本实施例中,该参数包括单流球阀阀座前的压力、流过桥式分采器下接头到单流球阀阀座的油层产出液的密度、下层产出液流过单流球阀后与上层产出液混合后的流体密度、桥式分采器下接头到单流球阀阀座的长度、单流球阀阀座到桥式分采器上接头的长度、油管内截面积、单流球阀阀孔的截面积、单流球阀阀隙的过流面积、单流球阀半径、单流球阀阀座孔端面半径、单流球阀上升高度。步骤102:根据获取的参数,计算单流球阀的流量系数的数值。其中,计算采用的公式如下:其中,(1)、(2)、(3)、(4)、(5)、(6)式中,P1为单流球阀阀座前的压力,单位为MPa;P2为单流球阀阀座后的压力,单位为MPa;ρ1为流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,单位为kg/m3;ρ2为下层产出液流过单流球阀后与上层产出液混合后的流体密度,单位为kg/m3;H1为桥式分采器下接头到单流球阀阀座的长度,单位为m;H2为单流球阀阀座到桥式分采器上接头的长度,单位为m;g为重力加速度,单位为m/s2;v1为产出液的流速,单位为m/s;v2为单流球阀阀座后的流速,单位为m/s;ξ为产出液流过单流球阀时的阻力系数;Ap为油管内截面积,单位为m2;VP为上下产层产出液混合后在油管内的流速,VP=v2,单位为m/s;AV为单流球阀阀孔的截面积,单位为m2;e为自然底数,Q为油层产出液流过单流球阀的体积流量,单位为m3/s;As为单流球阀阀隙的过流面积,单位为m2;π为圆周率;Rvb,单流球阀半径,单位m;Rhu为单流球阀阀座孔端面半径,单位为m;Hb,单流球阀上升高度,单位m;KV为单流球阀的流量系数。可选地,该步骤102可以包括:在设定范围内选取一个单流球阀上升高度的数值;根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值不满足地质方案时,在设定范围内选取另一个单流球阀上升高度的数值,并根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值满足地质方案时,根据选取的单流球阀上升高度的数值采用(4)、(5)、(6)式计算单流球阀的流量系数的数值。可选地,该步骤101可以包括:采用(7)、(8)、(9)式求解(1)、(2)、(3)、(4)、(5)、(6)式中的参数:其中,(7)、(8)、(9)式中,Rhu为单流球阀阀座孔端面半径,单位为m;Rh为单流球阀阀座孔半径,单位为m;B为单流球阀阀座口宽度,单位为m;Rvb,单流球阀半径,单位m;α为单流球阀阀座锥角,单位为度;AV为单流球阀阀孔的截面积,单位为m2;π为圆周率。可选地,该步骤101可以包括:采用(10)式求解(1)式中的参数:其中,(10)式中,P1为单流球阀阀座前的压力,单位为MPa;Hq为桥式分采器的下入深度,单位为m;Hd为油井动液面,单位为m;100为冲程与压强的转换值,100m的冲程相当于1MPa的压力;PL为下产层流压,单位为MPa;Hl为分采器下端到下产层顶界的距离,单位为m。在实际应用中,P1,单流球阀阀座前的压力,MPa,通过(10)式求得;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;现场施工取样测得,863.9kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;现场施工取样测得,8618.1kg/m3;H1,桥式分采器下接头到单流球阀阀座的长度,m;例如,0.35m;H2,单流球阀阀座到桥式分采器上接头的长度,m;例如,1.5m;g,重力加速度,m/s2;具体为9.8m/s2;v1,产出液的流速,m/s;v2,单流球阀阀座后的流速,m/s;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;使用本体直径73mm,内直径62mm的油管,油管内截面积为0.00301754m2;VP,上下产层产出液混合后在油管内的流速,与v2在数值上相等,m/s;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;Hq,桥式分采器的下入深度,m;例如,2350m;Hd,油井动液面,m;例如,1500m;PL,下产层流压,MPa;地质资料中查询;Hl,分采器下端到下产层顶界的距离,m;As,单流球阀阀隙的过流面积,m2;Rhu,单流球阀阀座孔端面半径,m;Rh,单流球阀阀座孔半径,m,通过室内试验得到;B,单流球阀阀座口宽度,m,通过室内试验得到;α,单流球阀阀座锥角,度,取70度;Rvb,单流球阀半径,m;Hb,单流球阀上升高度;根据经验确定取值范围(如10-20cm),在取值范围内依次选择各个取值,当选择某个取值时若计算出的产出液的流速、单流球阀阀座后的流速、产出液流过单流球阀时的阻力系数满足地质方案,则将该取值作为单流球阀上升高度的数值;KV,单流球阀的流量系数,无量纲;e是一个无理数,约等于2.718281828。本发明实施例通过分别确定油层产出液流过单流球阀的体积流量、油层产出液流过单流球阀的阻力系数、单流球阀阀隙的过流面积、以及单流球阀的流量系数的式子,并将确定的所有式子联合求解得到单流球阀的流量系数的数值,从而由得到的单流球阀的流量系数的数值确保桥式分采器分层采油成功,提高了采油速度和采收率。