用于半导体制造的导电层的低温氧化的制作方法

文档序号:6843613阅读:224来源:国知局
专利名称:用于半导体制造的导电层的低温氧化的制作方法
背景技术
方法
技术领域
本发明涉及半导体制造,特别涉及通过金属的低温氧化形成的蚀刻硬掩模。
2、相关技术的说明半导体制造中的沟槽形成经常受到用于形成半导体晶片的沟槽或其它部件的掩模的能力的限制。为了更详细地说明这一点,解释深沟槽蚀刻的示意性的例子。使用深沟槽以包括用于深沟槽电容器的存储结。为了增加深沟槽电容器的容量,增加存储结的表面面积是有利的。这样做的一种方式是增加深沟槽的深度,因为包括深沟槽的衬底能提供深度而不会对衬底的布置面积有影响。深沟槽(DT)蚀刻深度通常受到掩模腐蚀的限制,解释如下。
参见

图1,存储器件10包括其上形成有衬垫叠层11的衬底12。衬底12优选是单晶硅衬底。衬垫叠层11包括氧化物层14和氮化物层16。硬掩模层18淀积在衬垫叠层11上。硬掩模18一般包括掺杂硼的硅酸盐玻璃(BSG)。使用本领域技术人员公知的光刻技术对硬掩模18构图,形成其中将要形成深沟槽17的孔15。沟槽17的形成优选采用各向异性蚀刻形成,例如反应离子蚀刻(RIE)。
沟槽17被蚀刻到衬底12中。然而,在这个工艺期间,硬掩模18被腐蚀掉,这将间接损伤到邻近沟槽17位置的区域。蚀刻的时间越长,腐蚀掉硬掩模18的风险就越大。
为了增加蚀刻的时间量,可使用较厚的硬掩模18。但是,这将使工艺时间增加和不必提供更深的沟槽。
因此,需要一种用于蚀刻的更经济的硬掩模,其已经增加了选择性,因而增加蚀刻时间而不会显著腐蚀硬掩模。
发明概要根据本发明的形成用于半导体制造的阀用金属氧化物(valvemetal oxide)的方法包括以下步骤提供半导体晶片,在晶片上淀积阀用金属材料,将晶片放置在电化学单元内,当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用,形成金属氧化物,并使用金属氧化物层处理晶片。
根据本发明,在半导体衬底中蚀刻沟槽的方法包括以下步骤提供半导体衬底,形成衬底的衬垫叠层,在衬垫叠层上淀积阀用金属材料,将衬底放在电化学单元内,以便当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用,形成金属氧化物,和采用金属氧化物作为蚀刻掩模,用于在衬底中蚀刻沟槽。
根据本发明,形成用于半导体制造的阀用金属氧化物的另一种方法包括以下步骤提供包括衬底的半导体晶片,衬底具有形成在其上的至少一层;在该至少一层上淀积介质层;在介质层上淀积阀用金属材料;通过将晶片放在电化学单元内氧化阀用金属材料,当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用,形成金属氧化物,在氧化步骤过程中,绝缘层用于对至少一层提供保护;和使用金属氧化物层处理晶片。
在另一方法中,淀积阀用金属材料的步骤可包括淀积选自由铝、铌、钽、钛、氮化钛、铪和锆组成一组的阀用金属材料。该方法可包括以下步骤在阀用金属材料和溶液之间施加电压以便产生电位差,使施加的电压控制金属氧化物的厚度。溶液可包括在含水溶液中的乙酸盐缓冲剂。乙酸盐缓冲剂溶液优选具有在约4和约7之间的PH值。将晶片放到电化学单元中的步骤可包括以下步骤将晶片放到电化学单元内,使晶片具有阀用金属的暴露的表面区域,和在溶液中提供对置电极,它具有比阀用金属的暴露表面区域大的暴露表面区域。
