光发射器件与光发射显示器的制作方法

文档序号:6870476阅读:132来源:国知局
专利名称:光发射器件与光发射显示器的制作方法
技术领域
本发明涉及光发射器件与用于控制光发射器件的光发射操作与进行显示的显示器。更具体地说,本发明涉及诸如在发射层的后侧具有光反射元件的有机电致发光器件这样的光发射器件,和有效利用于具有该光发射器件的显示器的技术。


图19示出了常规有机EL器件一个实例的剖面示意图。该有机EL器件具有如下结构,透明电极200作为阳极,空穴迁移层102,发射层100,电子迁移层101,具有光反射功能的金属电极构成的阴极300,这些被依次层压于透明基片400上。
当DC电压施加到作阳极的透明电极200和阴极300之间时,从透明电极200注入的空穴通过空穴迁移层102到达发射层100,同样,从阴极300注入的电子通过电子迁移层101分别到达发射层100,形成电子和空穴再结合,于是从再结合区产生具有预定波长分布的光发射。
从发射层100发射的光中导向透明电极200侧的光通过透明电极200,并从透明基片400发出。而导向阴极300的光被阴极300反射,通过发射层100,透明电极200等,同样从透明基片400出射。
因此,在如上所述通过控制这类有机EL器件的光发射操作进行显示的显示器中,阴极被设置成具有高反射系数的电极并且从透明电极侧发射的光量增加,对于获得明亮的图像是非常重要的。
可是,根据该类器件结构,在没有光发射的状态中,由于阴极处在具有高反射系数的镜子一样的状态中,环境背景等将会进入,于是黑色(暗)显示将不能充分变暗。即在周围明亮的环境下存在黑色显示不能变暗,对比度下降的问题。解决该问题的一个方法是,实用上在透明基片400的光发射表面层一侧,布置一个圆偏振器800。圆偏振器包括起偏器600和1/4波片700。
圆偏振器800按如下操作。来自环境进入有机EL器件的外部光2000通常是非偏振光。当通过起偏器600时,特定的线偏振光透过,而与其交叉垂直的线偏振光被吸收。透过起偏器600的线偏振光经过1/4波片700的操作变成圆偏振光(例如,在此为右旋圆偏振光)。当通过1/4波片700的光被阴极300反射时,变成了相位偏移□并且旋转方向相反的圆偏振光(左旋偏振光)。被阴极300反射的光2000R再次进入1/4波片700。当光通过它时受其操作将转变为被起偏器600吸收的线偏振光,并且被其吸收,于是光线不能返回外部。即由于被阴极300反射的外部光被切断,黑色显示将变暗,并且对比度明显改善。
该结构公开于JP-A-8-509834,JP-A-9-127885等号公报上。
对于使用有机EL器件实现全彩色图像显示的技术已经提出并验证了几种方式。例如,建议了蓝色光发射器件和荧光CCM(色变换层,colorchanging medius)结合的方式(以下称做CCM方法);白光发射与三原色(红色R,绿色G,和蓝色B)的彩色滤光器结合的方式(以下称做借助白色的RGB方法);包含三原色(R,G,B)的光发射器件的像素被直接构图的方式(以下称做R.G.B并置型)等等。
根据CCM方法,荧光性色变换用荧光染料层由蓝色发射层产生的光激发,光从蓝色变成绿色和红色,由此产生三原色光发射。根据这种方式,如果色转变效率很低,器件效率将下降。在更加明亮的环境下,色变换层由外部光激发而变得明亮,黑色显示不暗,因此对比度下降。
尽管借助白色的RGB方法而制成的光发射器件因为只形成一种白色而具有制造最简单的特点,但由于使用了滤光器,在原理上光的使用效率下降到1/3以下。
RGB并置型由于需要在同一个基片上分别形成三种器件,制造过程变得有些复杂。然而,光的损失最小,从光发射效率的角度看可以说是一种理想方式。关于RGB构图(上色),在使用低分子量的荧光染料和金属络合体等被称作低分子量材料的情况下,已经提示通过利用遮蔽掩膜的有机层的真空蒸发沉积进行细微构图RGB的技术。
已经提示在使用诸如□共轭聚合物和使染料高分子化的含染料的聚合物等聚合材料的情况下,通过光刻形成聚酰亚胺聚合体,使像素区域分离并且使有机材料通过喷墨技术而打印,以实现细微构图RGB的技术(《视频图像信息媒体协会》杂志,第54卷,第8期,第1115-1113页)。
根据具有圆偏振器的常规技术,由于在具有有机EL器件光反射功能的电极(阴极)中外部光反射能通过圆偏振器的操作而降低,因此即使在明亮环境下也可以实现高对比度。然而,在光发射时,由于发射层发射的光中的一部分被圆偏振器吸收,会产生显示变暗的问题。这是因为,从发射层发射的光通常是非偏振光,至少1/2的光被构成圆偏振器的偏振器吸收。
在用有机EL器件实现全彩色的显示装置的情况下,从器件效率的角度看RGB并置型是最优选的。然而,对于当前的有机EL器件,发射光的波长范围根据不同颜色而很宽,色纯度不高。尽管可以考虑合并使用滤色器以便提高每一种原色的色纯度,但在此情况下,由于光被滤色器所吸收,光的使用效率下降而使得显示变暗。
还提供不损害明亮度的高色纯度光发射器件以及通过控制该光发射器件的光发射操作而进行显示的光发射显示器。本发明的其它目的通过下面的描述将会清楚。
为实现上述目标,本发明的光发射器件,在发射层和所述相移片之间设偏光分离器(胆甾醇型液晶层)。偏光分离器分离出所述发射层的部分或全部发射光波长范围内并且比可见光波长范围还要窄的光,而且从所述发射层侧导向所述偏光分离器侧的光中,反射出会由于所述相移片的作用而在所述起偏器内转换成线偏振光而被吸收的圆偏振光成分而透过其他的光。
发射层背侧的反射元件至少可用作反射圆偏振光的反射表面,该圆偏振光是与直射的圆偏振光的旋转方向相反的。
在由发射层发出的光中,常规上由起偏器吸收的偏振光成分在它们被起偏器吸收之前会被偏光分离器反射,并导向反射元件。
被偏光分离器反射并导向反射元件的光是圆偏振光,并且通过反射元件的反射变成透过偏光分离器的圆偏振光,即由于相移片的操作圆偏振光会转化为透过起偏器的线偏振光,于是该光被利用而没有被起偏器吸收。
即以往由发射层发出且被偏振器吸收并此后浪费的光在被偏振器吸收之前会被偏光分离器反射和重新利用,于是可以使光发射器件明亮。
即为达到上述目的,本发明的光发射器件涉及一种具有发射层和设在发射层背侧上的光反射元件的光发射器件,其中设有通过反射和透射将相应于从所述发光层表面侧上的发光层发出的光的预定波长范围的光分成两种类型的圆偏振光成分的偏光分离器,相移片和起偏器。
例如,胆甾醇型液晶层可以用作偏光分离器。在此情况下,胆甾醇型液晶层的选择反射的波长范围被设置为等于或窄于光发射层的发射光波长范围。1/4波片用作相移片。
根据上述结构的光发射器件,从发射层发出的光直接导入,或者被设在发射层背侧上的反射元件反射后进入构成偏光分离器的胆甾醇型液晶层。对于进入胆甾醇型液晶层的光,由于胆甾醇型液晶层的选择反射一种旋转方向的圆偏振光(例如在此为左旋圆偏振光)被反射,与上述旋转方向相反的圆偏振光成分(右旋圆偏振光),则透过。透过胆甾醇型液晶层的光由于相移片的作用从圆偏振光转化为线偏振光,透过而不被起偏器吸收,并导向观察者。
另一方面,被胆甾醇型液晶层反射的光被发射层背侧上的反射元件反射,并重新导向胆甾醇型液晶层。然而,当被反射元件反射时相位偏移□,并且变成为与上述旋转方向相反的圆偏振光(右旋圆偏振光)。因此,这一次光透过胆甾醇型液晶层并由于相移片的作用转化为可透过起偏器的线偏振光,它透过起偏器并导向观察者。即常规上被起偏器吸收并浪费的光在它被起偏器吸收之前被偏光分离器(胆甾醇型液晶层)反射并重新利用,于是可以使光发射器件明亮。
此外,如果被偏光分离器(胆甾醇型液晶层)反射并重新利用的光的波长范围窄于发射层的发射光波长范围,则从器件实际发出的光的波长分布比发射层的光发射波长分布要陡,于是可以获得比光发射层的发射光本身更高色纯度的色光。
由于在明亮环境下进入光发射器件的外部光通常为非偏振光,当他通过起偏器时至少一半被吸收。当通过起偏器的光透过相移片时,受其操作变为圆偏振光(例如右旋圆偏振光)并透过胆甾醇型液晶层。当透过胆甾醇型液晶层的光被反射元件反射时,变成与上述旋转方向相反的圆偏振光(左旋圆偏振光),并重新进入胆甾醇型液晶层。在进入胆甾醇型液晶层的光中,选择反射波长以外的波长的光被原样透过,受相移片的操作变成可为被起偏器吸收的线偏振光,并且被起偏器吸收,于是它不再透向外部。