实施例三本发明实施例提供了一种油井分层采油桥式分采器单流球阀流量系数的确定装置,参见图2,该确定装置包括:获取模块201,用于获取参数的数值,该参数包括单流球阀阀座前的压力、流过桥式分采器下接头到单流球阀阀座的油层产出液的密度、下层产出液流过单流球阀后与上层产出液混合后的流体密度、桥式分采器下接头到单流球阀阀座的长度、单流球阀阀座到桥式分采器上接头的长度、油管内截面积、单流球阀阀孔的截面积、单流球阀阀隙的过流面积、单流球阀半径、单流球阀阀座孔端面半径、单流球阀上升高度;计算模块202,用于根据获取的参数,采用以下公式计算单流球阀的流量系数的数值:其中,(1)、(2)、(3)、(4)、(5)、(6)式中,P1为单流球阀阀座前的压力,单位为MPa;P2为单流球阀阀座后的压力,单位为MPa;ρ1为流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,单位为kg/m3;ρ2为下层产出液流过单流球阀后与上层产出液混合后的流体密度,单位为kg/m3;H1为桥式分采器下接头到单流球阀阀座的长度,单位为m;H2为单流球阀阀座到桥式分采器上接头的长度,单位为m;g为重力加速度,单位为m/s2;v1为产出液的流速,单位为m/s;v2为单流球阀阀座后的流速,单位为m/s;ξ为产出液流过单流球阀时的阻力系数;Ap为油管内截面积,单位为m2;VP为上下产层产出液混合后在油管内的流速,VP=v2,单位为m/s;AV为单流球阀阀孔的截面积,单位为m2;e为自然底数,Q为油层产出液流过单流球阀的体积流量,单位为m3/s;As为单流球阀阀隙的过流面积,单位为m2;π为圆周率;Rvb,单流球阀半径,单位m;Rhu为单流球阀阀座孔端面半径,单位为m;Hb,单流球阀上升高度,单位m;KV为单流球阀的流量系数。可选地,计算模块202可以用于,在设定范围内选取一个单流球阀上升高度的数值;根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值不满足地质方案时,在设定范围内选取另一个单流球阀上升高度的数值,并根据选取的数值采用(1)、(2)、(3)、(4)、(5)式计算单流球阀阀座后的压力、产出液的流速的数值;当计算出的单流球阀阀座后的压力、产出液的流速的数值满足地质方案时,根据选取的单流球阀上升高度的数值采用(4)、(5)、(6)式计算单流球阀的流量系数的数值。可选地,获取模块201可以用于,采用(7)、(8)、(9)式求解(1)、(2)、(3)、(4)、(5)、(6)式中的参数:其中,(7)、(8)、(9)式中,Rhu为单流球阀阀座孔端面半径,单位为m;Rh为单流球阀阀座孔半径,单位为m;B为单流球阀阀座口宽度,单位为m;Rvb,单流球阀半径,单位m;α为单流球阀阀座锥角,单位为度;AV为单流球阀阀孔的截面积,单位为m2;π为圆周率。可选地,获取模块201可以用于,采用(10)式求解(1)式中的参数:其中,(10)式中,P1为单流球阀阀座前的压力,单位为MPa;Hq为桥式分采器的下入深度,单位为m;Hd为油井动液面,单位为m;100为冲程与压强的转换值,100m的冲程相当于1MPa的压力;PL为下产层流压,单位为MPa;Hl为分采器下端到下产层顶界的距离,单位为m。在实际应用中,P1,单流球阀阀座前的压力,MPa,通过(10)式求得;P2,单流球阀阀座后的压力,MPa;ρ1,流过桥式分采器下接头到单流球阀阀座的油层产出液的密度,kg/m3;现场施工取样测得,863.9kg/m3;ρ2,下层产出液流过单流球阀后与上层产出液混合后的流体密度,kg/m3;现场施工取样测得,8618.1kg/m3;H1,桥式分采器下接头到单流球阀阀座的长度,m;例如,0.35m;H2,单流球阀阀座到桥式分采器上接头的长度,m;例如,1.5m;g,重力加速度,m/s2;具体为9.8m/s2;v1,产出液的流速,m/s;v2,单流球阀阀座后的流速,m/s;ξ,产出液流过单流球阀时的阻力系数;Ap,油管内截面积,m2;使用本体直径73mm,内直径62mm的油管,油管内截面积为0.00301754m2;VP,上下产层产出液混合后在油管内的流速,与v2在数值上相等,m/s;AV,单流球阀阀孔的截面积,m2;e是一个无理数,约等于2.718281828;Hq,桥式分采器的下入深度,m;例如,2350m;Hd,油井动液面,m;例如,1500m;PL,下产层流压,MPa;地质资料中查询;Hl,分采器下端到下产层顶界的距离,m;As,单流球阀阀隙的过流面积,m2;Rhu,单流球阀阀座孔端面半径,m;Rh,单流球阀阀座孔半径,m,通过室内试验得到;B,单流球阀阀座口宽度,m,通过室内试验得到;α,单流球阀阀座锥角,度,取70度;Rvb,单流球阀半径,m;Hb,单流球阀上升高度;根据经验确定取值范围(如10-20cm),在取值范围内依次选择各个取值,当选择某个取值时若计算出的产出液的流速、单流球阀阀座后的流速、产出液流过单流球阀时的阻力系数满足地质方案,则将该取值作为单流球阀上升高度的数值;KV,单流球阀的流量系数,无量纲;e是一个无理数,约等于2.718281828。本发明实施例通过分别确定油层产出液流过单流球阀的体积流量、油层产出液流过单流球阀的阻力系数、单流球阀阀隙的过流面积、以及单流球阀的流量系数的式子,并将确定的所有式子联合求解得到单流球阀的流量系数的数值,从而由得到的单流球阀的流量系数的数值确保桥式分采器分层采油成功,提高了采油速度和采收率。需要说明的是:上述实施例提供的油井分层采油桥式分采器单流球阀流量系数的确定装置在确定油井分层采油桥式分采器单流球阀流量系数时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的油井分层采油桥式分采器单流球阀流量系数的确定装置与油井分层采油桥式分采器单流球阀流量系数的确定方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1