用于磁阻头生产的双重目的的研磨向导的制作方法

文档序号:6751637阅读:179来源:国知局
专利名称:用于磁阻头生产的双重目的的研磨向导的制作方法
技术领域
本发明被指向用于在盘驱动器等中使用的滑动器部件的制造。更具体而言,本发明属于参与磁阻头结构的制造的研磨向导(lappingguide)。
背景技术
硬盘驱动器是一般的信息存储装置,其基本上由通过磁读写元件访问的一系列可旋转的盘构成。一般被称为变换器的这些数据传输元件典型地由滑动器主体来载运并且被嵌入其中,该滑动器主体在被形成于盘上的离散数据轨迹上保持近的相对位置以允许实现读或写的操作。为了相对于盘表面而正确地定位变换器,在滑动器主体上形成的空气轴承表面(ABS)经历流体空气流动,它提供足够的升力以使滑动器和变换器在盘数据轨迹之上“飞行”。磁盘的高速旋转在基本上平行于盘的切向速度的方向上沿其表面产生空气流动或气流流。空气流动与滑动器主体的ABS结合,其使滑动器能在旋转的盘之上飞行。结果是,悬浮的滑动器通过这个自激励的空气轴承在物理上与盘表面分离。滑动器的ABS通常被配置于面向旋转的盘的滑动器表面,并且大大地影响其在各种条件下在盘上飞行的能力。
许多目前的盘驱动器包括一个或多个磁阻(MR)读写头。这样的头包括通过磁阻层的图形形成来制造的MR传感器元件。这种MR读写头的制造的描述可见于U.S.专利No.6,230,389中,其公开内容在此全部引入作为参考。随着这些层在尺寸上变得更小,控制这种头的最终操作特性变得更困难。
MR读取头包括巨磁阻(GMR)头并包括至少一个具有必须被精确控制的“条高度(stripe height)”和电阻的薄膜传感器。在传统上,精确的传感器条高度是通过研磨过程来实现的。在切片过程中,多个MR头和多个条高度传感器被交错并安排为正交网格图形。条高度传感器的大小通常远远大于MR传感器,因此其尺度可被精确制造。
所完成的晶片被切成排。每排包含多个MR头和多个电子研磨向导(ELG)。排的表面然后被研磨以减小MR头的条高度。通过测量条高度传感器的电阻,其条高度可被精确计算。因此,条高度传感器常常被称为电阻研磨向导(RLG)或ELG。在研磨的过程中,ELG条高度被频繁监视,因此可通过在排上施加适当的力或力矩来校正排的倾斜和弯曲。假定ELG条高度和MR读取头条高度之间的差(偏移)是常量,则可通过控制ELG条高度来控制读取头的条高度。然而,窄的读取头和宽的LEG之间的偏移既不是精确已知的,也不是均匀的。因此,读取头条高度的最后得到的精度是不令人满意的。
此外,仅仅均匀的条高度是不够的。在磁记录装置中,电子电路被设计用于特定的读取头电阻。由于晶片上的膜电阻率和读取头宽度的变化,均匀的条高度并不意味着均匀的读取头电阻。这样,十分理想的是控制读取头电阻而不是其条高度。
因此,需要用于在MR头的生产中提供研磨向导的改进的方法和设备。

发明内容
依照本发明的实施例,整体的研磨向导(ILG)被提供有串联耦合的至少一个读取头和一个矩形ELG。两个外部引线被提供用于测量跨在这些部件上的电阻。在一个实施例中,研磨向导的读取头在结构上与实际读取头(即,将包括在最终产品中的那些)相同。ELG宽度被选择以在条高度测量中提供足够范围。读取头和ELG之间大的条高度偏移被选择以使当读取头电阻接近所需目标值时,读取头电阻对ELG电阻占优势。
ILG的电阻近似为读取头和ELG电阻之和。内部连接的电阻将是可以忽略的。当读取头条高度为大时,ILG电阻对ELG的电阻占优势。可通过将读取头看做ELG的引线而简单和精确地计算条高度。ILG起到有效条高度传感器的作用。
当读取头条高度变小时,ILG电阻由读取头的电阻来支配。由于ELG和读取头之间大的条高度偏移,ELG电阻对条高度不敏感。可通过从ILG电阻减去ELG电阻来估算读取头电阻。由于与读取头的目标条高度相比,ELG尺寸很大,因此ELG电阻可被精确估算。
ILG可被处理为在大条高度的条高度传感器和在低条高度的电阻传感器。当ILG被看做电阻传感器,应通过近似而将电阻转换为伪条高度。依照本发明的实施例提供了确保以上两种处理之间的平滑过渡的适当方法。例如,ILG可在任何时候被看做这两种类型的传感器。然后可获得ELG条高度和读取头伪条高度的加权平均。
依照本发明的实施例,最好地利用这种结构的方法被描述。不是近似ILG在条高度的两个极端具有两个不同的传感器,而是通过在条高度的整个范围内的单一模型来近似该ILG。可得到单一的公式当ELG条高度为大时产生近似ELG条高度的伪条高度,并当ELG条高度为小时,近似为读取头伪高度。该方法可以是简单而强有力的。


图1是依照本发明实施例来构建的整体研磨向导的平面图。