另一方面,相应于选择反射波长的光被胆甾醇型液晶层反射,并且也被反射层反射后,它通过胆甾醇型液晶层、相移片、和起偏器并发向外部。由于这部分光非常小,即使在明亮环境下,也可以实现黑色(暗)显示变暗的高对比度度。
图16.为表示本发明所述实施例的光发射显示器局部结构的剖面示意图;图17A,17B,17C,17D,17E和17F为说明本发明另一实施例中滤色镜和偏光分离器的形成过程的剖面图;图18.表示作为本发明所述另一个实施例的光发射器件的一部分的示意性剖面视图;以及图19.表示传统光发射器件的一部分的示意性剖面视图。
作为有机EL器件150的有机层110,可以利用从阴极300侧依次层压电子迁移层101,发射层100,空穴迁移层102而形成,并配置在阳极(透明的电极200)和阴极300之间。
还有,可以使用发射层100和电子迁移层101都通用的材料且把它们合成一层。同样,对有机EL器件150也可以用另一种结构,即把一个阳极缓冲层配在阳极(透明电极200)和空穴迁移层102之间。CuPc可被用作阳极缓冲层。CuPc被认为对于改善阳极和空穴迁移层之间的接触有作用。
使用高功函数的透明电极材料用作阳极(透明电极200)即可,例如ITO(氧化锡铟)是优选的。未来,将能够使用InZnO。
低功函数的Al,Mg,Mg-Ag合金,Al-Li合金等可以用作阴极300。对Al单质而言,由于驱动电压高而寿命短,通过将非常薄的Li化合物(氧化锂Li2O,氟化锂LiF,等)插入有机层之间,以作为具有与Al-Li合金相匹配的特性的材料来使用。
通过将反应性高的金属,诸如锂、锶等等掺杂到与阴极相接触的部分有机层中,还可能很好地降低驱动电压。还有,从提高发射层发射的光的使用效率的角度看,希望阴极300用光反射系数高的材料制成。
此外,由于以下将要解释的原因,阴极300至少是把垂直地进入的圆偏振光变为旋转方向相反的圆偏振光且予以反射的一种镜面,这是从降低外光反射,以及提高从发射层发射的光的使用效率角度来看所希望的。
有机层110使用当预定的电压施加到阳极(透明电极200)和阴极300之间时,发射所需颜色的光的材料。
用于发射红光的材料,例如,空穴迁移层102可以使用α-NPD(4,4’-双[N-(1-萘基)-N-萘基苯]联苯)或三苯基二胺衍生物TPD(N,N’-双(3-甲基苯基)-N,N’-联二苯-[1,1’-联苯]-4,4’-二胺),电子迁移发射层(电子迁移层101和发射层100共同使用)可以使用通过向Alq3(三(8-喹啉醇化)铝)分散DCM-1(4-二氰亚甲基-6-(p-二甲氨基苯乙烯基)-2-甲基-4-H-吡喃而获得的材料。
用于发射绿光的材料,例如,空穴迁移层102可以使用α-NPD或三苯基二胺衍生物TPD,电子迁移发射层(电子迁移层101和发射层100共同使用)可以使用Alq3,Bebq(双(8-羟基喹啉酸)铍),或掺喹吖啶酮的Alq3。
用于发射蓝光强材料,例如,空穴迁移层102可以使用α-NPD或三苯基二胺衍生物TPD,发射层100可以使用DPVBi(4,4’-双(2,2-三苯基乙烯基)联苯),包含DPVBi和BCzVBi(4,4’-双(2-carbozolevinylene)联苯)的材料,或者通过掺联苯乙烯丙炔为主体并且掺联苯乙烯胺衍生物为客体而获得的材料,电子迁移层102可以使用Alq3。
电子迁移发射层(电子迁移层102和发射层100共同使用)可以使用Zn(oxz)2(2-(o-羟苯基)苯唑)的锌络合物。
此外,可以使用上述低分子材料以外的聚合材料。对于聚合材料,PEDT/PSS(聚乙烯二氧噻吩和磺酸盐的混合层)与PPV(聚对苯vinylen)的层压层可以用作空穴迁移层102和发射层。绿光发射可以通过将绿色墨水混合PPV获得的材料实现。红光发射可以通过向绿色墨水中加入和混合若丹明101作为红光发射搀杂剂而获得的材料实现。F8(聚(二辛基芴)可以用作蓝色发射层。F8还起到电子迁移层101的作用。
另外的聚合材料,可以使用包含如聚(N-乙烯基咔唑)聚合物的颜料。
总之,构成有机层110的每一层很薄,具有数十nm的厚度。透过该层的光的偏振状态几乎不变。
由上述材料构成的有机EL器件150中。DC电源900连接在作为阳极的透明电极200和阴极300之间。通过在透明电极200和阴极300之间施加直流电压,从透明电极200注入的空穴通过空穴迁移层102到达发射层,从阴极300注入的电子通过电子迁移层101到达发射层,发生电子和空穴的再结合,于是从再结合部分产生预定波长的光发射。
偏光分离器500,相移片700,和起偏器600依次层压并布置在与透明电极200的有机层110相反的一侧上。偏光分离器500具有借助反射和透射将预定波长范围内的光分为两种类型的圆偏振光成分的功能。胆甾醇型液晶层适合于用作偏光分离器500。
由于胆甾醇型液晶层显示出基于螺旋分子排列的独特的光学特性,与螺旋轴平行进入的光就显示出选择性反射,使得在相应于胆甾醇螺旋线的间距的波长上,依据螺旋间距转向,沿一个旋转方向的圆偏振光成分被反射,而沿另一个旋转方向的被透射。
用胆甾醇型液晶层的选择反射的中心波长λ0及其波长范围Δλ分别由下述等式(1)和(2)表示。
λ0=nm·p(1)Δλ=Δn·p (2)其中,p胆甾醇型液晶层的螺旋间距nm液晶的平均折射系数Δn液晶的双折射对于沿液晶分子的主轴平行和垂直方向上的折射系数分别设为ne和no,nm和Δn由下述方式(3)和(4)表示。
nm=√((ne2+no2)/2)(3)Δn=ne-no(4)其中,例如,当排列和布置多个光发射器件24,控制它们的光发射操作,并实现进行全色显示的光发射显示器时,希望构成光发射器件24的有机EL器件150的光发射峰值波长(获得最大强度的波长)对应于三原色红(R),绿(G),兰(B)的波长。即,在每个像素上使有机EL器件150的发射光的峰值波长与三原色对应且不同。相应于此,使胆甾醇型液晶层的选择反射波长范围或选择反射的中心波长□0对应于有机EL器件150的发射光波长范围和发射光峰值波长。
图2示出了例如在非偏振光进入胆甾醇型液晶层的情况下,胆甾醇型液晶层中的透射率对波长的依赖关系图。分别示出了相应于三原色R,G,B的选择反射的实例。
例如,有机EL器件150的发射光颜色为蓝色时,则配置如图2中B反射特性的胆甾醇型液晶层作为偏光分离器500即可。即通过具有相应于有机EL器件150的发射光颜色的选择反射波长范围的胆甾醇型液晶层构造偏光分离器500即可。
在常规技术中,相移片700和起偏器600构成所谓的圆偏振器。即起偏器600在穿过它的光中透射特定的线偏振光,而吸收与它交叉垂直的线偏振光。
相移片700使用作为将穿过起偏器600的线偏振光装换为圆偏振光的1/4波片的功能材料。起偏器600可以使用在拉出的聚乙烯醇中吸入碘并在赋予偏振功能的膜的两侧上形成三乙酰基纤维素保护层的材料。
相移片700可以使用透明且单轴取向的高分子聚合物薄膜,诸如聚乙烯醇,聚碳酸酯,聚砜,聚苯乙烯,多芳基化合物等等。由于构成相移片的透明体通常具有折射系数的波长依赖性(波长色散),因此对于诸如日光、照明光等宽波长范围的外光,只使用一种相移片就不能获得足够的性能。因此,还可以通过粘结两种不同波长色散的相位差薄膜(它们的光轴互相偏移)来构成在宽波长范围内作为1/4波片的功能相移片。
决定相移片700的慢轴方向对于使得通过起偏器600和通过相移片700的光中的圆偏振光变成和构成偏光分离器500的胆甾醇型液晶层显示出选择性反射的圆偏振光(如左旋圆偏振光)在转向上相反的圆偏振光(如右旋圆偏振光)而言是很重要的。
现在参考附图1描述光发射器件的操作。
当直流电元源900连接到透明电极200和阴极300时,预定波长的光便会从流过电流的发射层100发出。在从发射层100发出的光中导向透明电极200的光1000保持原样地透过透明电极200,并进入偏光分离器500。在从发射层100发出的光中导向阴极300侧的光1001被阴极300反射,它同样透过透明电极200并进入偏光分离器500。