将晶片放在电化学单元内的步骤可包括密封阀用金属材料的暴露区域以外的其它部分,以便防止与溶液接触。包括电解质的溶液优选与阀用金属材料在约室温下互相作用以形成金属氧化物。使用金属氧化物层处理晶片的步骤可包括采用金属氧化物层作为蚀刻掩模和/或蚀刻停止的步骤。采用金属氧化物作为用于在衬底中蚀刻沟槽的蚀刻掩模的步骤可包括对阀用金属材料构图以在用于沟槽的位置开孔的步骤。采用金属氧化物作为用于在衬底中蚀刻沟槽的蚀刻掩模的步骤可包括对金属氧化物构图以在用于沟槽的位置开孔的步骤。处理晶片的步骤可包括对阀用金属材料构图以在用于沟槽的位置开孔,以便采用金属氧化物作为蚀刻掩模的步骤。处理晶片的步骤可包括对金属氧化物构图以在用于沟槽的位置开孔,以便采用金属氧化物作为蚀刻掩模的步骤。
通过下面结合附图详细介绍示意实施例使本发明的这些和其它目的、特点和优点更明显。
附图简述下面参照附图详细介绍优选实施例,其中图1是表示在沟槽蚀刻期间硬掩模的腐蚀的常规半导体器件的剖面图;图2是表示根据本发明的淀积在其上的阀用金属材料层的半导体器件的剖面图;图3是在对阀用金属材料层构图之后表示根据本发明氧化的图2的阀用金属材料层的半导体器件的剖面图;图4是根据本发明的用于电化学形成阀用金属氧化物的装置的示意图;图5是根据本发明的用于处理的电容C(电荷存储)与电位U的曲线;图6是根据本发明的用于处理的电流I与电位U的曲线;图7是表示根据本发明的用做蚀刻掩模的被氧化的阀用金属层的图3的半导体器件的剖面图;图8是表示根据本发明的淀积在保护介质层上的阀用金属材料层的半导体器件的剖面图;图9是表示在被氧化的金属层被构图之前,根据本发明氧化的图8的阀用金属材料层的半导体器件的剖面图;图10是表示根据本发明的用做蚀刻掩模的被氧化的金属层的图9的半导体器件的剖面图。
优选实施例的详细说明本发明涉及半导体制造,特别涉及具有改进的选择蚀刻能力的硬掩模。根据本发明的硬掩模包括金属,如阀用金属,或其它导电化合物,如氮化钛(TiN)。为简便起见,将考虑阀用金属同样包括这些其它化合物。阀用金属优选被低温氧化方法氧化。在优选实施例中,采用阀用金属氧化物,如Al2O3、TiO2、Ta2O5、Nb2O6、ZrO2和HfO2。这些氧化物呈现高的蚀刻选择性,并可通过比现有技术硬掩模更经济有效的方法形成。下面将详细介绍在低温下形成阀用金属氧化物硬掩模的工艺。
现在参照附图详细说明,附图中相同的标记表示相同或相似的元件,首先参见图2,半导体器件100可包括存储器件,如动态随机存取存储器(DRAM),同步DRAM,静态RAMs,和只读存储器或其它存储器集成电路。器件100还可包括处理器芯片、逻辑电路、专用芯片等。将示意性地介绍器件100和下列方法,用于在半导体存储器中形成深沟槽,然而本发明是更宽的并且可适用于采用蚀刻掩模或阀用金属氧化物层用于任何工艺步骤的任何半导体器件。
器件100包括衬底102。衬底102可包括硅材料,但是衬底的材料也可以采用例如砷化镓、硅-绝缘体等。衬垫叠层101形成在衬底102的顶表面104上。衬垫叠层101可包括氧化物层106和氮化物层108。可提供其它层,或者可以采用多氧化物和/或氮化物层。
根据本发明,阀用金属层110淀积在衬垫叠层101上。阀用金属层110可包括下列金属中的一种或几种铝(Al)、钛(Ti)、钽(Ta)、铌(Nb)、锆(Zr)、和/或铪(Hf)。可使用其它导电阀用金属化合物形成相对于衬底102可选择地蚀刻的氧化物,例如可使用TiN。可使用化学汽相淀积(CVD)工艺淀积阀用金属层110。或者,可使用物理汽相淀积(PVD)工艺淀积阀用金属层110。阀用金属层110可被淀积到厚度在约10nm和约600nm之间,优选在约100nm和300nm之间,但可使用其它厚度。