图2是依照本发明实施例用于图1的ILG的数学模型。
图3是示出依照本发明实施例在研磨过程中变化的ILG电阻的曲线图。
优选实施例详述图1是依照本发明实施例的整体研磨向导的平面图。如果已知一排上的膜电阻率、读取宽度和条高度偏移的分布图,则本发明的电子研磨向导(ELG)可被用于读取头电阻控制。然而,最后两个参数是难以测量的。作为替换,读取头可被用作研磨向导。如果不知道确切的读取宽度,实际条高度不能被精确得知。然而,通过使用额定读取宽度可计算伪条高度。伪条高度随着实际条高度平滑且单调地增加。此外,当伪条高度达到其额定目标值时,得到了所需的读取头电阻。因此,在这点上将读取头用作研磨引导是有利的。
一个主要的困难是读取头是相对窄的,并且不具有用于研磨控制的足够范围。例如,0.15μm宽的读取头的有效范围是不多于0.30μm的条高度。然而,在本领域已知的标准研磨机器需要近似5.0μm的范围来校正MR头的排的倾斜和弯曲。依照本发明将提供用于研磨控制的长范围ELG和短范围读取头。在接近研磨操作的结束时,依赖于短范围读取头来进行控制。在现有技术中,ELG和读取头被作为每个有两个引线的单独的研磨向导处理。这样,需要附加的晶片区域来容纳加倍的研磨向导。还有,需要附加的导线和电子电路来接入和处理两个独立的研磨向导。
参考图1,ILG的实施例被示出。ILG包括第一读取头MRE 1和第二读取头MRE 2。在该实施例中,读取头1、2是一样的。第一和第二引线3、4被提供以使电流流过读取头1、2和ELG 5。用于ELG 5和读取头1和2的条高度被测量,从读取头传感器条的顶部,到待研磨的体积中。在该实施例中,为提供有10μm ELG条高度的足够分辨率,ELG的宽度B被选择为近似10μm。为确保与读取头电阻相比ELG电阻是小的,依照本发明的该实施例引入了两个设计特点。首先,两个读取头被与ELG串联设置以提供足够高的读取头电阻。其次,读取头和ELG之间的条高度偏移D被选取为远远大于最终读取高度条高度(例如,0.15μm)的5μm以得到足够低的ELG电阻。
读取头和ELG以及ILG引线之间的内部连接包括相同的材料,并且使用与在实际读取头中的引线相同的掩模在相同时间被淀积。与实际读取头一样,为了紧凑,ILG引线和内部连接的宽度应被最小化,并且应使由导电污物(conductive smear)导致的电短路的弱点最小化。目前,可使宽度在5μm以下。
ILG引线可以以与实际读取头引线几乎相同的方式经由通孔通往晶片淀积表面上的焊接盘。
ILG被模拟为由理想导体串联连接的两个电阻性矩形。参考图2,用于图1的ILG的数学模型被示出。第一和第二引线分别由方块11和13表示。“夹住”ELG 5的内部连接由方块17表示。如以上所述,在该数学模型中,这些块的电阻被假定为可以忽略。图1的两个读取头1、2由方块12表示,而ELG由方块15表示。在该实施例中,读取头的宽度由W表示,而ELG的宽度由B表示。条高度由H表示,而ELG的剩余深度由D表示。
假定R表示ILG的可变电阻,L表示额定引线电阻,而Q表示用于ILG的膜电阻率,则R=QBH+D+2QWH+L]]>等式1其中第一项表示ELG的电阻,而第二项表示读取头的电阻,并且L表示额定引线电阻。归一化电阻S可被定义为S=R-LQ]]>等式2并且ILG的有效宽度可被定义为E=B+2W-SD 等式3有了这些中间变量,伪ILG条高度H由以下给出H=E+E2+8DSW2S]]>等式4以r和l分别为读取头的目标电阻和额定引线电阻,伪ILG条高度的研磨目标HT由以下等式给出HT=QWr-l]]>等式5实际读取头条高度对装置和晶片过程分析是有用的。由于ILG不提供实际读取头条高度,晶片布局可包含类似于在U.S.专利No.6,230,389中所描述的常规ELG和ILG的混合。
再次看图1,设计特点是有相对于MRE读取头1、2的ELG 5的相对大的偏移D。参考图3,所示为示出电阻上的研磨效果的曲线图。Y轴表示图1中第一和第二引线3、4之间的电阻R的对数函数(logorithmic function)。X轴表示研磨操作过程中所经历的时间(并由此与条高度成比例)。研磨操作的第一部分被示出为单元31。在该阶段中,读取头1、2对总电阻的贡献为常量,这是因为所述头在该阶段中不被研磨。然而,ELG 5(图1)被研磨,并且随着ELG被研磨,电阻以相对低的速率增加。正是在该阶段,ELG提供将执行的考虑MR头的排的倾斜和弯曲的长范围条高度控制。