此时,由于从发射层100发出的光是非偏振光,在进入偏光分离器500的光中由于构成偏振光分离器500的胆甾醇型液晶层的选择性反射而使沿一个旋转方向的圆偏振光(例如,在此为右旋偏振光)成分被透射,沿相反旋转方向的圆偏振光(左旋偏振光)成分被反射。
透过偏光分离器500的光1002由于相移片700的操作被转化为能够透过起偏器600的线偏振光,它透过起偏器600并导向观察者1000方向。
另一方面,被偏振光分离器500反射的光1003被阴极300反射,并导向偏光分离器500。然而,在被阴极300反射时,变成为相位偏移了□,并且光1003变成了旋转方向相反的圆偏振光(右旋圆偏振光),于是这一次它透过了偏光分离器500。透过偏振光分离器500的光1003由于相移片700的操作被转化为能够透过起偏器600的线偏振光,它透过起偏器600,并导向观察者1000方向。
因此,从发射层100发射的光被导向观察者1000而几乎没有被偏振器所吸收。即通过重新有效利用传统上被起偏器吸收和浪费的光,取得了光发射器件的亮度提高的效果。作为一种光提取方法,由于透过偏光分离器500的光1002和被偏光分离器500反射的光1003可以被提取,获得了光的高使用效率。
现在描述在明亮环境下从周围进入光发射器件24的外部光。从周围进入光发射器件24的外部光3000通常是非偏振光。然而,当光3000通过起偏器600时,预定的线偏振光被吸收,并且偏振面与被吸收的光交叉垂直的线偏振光被透射,透过起偏器600的线偏振光经过相移片700的操作变成圆偏振光(例如,在此为右旋圆偏振光)。
透过相移片700的光透射通过偏光分离器500,当他被阴极300所反射时,变成为相位偏移π且旋转方向相反的圆偏振光(左旋偏振光)。被阴极300反射的光进入偏光分离器500,然而,在构成偏光分离器500的胆甾醇型液晶层的选择反射波长范围之外的波长的光3001照原样地透过,相应于选择反射波长范围的波长的光被反射。透过偏光分离器500的光(左旋圆偏振光)经过相移片700的操作变成被起偏器600吸收的线偏振光,它被起偏器600吸收使得其不能返回外部。
另一方面,被偏光分离器500反射的光3002被阴极300反射并且重新导向偏光分离器500,然而,在被阴极300反射时,变成相位偏移了□,且旋转方向相反的圆偏振光(右旋圆偏振光),于是该光这一次透过偏光分离器500。透过偏光分离器500的光3002(右旋圆偏振光)通过相移片700的操作变成了透过起偏器600的线偏振光,它透过起偏器600并导向观察者1000方向。
即在进入光发射器件24的外部光3000中,至少有一半首先被起偏器600吸收。此外,透过起偏器600的光被阴极300反射并进入偏光分离器500,但该光中透过偏光分离器500的光3001被起偏器600吸收。因此,发向外部的光只是对应于偏光分离器500的选择反射波长范围的微弱的光3002。
即根据本发明的光发射器件,即使在明亮的环境下,由于大部分外部光被切断,黑色显示将变暗,可以实现高对比度的效果。
还有,如图2的例子所示,构成偏光分离器500的胆甾醇型液晶层的选择反射波长分布通常显示为一个峰值带,通过所使用的液晶的□n和螺旋间距p,选择反射波长范围可以设置为小于有机EL器件的发射光波长范围。
通常,即使发射光的中心波长相同,当发射光波长范围很宽而波长分布坡度缓和时,色纯度(在此指激发纯度与同色度图上白色光源的距离之比)很低。因此,如果被偏光分离器500反射并重新利用的光的波长范围被设置成比发射层的发射光波长范围窄,如果呈峰值分布,则从器件实际发出的光的波长分布比发射层的发射光波长范围更窄,由于坡度更陡,于是色纯度可以设置成比发射层的发射光更高。
即根据本发明的光发射器件,仅借助被偏光分离器500反射并重新利用的一定量的光,便可取得使其色纯度高于有机EL器件150本身光发射的色纯度的效果。
在光发射显示器的情况中,使多个光发射器件排列和布置,控制每一个光发射器件的光发射操作并进行显示,通过提高对应于三原色R,G,B的每一光发射器件的色纯度,还具有可以实现宽色域的光发射显示器的效果。
此外,如果构成偏光分离器500的胆甾醇型液晶层的选择反射的波长范围较窄,在明亮环境下外部光的反射将变小,于是具有获得高对比度的效果。
图3和图4分别示出了本发明所述的光发射器件发出的光的波长和相对强度的关系图和显示色度的CIE色度图。该图示出了在蓝光发射的有机EL器件150的情况下获得的效果,它具有如对图2实例中所示的蓝光波长的选择反射的波长范围(B反射)的胆甾醇型液晶层作成的偏光分离器500。也为了和两图作比较示出了配置着使用同样有机EL器件的圆偏振器的常规方式获得的结果,此外,NTSC标准的色度也在图4中示出作为参考。
如图3所示,在本发明中,通过重新利用被传统偏振器所吸收的光,光的强度加强了。特别是,用作蓝光的有效波长范围中的光的强度加强了,如图4的CIE色度图所示,色纯度(激发纯度)比常规值(54%)提高了3%,色度更接近NTSC标准的蓝光值。在实施例中,亮度提高到常规值的大约1.5倍。
图5和图6同样是本发明所述光发射器件发出的光的波长和相对强度的关系图和显示色度的CIE色度图,该图示出了在绿色发射光的有机EL器件150的情况下获得的效果,它具有对图2实例中所示的绿光波长选择反射的波长范围(G反射)的胆甾醇型液晶层作成的偏光分离器500。也为了和两图作比较,示出了配置着使用同样的有机EL器件的圆偏振器的常规方式获得的结果,此外,NTSC标准的色度也在图6中示出作为参考。
如图5所示,根据本发明,通过重新利用被传统偏振器吸收的光,光的强度加强了。特别是,用作绿光的有效波长范围中的光的强度加强了,如图6的CIE色度图,色纯度(激发纯度)比常规值(94.5%)提高了1.5%,色度接近NTSC标准的绿光值。在本实施例中,亮度提高到常规值的大约1.6倍。此外,在单一有机EL器件150的情况下,在明亮环境(1801X垂直照明的条件)下对比度等于19,而在本发明的光发射器件情况下提高到36。
同样,对于红光,在红色发射光的有机EL器件150中,它具有对红光波长选择发射的波长范围的胆甾醇型液晶层作成的偏光分离器500,于是以与蓝光和绿光相同的方式获得色纯度提高和亮度提高的效果。
有机EL器件150的发射光波长范围和构成偏光分离器500的胆甾醇型液晶层的选择反射的波长范围之间的关系在本发明的光发射器件中是重要的。
即这种关系也可以随着所重视的特性而改变。例如在重视色纯度和明亮环境情况下对比度的情况下,则希望构成偏光分离器500的胆甾醇型液晶层的选择反射的波长范围设置为比有机EL器件150的发射光波长范围窄。在此情况下,若选择反射波长范围搞得越窄,外部光的反射就减小对比度就提高,然而,为了减弱亮度提高的效果,因此根据使用环境(假定的周围亮度)来决定选择反射的带宽为好。
在重视绝对亮度的情况下,使有机EL器件150的光发射波长范围与构成偏光分离器500的胆甾醇型液晶层的选择反射的波长范围几乎一致,以便重新使用的光量最大化将是有效的。
为了同时满足对比度和亮度,以上是使有机EL器件的光发射波长范围变窄,以便有机EL器件150的发射光波长范围和构成偏光分离器500的胆甾醇型液晶层的选择反射的波长范围几乎彼此一致。当有机EL器件的发射光波长分布是基于其半波宽度等于75nm的高斯型的假设而计算时,可获得足够的R,G,B色度(色纯度)。(《视频图像信息媒体协会》杂志,第54卷,第8期,第1116页)。因此,为同时满足对比度和亮度,要求有机EL器件的发射光波长的半波宽度和构成偏光分离器500的胆甾醇型液晶层的选择反射波长的半波宽度设定为75nm或以下为好。
如果构成R,B,G的偏光分离器500的胆甾醇型液晶层使用相同的液晶材料,原则上,选择反射的中心波长较长,则选择反射的波长范围就较宽。即与对应于蓝光和绿光的胆甾醇型液晶层相比,原则上,对应于红光的胆甾醇型液晶层其选择反射的波长范围较宽,对比度的提高效果和色纯度的提高效果就小。