此时可构图阀用金属层110,或者氧化,然后构图。在每种情况下,根据光刻图形并利用本领域技术人员公知的光刻技术去掉氧化物或金属。为方便起见,在氧化之前构图阀用金属层110的情况示于图3中。优选在氧化之前构图阀用金属层110,因为可以相对于光刻抗蚀剂层选择地蚀刻层110。抗蚀剂层(未示出)具有对层110的选择性,其足以利用反应离子蚀刻(RIE)打开厚度为约600nm的层110。同样可使用其它层厚。这对应硬掩模开口工艺。通过用这种方式构图层110,由于金属层对抗蚀剂的选择性而使层110很容易被构图。然后去掉抗蚀剂层。
参见图3,根据本发明,现在利用低温氧化工艺氧化被构图的阀用金属层110,以便形成金属氧化物层120(图7)。电极112与阀用金属层110连接(或者如果在衬底102和阀用金属11O之间存在合适的导电路径的话,与衬底102连接),并且器件100暴露于电解液114之下。根据本发明,阀用金属和其化合物可被阳极化氧化,以便形成均匀的氧化物膜。有利地,阀用金属氧化物电化学反应允许电流只在一个方向流动,即流向氧化物形成方向。稳定膜厚d根据高电场模型由施加电位U确定如下d=k(U-UOX(等式1)其中膜形成因素k和氧化物形成电位UOX取决于包括使用的电解液、溶液的pH值和/或使用的阀用金属的实验条件。阀用金属层110在约室温下被氧化,但也可采用其它温度以便实现不同的结果。氧化工艺很好地被控制,结果实现均匀氧化。可利用图4所示的装置实现被控制的氧化。该工艺将金属和金属化合物(TiN)转换成氧化物。现在这些氧化物被用做硬掩模,因为它们提供对后面的反应离子蚀刻工艺的特殊抵抗性。
参见图4,根据本发明,示出的装置200用于施加控制在其上具有器件100的晶片202上的电化学氧化物形成的电压。装置200是电化学单元,包括用包括电解质的液体206填充的电解槽204。液体206优选是水,电解质可包括离子化合物,如盐、酸性化合物、碱性化合物等,或它们的组合物。在一个实施例中,电解质包括pH浓度在约4和约7之间的乙酸盐缓冲剂。其它化合物和浓度也可以考虑,并且可提供,以便能在电解槽204中的电极之间转移离子。
优选包含于半导体晶片202上的器件100被固定于绝缘晶片固定器210上。在晶片202的周围提供夹持器212,固定和密封晶片202,以便只使器件100的上表面214暴露于电解槽204的溶液206中。如果在衬底102和阀用金属层110之间存在绝缘层,如上述情况,通过导线218使背面216上的器件100电接触或直接与阀用金属层110电接触。
可在非导电或绝缘晶片固定器210和晶片202之间设置导电膜或箔220,以便提高导线218和晶片202之间的电接触。电解槽204中包含参考电极222,以便维持溶液206(在图3和9中还标为溶液114)中的预定电位。参考电极222维持器件100上的限定电位,该器件100优选是芯片或晶片。还包括对置电极224。对置电极224优选包括至少与器件100相同量的暴露表面区域。优选,对置电极224相对于器件100的表面是很大的。就是说,对置电极224的表面面积是阀用金属层110的表面面积的约1.5到约50倍。对置电极224优选包括贵重金属(如金(Au)、或铂(Pt)),或者为了最小化污染,对置电极224优选包括必须被在晶片上氧化的相同金属,即阀用金属层110的金属。对于电解的最佳条件将取决于各种阀用金属。