在研磨操作的第二阶段33中,读取头1、2开始与ELG 5一起被研磨。在本发明的该实施例中,读取头具有漏斗的形状,因此随着研磨操作的继续,读取头的宽度减小到最终宽度W。在该阶段中,随着研磨操作的继续,读取头1、2的电阻开始变化,并开始对ILG的总电阻施加更多的影响。随着研磨操作到达最后阶段35,ILG的总电阻由读取头1、2支配。实际上,在该最后阶段中,ELG 5的电阻是相对的常量,主要是因为ELG在读取头之上延伸了偏移距离D。如从图3的曲线图中看到的,ILG电阻由ELG然后由读取头支配之间的过渡是相对平滑的,这在研磨操作的过程中具有有益的效果。正是在这个最后阶段,读取头提供了允许MR头的排中的均匀读取头电阻的短范围研磨控制。
在以上实例中,读取头的宽度W为近似0.2μm,而目标条高度为近似0.15μm。这两个参数由产品技术要求确定而不由ILG设计约束。在该实施例中,偏移为近似5μm,其等于倾斜和弯曲控制所需的条高度范围。ELG的宽度B优选为偏移的两倍。在该实施例中,宽度B为近似小于或等于10μm。
在研磨操作完成之后,“切口”中的那些元件在使MR头从排中脱离的冲切过程中被去除。在该实施例中,整个ILG被包含在切口中。如以上所述,ILG仅以一个读取头和一个ELG起作用。在该实施例中,在伪条高度的计算中,两个读取头被用于增加读取头电阻对ELG条高度的优势。
尽管已参照上述应用描述了本发明,对优选实施例的该描述并不意味着在局限性的意义上被解释。应理解,本发明的所有方面不局限于依赖于各种原理和变量的在此提出的特定描述、配置或尺寸。基于对本公开内容的参考,对本领域的技术人员来说,以所公开设备为形式和细节的各种修改以及本发明的其它变化将是显然的。因此,预期所附的权利要求应覆盖属于本发明真精神和范围内的所述实施例的任何这样的修改和变化。
权利要求
1.一种用于磁阻头的研磨向导,包括第一和第二引线;被耦合于所述第一引线的第一读取头;被耦合于所述第一读取头的第一内部连接;在所述第一内部连接和所述第二引线之间被耦合的电子研磨向导。
2.权利要求1的研磨向导,其中所述第一读取头与磁阻(MR)头结构中的读取头一样。
3.权利要求2的研磨向导,进一步包括在所述电子研磨向导和所述第二引线之间被耦合的第二内部连接;以及在所述第二内部连接和所述第二引线之间被耦合的第二读取头。
4.权利要求3的研磨向导,其中所述第二读取头与所述第一读取头一样。
5.权利要求1的研磨向导,其中所述电子研磨向导的形状为矩形并且与第一读取头偏移一个量D。
6.权利要求5的研磨向导,其中D为5μm。
7.一种制造磁阻读取头的方法,包括通过以下步骤提供集成的研磨向导在所述基片中形成第一和第二引线;在基片中形成被耦合于所述第一引线的第一读取头;在所述基片中形成被耦合于所述第一读取头的第一内部连接;以及在所述基片中在所述第一内部连接和所述第二引线之间形成电子研磨向导。
8.权利要求7的方法,进一步包括研磨所述集成的研磨向导,同时测量所述第一和第二引线之间的电阻,直到达到用于所述第一读取头的所需条高度。
9.权利要求8的方法,其中所述第一读取头与磁阻(MR)头结构中的读取头一样。
10.权利要求7的方法,其中形成所述集成的研磨向导进一步包括形成被耦合在所述电子研磨向导和所述第二引线之间的第二内部连接;以及形成被耦合在所述第二内部连接和所述第二引线之间的第二读取头。
11.权利要求10的方法,其中所述第二读取头与所述第一读取头一样。
12.权利要求8的方法,其中形成所述集成的研磨向导进一步包括形成被耦合在所述电子研磨向导和所述第二引线之间的第二内部连接;以及形成被耦合在所述第二内部连接和所述第二引线之间的第二读取头。
13.权利要求12的方法,其中所述第二读取头与所述第一读取头一样。
14.权利要求8的方法,其中所述电子研磨向导的形状为矩形并且与第一读取头偏移一个量D。
15.权利要求12的方法,其中D为5μm。
全文摘要
一种集成的研磨向导(ILG)被描述,包括至少一个读取头和电子研磨向导(ELG)。在一个实施例中,ELG与读取头的高度有偏移。在研磨的过程中可测量读取头和ELG之间的电阻。在研磨过程的开始阶段中,ELG支配ILG电阻的变化并提供虑及磁阻(MR)头的排的倾斜和弯曲的长范围条高度控制。在研磨过程的较后阶段中,读取头支配ILG电阻的变化并提供短范围、均匀读取头电阻控制。在该实施例中,长范围条高度控制和短范围、均匀读取头电阻控制之间的过渡是平滑的,由此提供对读取头制造过程的明显好处。
文档编号G11B5/31GK1477619SQ0314649
公开日2004年2月25日 申请日期2003年7月11日 优先权日2002年7月12日
发明者L·-Y·朱, L -Y 朱 申请人:新科实业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1