因此,在此情况下,对应于红光的胆甾醇型液晶层的选择反射的中心波长优选地设置在比有机EL器件的发射光峰值波长或中心波长更长的波长侧且在可见光波长范围内的选择反射的波长范围与有机EL器件的发射光波长范围几乎一致为好。
根据本发明,在发射层的背侧上具有反射元件的光发射器件中,偏光分离器、相移片、和起偏器被布置在其前方,容易理解,只要满足上述要求,即使不是在实施例中所公开的结构也可以获得相同的的效果。
(光发射显示器的实施例1)现在描述其中排列和布置着多个本发明的光发射元件,控制多个光发射器件的光发射操作并进行显示的光发射显示器。图7为示出根据本发明所述的光发射显示器1的总体布置示意性框图。图8是在其显示单元2中构造的有源矩阵的等效电路图。
如图7所示,在显示器1中,显示单元2形成在基片6的几乎中心部分。数据驱动电路3用于输出图像信号到数据线7,它被形成在显示单元2的上侧,扫描驱动电路4用于向选通线8输出扫描信号,它被形成在左侧。驱动电路3和4的每一个由移位寄存器[包括借助n沟道型和p沟道型TFT(薄膜晶体管)的互补电路],电平转换电路,模拟转换电路,等等而构成。
在显示器1中,以与液晶显示装置的有源矩阵相同的方法,在第一基片6上提供多条选通线和多条数据线,数据线的延伸方向交叉于选通线的延伸方向。如图8所示,像素20以矩阵形式配置在选通线G1,G2,...,Gm和数据线D1,D2,...,Dn相交叉的地方。
每一个像素由以下构成光发射器件24;存储电容23;开关晶体管21,包括n沟道型TFT,其中栅电极连接于选通线,源电极与漏电极之一连接于数据线,另一端连接于存储电容23;驱动晶体管22,包括n沟道型TFT,其中栅电极连接于存储电容23,源电极连接于与数据线相同方向延伸的共同电位线9,漏电极连接于构成光发射器件24的有机EL器件的一个电极(阴极)。
构成光发射器件24的有机EL器件的另一个电极(阳极)连接于各个像素共同的电流供应线,并保持在预定的电位Va。光发射器件24是用于发射R,G,和B之一的光的光发射器件,以预定的顺序以矩阵形式布置。
根据上述结构,当开关晶体管21被扫描信号打开时,图像信号通过开关晶体管21从数据线写入存贮电容23。因此,即使开关晶体管21关闭,驱动晶体管22的栅电极通过存储电容23被保持在相应于图像信号的电位上。
驱动晶体管22用恒定电流特性以卓越的源接地方式被连续保持在驱动状态。从电流供应线提供的电流流入构成光发射器件24的有机EL器件中,使得光发射器件24保持在光发射状态。此时光发射的亮度依赖于写入存贮电容23的数据。停止光发射可通过关闭驱动晶体管22而实现。
现在将参考图9和图10描述显示器1的结构。图9示出了显示器1中像素部分的平面结构的部分示意图。图10示出了图9中沿A-A'线的剖面结构。构成开关晶体管21和驱动晶体管22的岛形硅层形成在玻璃等平坦的第一基片6上,栅绝缘层形成在硅层的表面上。栅电极、选通线、存储电容用的电极形成在栅绝缘层上,然后,源漏区以自校准方式形成在栅电极上。此外,设置第一夹层绝缘层50,并且数据线、共同电位线、和存储电容用的电极通过接触孔形成。
再层压形成第二夹层绝缘层51和由绝缘材料制成的平坦层52。具有光反射功能且用作光发射器件24的阴极300的电极在层压层上被构图成指状。阴极300通过第二夹层绝缘层51和平坦层52的接触孔连接于驱动晶体管22的漏极。由光刻胶树脂材料(其中分散有具有光吸收特性的黑色染料)制成的隔壁60形成在平坦层52上使得包围形成阴极300的区域。隔壁60通过光刻工艺而形成。
有机层110具有发射R,G,B颜色之一的光的发射层,按照预定布置构图形成在阴极300上。从前述结构和材料中选择有机层110即可。在有机层110为低分子层时,通过公知的采用遮蔽掩膜的真空蒸发沉积有机层薄膜构图形成技术来进行有机层110的构图即可(例如,公开在S.Miyaguchi等人的《有机LED全色无源矩阵显示》SID杂志,7,3,第221-226页(1999))。在此制造步骤中,隔壁60可以用作蔽掩膜的阻止元件。
在有机层110由聚合材料制成的情况下,使用公知的喷墨构图技术即可(例如,公开于T.Shimoda等人的《借助喷墨印刷的光发射聚合物的多色像素构图》SID99,DIGEST 376,(1999))。在此制造步骤中,隔壁60起到分割像素区域的边坡(bank)的作用。
充当反电极的阳极(透明电极200)形成在有机层110的整个表面上。透明电极200连接于电流供应线(未示出)。由透明绝缘材料构成的平坦层70形成在透明电极200上。平坦层70用于保护透明电极200并且使布置在其上的元件易于层压。
对于平坦层70,使用有机材料诸如透明丙烯酸树脂,苯并环丁烯树脂,聚亚胺树脂等等即可。这些有机材料是用旋涂等方法形成薄膜的,其表面相对易于平坦化。由光学各向同性的透明且平坦的基片构成的第二基片90配置在平坦层70之上。
黑色矩阵层(BM层)80和偏光分离器500形成在第二基片90的一侧上,并且相移片700和起偏器600被层压和布置在另一侧上。第二基片90以这样的方式布置,使得偏光分离器500形成的表面面对第一基片6的有机层110形成表面。对于形成在第二基片90上的偏光分离器500是由具有与有机层110的发射层发射的光的颜色的选择反射的波长范围相对应的胆甾醇型液晶层构图形成的。胆甾醇型液晶层的选择反射的波长范围和有机层110中发射光的波长范围的关系如上述所描述。
第一基片6和第二基片90被叠合,使得被构图形成的有机层110的位置与被构图形成的胆甾醇型液晶层的位置几乎一致,整个表面用透明黏合剂紧密粘合,或者显示单元的周边被用框状密封材料密封,并且将氮密封于其中,由此将它们密封粘接。
图11为显示器1的部份剖面示意性结构图。图12为显示器1的部分前视图。如图11所示,具有相应于红色的选择反射的波长范围的R反射的胆甾醇型液晶层500R形成在发射红光(R)的有机层110R上,具有相应于绿色的选择反射的波长范围的G反射的胆甾醇型液晶层500G形成在发射绿光(G)的有机层110G上,具有相应于蓝色的选择反射的波长范围的B反射的胆甾醇型液晶层500B形成在发射蓝光(B)的有机层110B上。
如图12所示,形成在第二基片90上的BM层80要做成小于在第一基片50上形成的隔壁60。这是因为通过将BM层80形成得小于隔壁,以避免由有机层110发出的光被BM层80所屏蔽且使显示变暗,也为了确保匹配时的容限。
现在描述形成第二基片90的BM层80和偏光分离器500的方法。
对于BM层80,与用于液晶显示器的材料相同,可以使用光刻胶树脂,其中分散有光屏蔽颜料,诸如金属铬,氧化铬,碳黑等等。在本发明的光发射器件中,特别是,由于要求通过减少BM层上的外部光反射(在明亮环境下保持高对比度)来提高图像质量,因此对BM层要求低反射系数。由此要求出发,希望使用其中分散有能使反射系数最小化的光屏蔽颜料的光刻胶树脂用作BM层。
然而,根据本发明的光发射器件,由于相移片700和偏光器600被布置在BM层80的外层上,即观察者一侧上,并且它们具有圆偏振器的功能,即使金属铬具有高反射系数的情况下,但金属铬的外部光反射也被抑制。因此可以使用它。
现在描述在第二基片90上形成BM层80的步骤的实例。图13A,13B,13C,13D为描述通过其中分散有光屏蔽颜料的光刻胶树脂形成BM层80的步骤的解释图。
首先,通过旋涂机、辊涂机等等将其中分散有碳黑的负光刻胶树脂85涂敷到光学各向同性的透明且平坦的第二基片90上。此时,用于提高粘附性的薄膜也可以预先形成在第二基片90上。
对第二基片90,除了玻璃板,也可以使用通过浇铸方法(溶液流延法)形成薄膜的诸如聚碳酸酯,三乙酰基纤维素等等聚合物薄膜,或者通过注入成型等等形成的诸如脂环丙烯酸酯类树脂(商标名OPTPREZ,Hitachi Chemical Co.,Ltd.制造)等等光学各向同性的塑料板或塑料膜。
接着,被涂敷层通过使用热板等临时性固化,并通过具有与负光刻胶树脂85的灵敏度相匹配的波长的曝光装置用具有预定图案的掩膜86曝光。