包括电压源或电压稳定器226,用于在器件100和参考电极222之间提供电压差。这个电压差用于控制形成在器件100上的氧化物的厚度,如上所述。带有器件100的晶片必须被浸渍在电解液206中。电位逐渐升高到靶电位,这是对于所希望的膜厚需要的,并在确定时间周期内维持在该电位。氧化电流和电荷可以就地控制。当已经转移了总电荷的特定值时,完成氧化。实现给定的氧化物厚度所需的电荷数量取决于使用的金属。图5-6示意性地表示电解液中的阀用金属的电流-电压情况,阀用金属例如是Al、Ta、Nb、Hf、Ti、和Zr,电解液例如是pH值为5.9的乙酸盐缓冲剂。使用与这些附图相同的附图,可得到电荷/电流与电压的关系。由此,根据本发明,在预定时间量内设置电压,以便实现所希望的氧化物厚度。图6表示由电位U产生的电流I。图5表示电容C与电位U。利用图5和6及等式1,对于给定电位或电流可确定阀用金属氧化物的厚度,并且可确定提供给定厚度的金属氧化物所需的时间量。通过控制电化学反应的电特性,可确定金属氧化物层的性能,例如氧化物层的厚度、金属氧化物层的横向扩张,等等。有利地,这个信息可消除根据本发明形成的金属氧化物层的物理测量的需要。从溶液206中取出带有器件100的晶片之后,必须用去离子水去除残留电解质。
参见图7,现在使用阀用金属氧化物层120进行蚀刻衬底102。层120提供高耐蚀刻性和对硅(衬底102)的高蚀刻选择性,因此可形成沟槽122。阀用金属氧化物层120可优选包括Al2O3、TiO2、Ta2O5、Nb2O6、ZrO2和HfO2。根据本发明同样可以形成其它氧化物。阀用金属氧化物层120的高耐蚀刻性和高蚀刻选择性为反应离子蚀刻(或其它蚀刻工艺)提供更长的蚀刻时间。在涉及深沟槽形成的示意性例子中,更长的蚀刻时间提供蚀刻更深沟槽的能力而不会被腐蚀。现在可以象本领域公知那样继续进行处理。
参照图8,另外一个实施例包括器件300,器件300包括衬底302。可采用包括硅材料的衬底302,当然也可以采用其它衬底材料。衬垫叠层301形成在衬底302的顶表面304上。衬垫叠层301可包括氧化物层306和氮化物层308。可提供其它层,或者可以采用多层氧化物和/或氮化物层。
根据本发明,介质层311可淀积在衬垫叠层301上。介质层311可包括氧化物,如硼硅酸盐玻璃(BSG),或相对于衬垫叠层301的顶层选择地可去除的其它材料。提供介质层311以便在后面步骤中的阳极氧化期间保护衬垫叠层301或器件300的其它部件。介质层311包括足以防止过氧化的厚度。在介质层311上淀积阀用金属层310。可采用上述化学汽相淀积(CVD)工艺或物理汽相淀积(PVD)工艺淀积阀用金属层310。
此时可构图阀用金属层310,或者氧化,然后构图。在每种情况下,根据光刻图形和利用本领域技术人员公知的光刻技术去掉氧化物或金属。氧化之后构图阀用金属层310的情况示于图9中。
参照图9,利用上面参照图4所述的低温氧化工艺氧化层310。电极320与阀用金属层310连接或与衬底302连接。阀用金属层310可允许在某些位置与衬底302接触,由此允许电极320连接到衬底302。完全氧化层310,以便形成是阀用金属氧化物层的层322(图10)。
参照图10,已经采用上述抗蚀剂(未示出)构图阀用金属氧化物层310。可利用对抗蚀剂选择的干蚀刻工艺如RIE工艺蚀刻层322。形成通过阀用金属氧化物层322的开口313。现在进行沟槽316的蚀刻。根据本发明,由于阀用金属氧化物提供对RIE优异的耐蚀刻性,因此能够形成较深沟槽。现在可以象本领域公知那样继续处理。
有利地,本发明提供形成硬掩模而不消耗热预算(budget)的方法。本发明在约室温下形成氧化化合物。这些阀用金属氧化物膜的热成型通常需要工作在几百摄氏度的相当高的温度下。例如可利用湿蚀刻工艺去掉阀用金属氧化物层。
本发明通过在构成之前或之后利用有关的金属阳极氧化在晶片上提供均匀和致密(没有针孔)的阀用金属氧化物膜。热氧化的一些优点包括1)低热预算;2)利用施加电位容易控制氧化物厚度;3)通过测量氧化工艺的装置200中的电荷损耗就地控制厚度;4)通过测量氧化工艺的装置200中的电荷损耗,容易控制由于沿着器件100或300的表面氧化引起的金属氧化物横向扩张;5)通过工作在室温下和小心控制电位,可以实现金属氧化物膜中的应力减小;和6)建立更简易和更便宜的设备和涉及很少污染的测试。
本发明可用于蚀刻沟槽、保护部件或各种其它应用。例如,可形成阀用金属氧化物层作为掺杂剂注入的掩模,或作为蚀刻或抛光的停止层。
上面已经描述了用于半导体制造的阀用金属的低温氧化的优选实施例(只是示意性的,并不限制),应该注意鉴于上述教导,本领域技术人员可以做出各种修改和改变。因此应当明白,可以对公开的本发明的特殊实施例做各种改变,这些改变是在由所附权利要求书限定的本发明的范围和精神内。这样已经根据专利法的要求详细和具体介绍了本发明,由LETTERS专利所要求保护的范围在所附中。
权利要求
1.一种形成用于半导体制造的阀用金属氧化物的方法,包括以下步骤提供半导体晶片;在晶片上淀积阀用金属材料;将晶片放置在电化学单元中,当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用,形成金属氧化物;和使用金属氧化物层处理晶片。
2.根据权利要求1的方法,其特征在于淀积阀用金属材料的步骤包括淀积选自由铝、铌、钽、钛、氮化钛、铪和锆组成一组的阀用金属材料。
3.根据权利要求1的方法,还包括在阀用金属材料和溶液之间施加电压以便产生电位差,使施加的电压控制金属氧化物的厚度的步骤。
4.根据权利要求1的方法,其特征在于溶液包括在含水溶液中的乙酸盐缓冲剂。
5.根据权利要求1的方法,其特征在于乙酸盐缓冲剂溶液具有在约4和约7之间的pH值。
6.根据权利要求1的方法,其特征在于将晶片放置在电化学单元内的步骤包括以下步骤将晶片放置在电化学单元内,使晶片具有阀用金属材料的暴露表面区域;和在溶液中提供对置电极,使其具有比阀用金属的暴露表面区域大的暴露表面区域。
7.根据权利要求6的方法,其特征在于将晶片放置在电化学单元内的步骤包括密封阀用金属材料的暴露表面区域之外的其它部分以便防止与溶液接触的步骤。
8.根据权利要求1的方法,其特征在于包括电解质的溶液与阀用金属材料在约室温下互相作用,形成金属氧化物。
9.根据权利要求1的方法,其特征在于使用金属氧化物处理晶片的步骤包括采用金属氧化物作为蚀刻掩模和蚀刻停止之一的步骤。
10.一种在半导体衬底中蚀刻沟槽的方法,包括以下步骤提供半导体衬底;形成衬底的衬垫叠层;在衬垫叠层上淀积阀用金属材料;将衬底放置在电化学单元中,当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用,形成金属氧化物;和采用金属氧化物作为在衬底中蚀刻沟槽的蚀刻掩模。
11.根据权利要求1的方法,其特征在于淀积阀用金属材料的步骤包括淀积选自由铝、铌、钽、钛、氮化钛、铪和锆组成一组的阀用金属材料。
12.根据权利要求10的方法,还包括在阀用金属材料和溶液之间施加电压以便产生电位差,使施加的电压控制金属氧化物的厚度的步骤。
13.根据权利要求10的方法,其特征在于溶液包括在含水溶液中的乙酸盐缓冲剂。
14.根据权利要求10的方法,其特征在于乙酸盐缓冲剂溶液具有在约4和约7之间的pH值。