然后,通过显影,被曝光部分保留作为BM层80。被掩膜屏蔽于光的部分被溶解,基片表面被暴露。
接着,进行清洁和干燥,涂敷诸如丙烯酸类树脂,或聚亚胺树脂等等透明树脂,构成使表面平坦化的平坦层88。
现在解释在形成有BM层80的第二基片90上形成由胆甾醇型液晶层构成的偏光分离器500的方法的实例。
具有对应于平面上R,G,B的选择反射的波长范围的胆甾醇型液晶层的形成方法利用公知的技术即可,例如,印刷不同的液晶材料的方法或涂敷液晶聚合物的方法,接着,用某种方法构图形成R反射,G反射,和B反射层。
作为在一个平面上涂敷液晶聚合物,接着,用某种方法构图形成R,G和B层的方法,有利用选择反射波长的热变色特性改变温度同时用交联来固定结构的方法(公开于例如,R.Maurer,etale,SID94,Digest,pp339-402,(1994)),通过光辐射控制选择反射波长的方法(例如,JP-A-2000-147236)等等。
对于构图形成具有对应于平面内R,G,B的选择反射的波长带宽的胆甾醇型液晶层的方法,只要获得所需选择反射的区域是构图形成的,可以使用任意方法。
图14A,14B,14C,14D是用于解释由胆甾醇型液晶层构成的偏光分离器500的形成方法的实例的图,而液晶层是被构图形成在形成有BM层型80的第二基片90上的。
现在描述通过光辐射控制选择反射的波长的方法。该方法通过在一个系统中辐射紫外线来切割光学活性基团以控制选择反射的波长,其中光酸发生器附加到侧链液晶聚合物,其中通过希夫氏碱耦合着光学活性基团的单体单元被用作一个组分。即在液晶聚合物(共聚物)中,胆甾醇型液晶的螺距要根据包含光学活性基团的单体单元的百分比含量而变化,因为选择反射的波长是由此螺距确定的,因此,这是一种通过控制前述百分比含量来控制选择反射波长的方法。当包含光学活性基团的单体单元的百分比含量较高时,螺距较小,选择反射的波长范围偏移到短波侧。
因此,显示选择反射的波长等于或短于蓝色光的波长的液晶聚合物被用作基准,紫外线首先通过合适的光掩模照射在必须表现绿色和红色的选择反射区域上,并且进行热取向处理然后,重新对着必须表现红色选择反射的区域只须将选择反射的波长从绿色偏移到红色并用紫外线照射,通过热取向处理,由此构图形成为所需R反射、G反射、B反射的胆甾醇型液晶层。
现在参考附图14A,14B,14C,14D描述其实际步骤。
首先,在第二基片90的BM层80的形成表面上提供一个聚乙烯醇层作为取向层(未示出)。液晶聚合物涂覆到用人造纤维布擦拭聚乙烯醇层而获得的处理表面上。对于液晶聚合物,可以使用(5)式所示的单体来作为向列液晶单体, 用(6)式所示单体作为含有光学活性基团的单体。 使用由共聚物构成的侧链型胆甾醇液晶聚合物时把向溶解有上述液晶聚合物的环己酮溶液中加入2,4-双(三氯甲基)-6-(3’-氯-4’-甲氧基-□-苯乙烯基)三嗪而获得的材料涂敷到基片90上,干燥后,在160℃下经历5分钟的热取向处理。然后,在室温下冷却,由此获得具有选择反射中中心波长为440nm的非液态胆甾醇型液晶层500B。
接着,紫外线通过在非液态胆甾醇型液晶层上的具有透射率100%和透射率0%两个区域的光掩模550适当地照射在必须表现绿色和红色的选择反射区域上,再度在160℃下经历5分钟的热取向处理后,在室温下冷却,由此获得构图形成的选择反射的中心波长为540nm的非液态胆甾醇型液晶层500G。
然后,紫外线通过光掩模551适当地照射在必须表现红色的选择反射区域上,然后,再度在160℃下经历5分钟的热取向处理。并在室温下冷却,由此获得构图形成的选择反射的中心波长为630nm的非液态胆甾醇型液晶层500R。
通过上述步骤,形成了构图为R反射、G反射、B反射的胆甾醇型液晶层。需要时还可以在胆甾醇液晶层的表面上提供透明保护层。
在其上形成BM层80和偏光分离器500的第二基片90是偏光分离器500的形成表面,面对着第一基片6上有机层110所形成的表面布置。此时,第一基片6和第二基片90被定位成构图形成的有机层110的位置和构图形成的胆甾醇型液晶层的位置几乎匹配且叠合,它们的整个表面用透明黏合剂密封性粘合,或者显示单元以外的区域用框形密封件粘合,在其间封入氮气处于密闭状态。
相移片700和起偏器600被层压和布置在第二基片90的偏光分离器500形成的面的相反侧。相移片700和起偏器600分别如上描述,并各自用丙烯酸透明黏合剂粘结且光学匹配。
偏光分离器也可以直接形成在代替第二基片的相移片上。在此情况下,希望使用的材料其诸如相位差等特性在构图形成胆甾醇型液晶层的步骤中不由于热等而改变。
现在参考图8,15A和15B描述显示器1的显示操作。图15A为顺序施加于选通线G1,G2,...,Gm的电压VG1,VG2,...,时的时间记录图。图15B显示位于第一行第一列的选通电压VG1和数据电压VD1以及存储电容23的电压状态的实例的图。
如图15A所示,接通开关晶体管21的电压VG1,VG2,…,和VGm顺次施加到选通线G1,G2,…,和Gm。当在时间t=t0,接通开关晶体管21的电压VGl施加到选通线G1上,垂直方向的扫描在1帧期间Tf完成,当接通电压重新施加到选通线G1上时,时间是t=t0+Tf。根据这种驱动方案,接通电压施加到一根选通线上的时间等于Tf/m或更短。通常,1/60秒用作Tf值。
当接通电压施加到某一选通线时,所有连接于该选通线的开关晶体管都被接通(ON)。与此同步,对应于图像信号的数据电压施加到数据线D1,D2,…,和Dn上。这即所谓行线顺序扫描方式,通常用于有源矩阵液晶。
接下来,注意位于第一行第一列的像素20,将参考附图15B描述选通电压VG1,数据电压VD1,和存储电容23的电压状态。在时间t=t0时,与VG1同步的数据电压VD1的值设为d1,在下一帧t=t0+Tf时数据电压的值设为d2。在此情况下,当接通电压施加到选通线G1时,那些数据电压被存储于存储电容23,并在1帧期间几乎保持该值。那些电压值规定了驱动晶体管22的栅电压,由于流入晶体管的电流值受其控制,由那些电压和共同电位线提供的(预定)电压以及提供到光发射器件24的透明电极的(预定)电压Va确定的预定电流流入光发射器件24,由此产生预定的光发射。
即像素的光发射量可通过向数据线施加相应于图像信息的电压控制,与接通电压施加到相应于要控制发光量的像素的选通线的时间同步。因此,根据图形信息来控制构成显示单元2的多个像素的发光量,就可以显示所需的图像。由于光发射器件24的阴极和阳极的两端施加电压之后开始光发射所需的响应时间通常等于或小于1μ秒,也可以实现跟随快速运动图像的图像显示。
通常,当流入的有机EL器件电流增加时,其光发射量增加,并可获得明亮显示,然而,电能消耗也相应增加,器件寿命(例如,光发射量减少到初始值的一半所需的时间)变短。
如上所述,根据本发明的光发射显示器1的光发射器件24,由于偏光分离器的操作,历来由偏振器吸收并随后损失掉的光也可以被利用为显示光,于是亮度提高了1.6倍或以上。因此,在相同电能损耗下,可以实现更高亮度和更亮显示的光发射显示器,或者,在相同亮度下,由于流入光发射器件的电流可以减少,能实现电能损耗小且寿命更长的光发射器件。
此外,光发射显示器1具有这样的效果,由于上述光发射器件24的偏光分离器的操作,发向观察者侧的彩色光的色纯度比来自发射层的发射光颜色本身更高。于是,光发射显示器的显示色域加宽。
在光发射显示器1中,在每一像素光发射器件周围提供其中分散了具有光吸收特性的颜料的隔壁。由于沿与基片表面平行方向从发射层发射的光被这些隔壁断开,可获得像素的不发晕显示。此外,由于隔壁能够防止从发射层发射并被偏光分离器反射的光漏光到另一个像素,防止了颜色混合和发晕。即由于每一像素被隔壁光学分离,可以获得不带混色和发晕的高质量显示器。
通过将隔壁形成在宽于提供在偏光分离器侧上的BM层的区域,由于保证了构图形成的发射层与构图形成的偏光分离器的位置匹配容限,获得提高利用系数(产生率)的效果,由于减少外部光反射,获得在明亮环境下提高对比度的效果。
此外,在将其上形成有机EL器件的第一基片与其上形成偏光分离器的第二基片叠合时隔壁可以用作隔离器。在此情况下,可以防止由于有机EL器件与偏光分离器之间相接触而造成的缺陷。
在本实施例中,有机EL器件与偏光分离器形成在不同的基片上并最终重叠。这是因为,例如如果将它们两个形成在同一基片上,在其上已经形成有机层的基片上构图偏光分离器时,在偏光分离器的构图步骤中会发生基片温度上升有机层劣化等等的麻烦。
即如在不同的基片上形成偏光分离器和有机EL器件,各自的步骤的自由度加宽并且偏光分离器和有机EL器件不会劣化,于是可以构造更高性能的器件。如果,例如,将来开发了具有高抗热性的有机材料,本发明并不排斥将偏光分离器和有机EL器件形成在同一基片的结构。
根据本发明的光发射显示器,如果偏光分离器与阴极之间的距离长,被偏光分离器反射的光泄漏到非原本像素的阴极,并且清晰度降低。由发射层发射的光和被偏光分离器反射的光被隔壁等吸收,于是会发生导向观察者的光降低等不适之处。为防止之,从提高图像质量和提高发射层发射的光的使用效率的角度,希望偏光分离器与阴极之间的距离尽可能地短。
当基片存在于偏光分离器和有机EL器件之间时,如果基片由玻璃制成,仅基片本身的厚度就达数百μm,即使由塑料薄膜制成其厚度也大于数十μm,使得偏光分离器与阴极之间的距离变长。
另一方面,在本光发射显示器中,从有机EL器件抽取光是从在其上形成有机EL器件的第一基片的相反方向进行的,并且,偏光分离器是通过透明薄平层或绝缘层被重叠的。以这种结构,偏光分离器与阴极之间的距离可减少至10μm或以下。因此,被隔壁等吸收并损失的光减小,发射光的使用效率提高,便可获得更明亮的显示。此外,在此情况下,不会引起被偏光分离器反射的光泄漏到不同的像素并降低清晰度和发生混色的情况,于是获得了高质量显示效果。
对于光发射显示器的显示单元的像素阵列,可以使用任何条形阵列、镶嵌幕(马赛克)阵列、三角形阵列等等。根据光发射显示器的规格选择合适的阵列即可。尽管实施例已经对有源矩阵驱动型显示器予以描述,本发明不限于此。即本发明也可以应用于无源矩阵驱动型显示器,不提供TFT,而把本发明的光发射器件的阳极和阴极直接连接于垂直扫描线和水平扫描线并被驱动。
(光发射显示器实施例2)现在描述本发明的光发射显示器的另一个实施例。图16示出了本发明光发射显示器的部分外形剖视图。由于该显示器的基本结构与前述实施例基本相同,除了有机层110W的发射光颜色为白色并且显示器带有滤色器,相同的部份用相同标号指示,省略其细节描述。
如图16所示,该类显示器在参照图11描述的实施例中,根据R,G,B构图形成的所有有机层全被白光发射有机层110W代替,滤色器900R,900G,900B用于传送对应于R,G,B的光,并且分别在第二基片90和偏光分离器500之间构图形成。
作为实现白光发射的有机层,由不同发射光颜色的多个发射层层压构成时,在一个发射层中可把不同发射光颜色的颜料掺入构成。
对于前者结构,例如,有一种结构是在尼罗红(Nile Red)内部分地掺入TPD、Alq3的Alq3中并且结合1,2,4-三唑衍生物(TAZ)组成。对于后者结构,有一种结构是使三种颜料,例如,1,1,4,4-四苯基-1,3-丁二烯(TPB),香豆素6,和DCM1掺入PVK中。无论用哪一种,作为白光发射的有机层,希望使用该结构能使得白光发射光效率高并获得长寿命。
现在描述滤色器和偏光分离器的制造步骤。图17A~17F解释在第二基片90上形成滤色器和偏光分离器的步骤。下面将参照附图描述滤色器和偏光分离器的形成步骤。
用已经分散有金属铬,氧化铬,或吸光特性的颜料的光刻胶树脂制成的BM层80被构图形成在光学各向同性而且透明平坦第二基片90上。
用于透过R,G,B颜色的光的滤光器采用诸如着色方法、颜料分散光刻方法、印刷方法等公知的技术被构图形成在形成有BM层的基片90上(《下一代液晶显示技术》,Tatsuo Uchida编辑撰写,Industrial InvestigationSociety)印刷方法等等。
由透明树脂制成的保护涂层910形成在滤色器图形上。
聚乙烯醇层作为取向层(未示出)形成在保护涂层910上。用与前述实施例相同的方法,把一种液晶聚合物溶液涂覆到已擦拭处理的表面上,干燥后,在160℃下经历5分钟的热取向处理。然后,在室温下冷却,由此获得具有对蓝色选择反射的中心波长的非液态胆甾醇型液晶层500B。
接下来,紫外线通过非液态胆甾醇型液晶层500B上的具有透射率100%和透射率0%两个区域的光掩模550照射在必须表现绿色和红色的选择反射区域上,即对应于透过绿光的滤色器900G的位置和对应于透过红光的滤色器900R的位置上,该层在160℃下再次经历5分钟的热取向处理,然后在室温下冷却,由此获得具有对绿色选择反射的中心波长且构图形成的非液态胆甾醇型液晶层500G。
此外,紫外线通过光掩模551照射在必须表现红色的选择反射区域即对应于透过红光的滤色器900R的位置,然后,该层在160℃下再次经历5分钟的热取向处理,并在室温下冷却,由此获得具有对红色选择反射的中心波长且构图形成的胆甾醇型液晶层500R。由此,构图形成了对R反射、G反射、B反射的胆甾醇型液晶层。需要时还可以在胆甾醇型液晶层的表面上提供透明保护层。
如上所述,BM层80、滤色器、和与包含胆甾醇的液晶层的偏光分离器500形成的第二基片90被以这样的方式叠合,使得偏光分离器500形成其上的表面面对着第一基片6上有机层110W所形成的表面。此时,第一基片6和第二基片90被定位成构图形成的有机层110W的位置和构图形成的胆甾醇型液晶层的位置几乎匹配,其后,它们的整个表面用透明黏合剂密封性粘合,或者用框形密封件包围显示单元密封粘合,处于其间隙用氮气密封的状态。
就构图形成的有机层的位置和构图形成的偏光分离器的位置的匹配而言,具有对红色选择反射波长的胆甾醇型液晶层和红色滤色器被布置在应当显示红色的像素的有机层的位置上,具有对绿色选择反射波长的胆甾醇型液晶层和绿色滤色器被布置在应当显示绿色的像素的有机层的位置上,具有对蓝色选择反射波长的胆甾醇型液晶层和蓝色滤色器被布置在应当显示蓝色的像素的有机层的位置上。
相移片700和起偏器600被布置在第二基片90的偏光分离器500形成面的相反侧,用丙烯酸透明黏合剂光学耦合。
现在描述显示器的操作。显示器的光发射操作与上述实施例中的相同。即像素的光发射量可通过向数据线施加相应于图像信息的电压来控制,与接通电压施加到相应于必须要控制发光量的像素的选通线的时间同步。根据图形信息可控制构成显示单元的多个像素的发光量以显示所需的图像。
从有机层110W发出的光直接或者由阴极反射后进入偏光分离器。偏光分离器是通过构图形成胆甾醇型液晶层而构成的,而胆甾醇型液晶层具有应当由每个像素显示的色光的选择反射波长。因此,由应当显示红色的像素的有机层110W发出的并进入偏光分离器500R的光中,由于构成偏光分离器500R的胆甾醇型液晶层的选择反射相应于红色的预定波长范围内且沿一个旋转方向的圆偏振光(例如,在此为左旋圆偏振光)成分被反射,而其他的光透过。
在透过偏光分离器500R的光中,相应于红色的预定波长范围内的光是右旋圆偏振光,而其他波长范围的光是非偏振光。
透过偏光分离器500R的光进入透过红光的红色滤光器900R,而相应于红色的预定波长范围之外的光几乎被红色滤光器900R吸收。
在透过偏光分离器500R的光中,相应于红色的预定波长范围内的光透过红色滤光器900R,由于相移片700的操作由圆偏振光转化为线偏振光,透过起偏器600而不被其吸收,并导向观察者1000方向。
另一方面,由偏光分离器500反射的光被阴极300反射并重新导向偏光分离器500R。然而,当其被阴极300反射时,相位偏移□且反射光变为旋转方向相反的圆偏振光(在此为右旋圆偏振光),于是该光这一次透过偏光分离器500R。透过偏光分离器500的光也透过红色滤光器900R,由于相移片700的操作转化为透过起偏器600的线偏振光,它透过起偏器600并导向观察者1000方向。
即在由相应于显示红色的像素的有机层110W发出的白色光中,只有相应于红色的预定波长范围内的光被导向观察者1000方向而不被滤光器900R和起偏器600吸收,于是获得明亮的红色光。