15.根据权利要求10的方法,其特征在于将晶片放置在电化学单元内的步骤包括以下步骤将晶片放置在电化学单元内,使晶片具有阀用金属的暴露表面区域;和在溶液中提供对置电极,使其具有比阀用金属的暴露表面区域大的暴露表面区域。
16.根据权利要求15的方法,其特征在于将晶片放置在电化学单元内的步骤包括密封阀用金属材料的暴露区域之外的其它部分以便防止与溶液接触的步骤。
17.根据权利要求10的方法,其特征在于包括电解质的溶液与阀用金属材料在约室温下互相作用,形成金属氧化物。
18.根据权利要求10的方法,其特征在于采用金属氧化物作为在衬底中蚀刻沟槽的蚀刻掩模的步骤包括构图阀用金属材料以在用于沟槽的位置开孔的步骤。
19.根据权利要求10的方法,其特征在于采用金属氧化物作为在衬底中蚀刻沟槽的蚀刻掩模的步骤包括构图金属氧化物以便在用于沟槽的位置开孔的步骤。
20.一种形成用于半导体制造的阀用金属氧化物的方法,包括以下步骤提供包括衬底的半导体晶片,衬底具有形成在其上的至少一层;在至少一层上淀积介质层;在介质层上淀积阀用金属材料;通过将晶片放置在电化学单元内,当在阀用金属材料和溶液之间提供电位差时,使包括电解质的溶液与阀用金属材料互相作用形成金属氧化物,由此氧化阀用金属材料,在氧化步骤期间介质层用于提供保护至少一层;和用金属氧化物层处理晶片。
21.根据权利要求20的方法,其特征在于淀积阀用金属材料的步骤包括淀积选自由铝、铌、钽、钛、氮化钛、铪和锆组成一组的阀用金属材料。
22.根据权利要求20的方法,还包括在阀用金属材料和溶液之间施加电压以便产生电位差,使施加的电压控制金属氧化物的厚度的步骤。
23.根据权利要求20的方法,其特征在于溶液包括在含水溶液中的乙酸盐缓冲剂。
24.根据权利要求23的方法,其特征在于乙酸盐缓冲剂溶液具有在约4和约7之间的pH值。
25.根据权利要求20的方法,其特征在于通过将晶片放置在电化学单元内氧化阀用金属材料的步骤包括以下步骤将晶片放置在电化学单元内,使晶片具有阀用金属材料的暴露表面区域;和在溶液中提供对置电极,使其具有比阀用金属材料的暴露表面区域大的暴露表面区域。
26.根据权利要求25的方法,其特征在于将晶片放置在电化学单元内的步骤包括密封阀用金属材料的暴露区域之外的其它部分以便防止与溶液接触的步骤。
27.根据权利要求20的方法,其特征在于包括电解质的溶液与阀用金属材料在约室温下互相作用,形成金属氧化物。
28.根据权利要求20的方法,其特征在于利用金属氧化物处理晶片的步骤包括采用金属氧化物作为蚀刻掩模和蚀刻停止之一的步骤。
29.根据权利要求20的方法,其特征在于处理晶片的步骤包括构图阀用金属材料以便在用于沟槽的位置开孔,从而采用金属氧化物作为蚀刻掩模的步骤。
30.根据权利要求20的方法,其特征在于处理晶片的步骤包括构图金属氧化物以在用于沟槽的位置开孔,以便采用金属氧化物作为蚀刻掩模的步骤。
全文摘要
公开和要求保护一种根据本发明形成用于半导体制造的阀用金属氧化物的方法。该方法包括以下步骤:提供半导体晶片(100),在晶片上淀积阀用金属(110),将晶片放置在电化学单元(200)中,当在阀用金属(110)和溶液(114)之间提供电位差时,使包括电解质的溶液(114)与阀用金属互相作用,形成金属氧化物(111),并且使用金属氧化物层处理晶片。
文档编号H01L21/02GK1355930SQ00808743
公开日2002年6月26日 申请日期2000年5月25日 优先权日1999年6月8日
发明者O·根茨, A·米凯利斯 申请人:因芬尼昂技术北美公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1