同样对于由相应于显示绿色(或蓝色)的像素的有机层110W发出的白色光,只有相应于绿色(或蓝色)的预定波长范围内的光被导向观察者1000方向而不被滤光器900G(或滤光器900B)和起偏器600吸收,于是获得明亮的绿色(或蓝色)光。
即通过有效地使用以往被偏振器吸收并此后浪费掉的光,获得了光发射器件亮度的提高并实现明亮显示的效果。
当在明亮环境下外部光进入显示器的光发射器件,通过起偏器600时,至少一半被其吸收。当透过起偏器600的光透过相移片700时,受其操作变为圆偏振光。当光通过滤光器时,2/3的光被进一步吸收。透过滤光器的光被阴极300反射,还被偏光分离器反射。然后,它再一次被阴极300反射,透过偏光分离器、滤光器、相移片和起偏器,并导向观察者1000方向。因此,即使在明亮环境下,由于大部分外部光被切断,可以实现暗显示变暗和高对比度的效果。
当发射光的中心波长相等的情况下,通常,当发射光的波长范围显示一个窄的峰值带时,色纯度提高。对于胆甾醇型液晶层的选择反射波长分布,可以使波长范围变窄小于使用颜料或染料的普通滤色器的透射波长分布,并使波长分布更陡。
因此,光发射显示器比通过将R,G,B的滤色器结合于常规白光发射有机EL器件而获得的彩色显示器而言,其R,G,B的单一颜色的色纯度更高,并可以实现更宽显示色域的显示。此外在本实例的光发射显示器中,对于与实施例类似的结构部分自然也可以获得相同的效果。
(光发射器件的另一个实施例)现在将参照附图描述本发明所述光发射显示器的另一个实施例。图18为用于解释本发明的光发射显示器件的另一个实施例的基本结构和操作原理的局部示意性剖视图。根据该实施例的光发射器件,代替用作偏光分离器的胆甾醇型液晶层,使用用于反射预定波长范围内的线偏振光成分并透过其他成分的偏光分离器(以下称作线偏光分离器)555。因此,与前述实施例相同的部分用相同标号指示,省略其详细描述。
如图18所示,该光发射器件由以下构成形成在一个基片(未示出)上的有机EL器件150,它包括由透明电极200构成的阳极,兼作镜面反射装置阴极300,以及形成在阳极和阴极之间的有机层110;相移片700,线偏光分离器555和起偏器600,它们顺次层压并从有机EL器件150的透明电极200侧布置。
线偏光分离器555具有片状,对于进入分离器555的光,它具有反射预定波长范围内的线偏振光成分并透过其它的光的功能。偏光分离器555可以考虑各种结构,例如,可以使用通过交替层压多个不同的双折射层获得的双折射反射偏振器,以上公开于国际申请公开No.W095/27919中,或者使用这样的偏振器,使顶角几乎等于90度的两个棱镜阵列重叠,由多层介电膜制成的偏光分离面形成在重叠部分中,以上公开于SID92Digest,427页中。在此情况下,允许由线偏光分离器反射的波长范围几乎与有机EL器件的光发射的波长范围一致。
对于相移片700和起偏器600,使用按传统技术中所谓的圆偏振器构成即可。相移片和起偏器即可。即起偏器600透过通过它的光中的特定线偏振光,并吸收与其垂直交叉的线偏振光。对于相移片700,使用有1/4波片功能的相移片,用于将通过起偏器600的线偏振光转化为圆偏振光。
尽管线偏光分离器555布置在构成该圆偏振器的起偏器600和相移片700之间,此时,使其布置成线偏光分离器555的线偏振光的透射偏振线轴与起偏器600的线偏振光的透射偏振线轴一致。
现在将参照图18描述该光发射器件的操作。DC电源900连接于透明电极200和阴极300上。通过在透明电极200和阴极300之间施加直流电压,引起来自发射层100的预定波长的光发射。由发射层100发出的光中,导向透明电极200的光1100照原样透过透明电极200和相移片700,并进入线偏光分离器555。
在由发射层100发出的光中,导向阴极300侧的光1101被阴极300反射,同样透过透明电极200和相移片700,并进入线偏光分离器555。此时,由于从发射层100发射并进入线偏光分离器555的光是非偏振光,应该由偏振器600吸收的线偏振光成分被反射,并且透过偏振器600的线偏振光成分被透过。透过偏光分离器555的光1102透过偏振器600并导向观察者1000方向。
另一方面,由线偏光分离器555反射的线偏振光1103通过相移片700并导向阴极300。然而,当光通过相移片700时,受其操作并转化为圆偏振光(例如在此为左旋圆偏振光)。当导向阴极300的光1103被阴极300反射时,相位偏移□,并且反射光变为与上述旋转方向相反方向的圆偏振光(例如右旋圆偏振光)。当该光再次通过相移片700时,受其操作这一次转化为透过线偏光分离器555的线偏振光。因此,该光透过线偏光分离器555和起偏器600并导向观察者1000方向。
即根据本光发射器件,在由发射层100发出的光中,由于重新有效利用被偏振器吸收并此后浪费的光,产生导向观察者1000的光量增加并且亮度提高的效果。
现在描述在明亮的周围环境下从外部进入光发射器件的外部光的作用。尽管从环境进入光发射器件的外部光3100为非偏振光,当它通过起偏器600时预定的线偏振光被吸收,并且只有与其交叉垂直的线偏振光透过。透过起偏器600的线偏振光也透过线偏光分离器555,受相移片700的操作,变成圆偏振光(在此为右旋圆偏振光)。
当通过相移片700的光被阴极300反射时,相位偏移□并且反射光变为相反旋转方向的圆偏振光(左旋圆偏振光)。当被阴极300反射的光再次通过相移片700时,这一次转化成被起偏器600吸收的线偏振光,然后进入线偏光分离器555。线偏光分离器反射对应于有机EL器件的发射光波长范围的波长范围内的光,并且透过其他波长的光。由于透过线偏光分离器555的光3101被偏振器600吸收,它将不再返回外部。
另一方面,当被线偏光分离器555反射的光3102通过相移片700时,受其操作转化为左旋圆偏振光。当其再由阴极300反射时,相位偏移□并且被反射的光变为相反旋转方向的右旋圆偏振光。当由阴极300再次反射的光通过相移片700时,这一次转化为能够通过起偏器600的线偏振光。因此,它透过线偏光分离器555和起偏器600并导向观察者1000方向。
即进入光发射器件的外部光3100中至少一半被起偏器600吸收。透过起偏器600的光透过线偏光分离器555,相移片700等等,被阴极300反射,并重新进入线偏光分离器555。然而,其中透过线偏光分离器555的光3101被起偏器600吸收。因此,发向外部的光仅仅是被线偏光分离器反射的波长范围的小量的光3102。即在本发明的光发射器件中,与上述实施例相同,即使在明亮的环境下由于外来光的大部分被切断,可以实现暗显示变暗和高对比度的效果。
通过设置线偏光分离器555的线偏振光的反射波长范围小于有机EL器件的光发射波长范围,可以提高导向观察者1000的色光的色纯度,在明亮环境下的对比度可以进一步提高。
如上所述,根据本发明的实施例,根据光发射器件由于包含胆甾醇型液晶层等等的偏光分离器的操作,通过有效地重新利用被起偏器吸收并随后浪费的光,使导向观察者的光量增加,亮度提高。此外,通过控制由偏光分离器反射和重新利用的光的波长范围,获得了色光的色纯度高于来自发射层的光发射本身的效果。
此外,由于即使在明亮环境下外部光的反射的大部分被切断,使得实现了黑色显示变暗和对比度提高的效果。
在本发明实施例的显示器中,由于偏光分离器的操作,构成显示器的光发射器件可以利用以往被起偏器吸收并随后损失掉的光用作显示光,使亮度得到提高。
因此,在相同功率消耗的情况下,可以实现更高亮度和明亮显示的光发射显示器,或者在相同亮度的情况下,由于流入光发射器件的电流,可以实现功率消耗小且寿命长的光发射器件。
此外,根据本发明实施例的显示器中,由于从构成显示器的光发射器件发出的色光的色纯度很高,可以实现显示色域很宽的高质量显示效果。
此外,根据本发明实施例的显示器中,在光发射显示器中,由于每一像素被提供在每一像素的光发射器件周围的具有光吸收特性的隔壁光学地分离,可以获得没有混色和晕色的高质量显示效果。在本发明的光发射显示器中,由于在有机EL器件和偏光分离器之间不存在基片,使光的使用效率得到提高,此外,可以获得没有混色和晕色的高质量显示的效果。
权利要求
1.一种光发射器件,依次包括反射元件(300),发射层(100),相移片(700)和起偏器(600),其特征在于在所述发射层和所述相移片之间设有偏光分离器(500),该偏光分离器分离的是含在所述发射层的部分或全部发射光波长范围内且比可见光波长范围还窄的光,而且它从所述发射层侧导向所述偏光分离器侧的光中反射出由于所述相移片的作用会在所述起偏器内转换成线偏振光而被吸收的圆偏振光成分,而透过其他的光;所述反射元件至少可用作反射圆偏振光的反射表面,而该圆偏振光是与直射的圆偏振光的旋转方向相反的。
2.根据权利要求1的器件,其特征在于其中所述偏光分离器(500)是胆甾醇型液晶层,且所述相移片(700)是四分之一波片。
3.一种光发射器件,依次包括反射元件(300),发射层(100),相移片(700),和起偏器(600),其特征在于在所述相移片和所述起偏器之间设偏光分离器(500),所述偏光分离器分离的是含在所述发射层的部分或全部光发射波长范围内且比可见光波长范围还窄的光,而且是一种从所述发射层侧导向所述偏光分离器侧的光中由于所述相移片的作用会在所述起偏器内转换成线偏振光的光,反射出会在所述起偏器中被吸收的线偏振光成分而透过其他的光,所述相移片是四分之一波片,所述反射元件至少可用作反射圆偏振光的反射表面,该圆偏振光是与直射的圆偏振光的旋转方向相反的。
4.根据权利要求1的器件,其特征在于其中所述发射层(100)是夹在透明电极(200)和金属电极(300)之间的有机薄膜(110),并且所述金属电极为兼作所述反射元件(300)用的反射性金属电极。
5.一种光发射显示器,其特征在于它包括排列成矩阵形式的多个光发射器件(24);和可根据图像信息控制所述光发射器件的光发射操作的控制装置,把权利要求1所述的光发射器件用作所述光发射器件。
6.一种光发射显示器,具有构成排列成矩阵形式的多个像素(20)的光发射器件(24),和可根据图像信息控制所述光发射器件的光发射操作的控制装置,其特征在于,所述光发射器件顺序包括由兼作反射元件用的金属电极(300)、用有机薄膜(110)制成的发射层(100)和透明电极(200)相层压构成的有机电致发光器件(150),相移片(700)和起偏器(600),在所述发射层和所述相移片之间设有偏光分离器(500),所述偏光分离器分离的是含在所述发射层的部分或全部光发射波长范围内并且比可见光波长范围还要窄的光,而且从所述发射层侧导向所述偏光分离器侧的光中,反射出会由于所述相移片的作用而在所述起偏器内转换成线偏振光而被吸收的圆偏振光成分而透过其他的光,所述反射元件至少可用作反射圆偏振光的反射表面,而该圆偏振光是与直射的圆偏振光的旋转方向相反的。
7.根据权利要求6的显示器,其特征在于其中所述偏光分离器(500)是胆甾醇型液晶层并且所述相移片(700)是四分之一波片。
8.根据权利要求6的显示器,其特征在于其中所述发射层(100)的发射光颜色依据像素而不同,并且所述偏光分离器(500)的反射光的波长范围随与所述发射光颜色相对应的像素而不同。
9.根据权利要求6的显示器,其特征在于它是一种进行彩色显示的显示器,其中构成所述多个像素(20)的发射层(100)分别由发射红光的发射层(100R)、发射绿光的发射层(110G)、发射蓝光的发射层(110B)中之一所构成,分别地,用于反射红光的偏光分离器(500R)构图形成在相应于发射红光的所述发射层(110R)的位置,用于反射绿光的偏光分离器(500G)构图形成在相应于发射绿光的所述发射层(110G)的位置,用于反射蓝光的偏光分离器(500B)构图形成在相应于发射蓝光的所述发射层(110B)的位置。
10.根据权利要求6的显示器,其特征在于其中所述偏光分离器(500)以矩阵形式相应于构成所述像素(20)的所述发射层(100)的光发射区域构图形成,并且在所述偏光分离器的图案之间形成黑色矩阵(80)。
11.根据权利要求10的显示器,其特征在于其中所述黑色矩阵(80)的开口部可宽于构成所述像素(20)的所述发射层(100)的光发射区域。
12.根据权利要求1的光发射器件或显示器,其特征在于其中所述发射层(100)的光发射波长范围与在相应于所述发射层位置的所述偏光分离器(500)的反射波长几乎一致。
13.根据权利要求1的光发射器件或显示器,其特征在于其中所述发射层(100)的光发射波长的半波宽度和与之相应的所述偏光分离器(500)的所述反射波长的半波宽度都等于或小于75nm。
14.根据权利要求1的光发射器件或显示器,其特征在于其中所述发射层(100)的发射光的中心波长或获得最大强度的波长(峰值波长)与在相应于所述发射层位置的所述偏光分离器(500)的反射光的中心波长几乎一致。
15.根据权利要求1的光发射器件或显示器,其特征在于其中在相应于所述发射层(100)的光发射区域位置的所述偏光分离器(500)的反射波长窄于所述发射层(100)的光发射波长范围。
16.根据权利要求1的光发射器件或显示器,其特征在于其中形成在相应于发射红光的发射层(100R)的位置并反射红光的偏光分离器(500R)的反射光的中心波长被设置成比所述发射层的发射光的中心波长或表示最大强度的波长(峰值波长)长,从而允许所述发射层的发射光波长范围与所述偏光分离器的反射光波长在可见光波长范围内彼此几乎一致,或者在可见光波长范围内设置所述偏光分离器的反射光波长比所述发射层的发射光波长范围窄。
17.根据权利要求1的光发射器件或显示器,其特征在于其中有机电致发光器件(150)形成在第一基片(300)上,偏光分离器(500)形成在不同于所述第一基片的透明的第二基片(400)上,所述有机电致发光器件形成在其上的第一基片的形成表面和所述偏光分离器形成在其上的所述第二基片的形成表面被重叠和固定。
18.根据权利要求1的光发射器件或显示器,其特征在于其中在所述发射层(100)和所述偏光分离器(500)之间不存在基片。
19.根据权利要求1的光发射器件或显示器,其特征在于其中一个透明绝缘层提供在所述透明电极(200)和所述偏光分离器(500)之间。
20.根据权利要求1的光发射器件或显示器,其特征在于其中分散着光吸收特性的颜料的隔壁(60)被提供在所述像素(20)的非光发射部分之中。
21.根据权利要求6的显示器,其特征在于其中构成所述像素(20)的所述发射层(100)为用于发射白光的发射层(110W),用于反射红光的偏光分离器(500R)、用于反射绿光的偏光分离器(500G)、和用于反射蓝光的偏光分离器(500B)分别被构图形成在构成所述像素的发射层的光发射区域的位置上,此外,分别地,用于透过红光的滤色器(900R)被构图形成在用于反射红光的所述偏光分离器(500R)和所述起偏器(600)之间,用于透过绿光的滤色器(900G)被构图形成在用于反射绿光的所述偏光分离器(500G)和所述起偏器(600)之间,用于透过蓝光的滤色器(900B)被构图形成在用于反射蓝光的所述偏光分离器(500B)和所述起偏器(600)之间。
全文摘要
通过使由发射层(100)发出的光有效利用于显示而实现明亮显示的光发射器件(24)和光发射显示器(1)。偏光分离器(500)提供在所述发射层(100)和所述相移片(700)之间,偏光分离器分离出包括所述发射层的部分或全部光发射波长范围的波长范围内且比可见光波长范围更窄的光,且从所述发射层侧导向所述偏光分离器侧的光中反射出会由于所述相移片的操作而在所述起偏器(600)内转换成可被吸收的线偏振光的圆偏振光成分且透过其他的光。
文档编号H01L51/50GK1368656SQ0112515
公开日2002年9月11日 申请日期2001年8月30日 优先权日2001年1月15日
发明者足立昌哉, 金子好之, 荒谷介和, 石原慎吾 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1