带有回热式热交换器的燃料电池系统的制作方法

文档序号:6809838阅读:128来源:国知局
专利名称:带有回热式热交换器的燃料电池系统的制作方法
相关申请的交叉引用本申请是2003年1月31日提交的名称为“带有回热式热交换器的燃料电池系统”的美国专利申请系列号No.10/356,333的部分继续申请。
背景技术
方法
技术领域
本发明主要涉及一种燃料电池系统,更具体而言,涉及使用用于在系统中提供对增压空气和燃料电池堆的附加冷却的回热式热交换器的燃料电池系统。
2、背景技术氢是一种非常具有吸引力的燃料源,这是因为氢清洁并可以用于在燃料电池中高效地产生电能。在作为车辆电源的氢燃料电池的研发中,汽车工业要消耗大量的资源。这样的车辆将会是更高效的并且会比当今使用内燃机的车辆产生更少的排放物。
氢燃料电池是一种电化学装置,其包括阳极和阴极以及位于两电极之间的电解质。阳极接收氢气,阴极接收氧。氢气在阳极被离子化产生自由氢质子和电子。氢质子穿过电解质到达阴极。氢离子与阴极的氧和电子反应产生副产物水。来自阳极的电子不能穿过电解质,由此在被传送至阴极之前被引导流过负载作电功。所做的功用于使车辆工作。很多燃料电池组合成电池堆来产生所需的功率。
质子交换膜(PEM)燃料电池是一种流行的用于车辆的燃料电池,这是因为其通过较高的系统效率提供高的功率密度。在PEM燃料电池中,氢气(H2)为阳极反应物,即燃料,氧为阴极反应物,即氧化剂。阴极反应物可以是纯的氧气(O2)或空气(主要为O2和N2的混合物)。电解质为通常由离子交换树脂例如全氟化磺酸制成的固体聚合物电解质。阳极和阴极一般包括磨细的催化剂颗粒,其常常担载在碳颗粒上并与质子导电树脂混合。
图1为上面讨论的已公知的PEM燃料电池系统10的总体平面示意图。燃料电池系统10包括一个常规的具有多个电串联连接的燃料电池14的燃料电池堆12。每个燃料电池14包括阴极和阳极。该燃料电池14接收来自管线18上合适的来源的阳极氢气和管线20上的阴极原料气体(增压空气)以提供化学反应,所述化学反应产生输出功率22以驱动车辆。一系列冷却沟槽24,在附图中显示为热交换器,贯穿电池堆12,从其中除去了燃料电池14中的化学反应所产生的热量。
阳极废气(exhaust gas)例如通过回压阀(BPV)26从管线28上的电池堆12排出。加压的阴极废气从管线30上的电池推12中以燃料电池堆12的温度排出,并构成系统废气的主要部分。水是阴极废气的副产物,但是向环境中释放液体水可能存在问题。因此,阴极废气被送到液体分离器32,所述液体分离器32从其中分离出液体水的,并把被分离的废气供给至管线34,把液体水供给至管线38。被分离的阴极废气通过BPV36输出到大气中。管线38上的液体水可被提供给其它可使用水用于冷却等的系统元件。
在管线42上的环境增压空气被施加到压缩机44以压缩空气体积从而在燃料电池操作压力下提供阴极气体。压缩机44由电马达46通输出轴48驱动。压缩机44在增压空气被压缩时对其进行加热。被压缩且被加热的空气经由一个合适的增压空气冷却器(CAC)或热交换器52传送到管线50,在那里进行冷却。压缩机44的废热是热交换器52的热负荷。然后在管线50上被冷却的增压空气被送至湿化装置54,在这里其与水蒸气混合。水蒸气需要与增压空气混合以使得在燃料电池14中在阳极和阴极之间存在用于电解质的湿度从而提供必要的导电性。被压缩的和湿化的增压空气然后被施加到管线20上的电池堆12上。
冷却剂回路58向冷却沟槽24和热交换器52提供冷却流体,例如水/乙二醇混合物。冷却流体受冷却剂泵56的驱动流过回路58。被加热的冷却流体通过回路58被输送至散热器风扇组件(RFM)62以除去其中的热。在一个实施例中,在管线50上压缩机40输出的增压空气的温度在室温到200℃范围内,在管线20上的提供给电池堆12的增压空气的温度在60-80℃范围内。风扇64驱动空气通过RFM62以冷却来自冷却沟槽24和热交换器52的被加热的流体。然后冷却流体经由冷却剂回路58被首先送回到热交换器52以冷却在管线50上的被压缩的增压空气,然后到达电池堆12,在这里其流经冷却沟槽24。
在当前的燃料电池系统设计中,RFM62为在具有内燃机的常规车辆中使用的典型散热器。然而,内燃机的工作温度高于燃料电池系统10的工作温度,由此燃料电池系统需要被冷却到比内燃机低的温度水平。因此,当前用于内燃机的RFM不能提供足够的热交换面积和流经的空气量来提供对系统10的足够的冷却。整个系统排热(包括来自热交换器52的热量)在系统10的设计中是一个关键的限制性因素,并对系统配置和设计具有明显的影响。所希望的是提供一种用于从系统10中除去热,以使得已公知的RFM可用在车辆中的辅助技术。

发明内容
根据本发明的教导,公开了一种燃料电池系统,其使用回热式热交换器以提供对施加在燃料电池堆中燃料电池阴极上的被压缩的增压空气的附加冷却。阴极废气和压缩机增压空气被施加到回热式热交换器,使得阴极废气冷却被压缩的增压空气并减少流向热系统的被压缩空气的释放热。在另一个实施例中,阴极废气膨胀器与回热式热交换器结合使用,其使用被加热的废气中的能量为增压空气压缩机提供动力。可设置一个阳极废气燃烧器来燃烧阳极废气中残余的氢气,以在阴极废气被施加到膨胀器之前进一步加热阴极废气。在另一个实施例中,设置一个热交换器以冷却阴极废气。
通过下面的描述和所附的权利要求并结合附图,本发明的其它优点和特征将变得更加明显。


图1为已公知的燃料电池系统的总示意图;图2为根据本发明的一个实施例的使用回热式热交换器的燃料电池系统的示意图;图3为垂直轴上的系统排热和所需的散热器表面积与示出图2中燃料电池系统热负载的水平轴上的系统负载之间关系的曲线图;图4为垂直轴上的废气温度与水平轴上的用于图2所示燃料电池系统的系统负载之间关系的曲线图;图5为根据本发明另一实施例的使用回热式热交换器和阴极气体膨胀器的燃料电池系统的示意图;图6为垂直轴上的功率与水平轴上的系统负载之间关系的曲线图,示出了图5中燃料电池系统的系统功率需求的对比;图7为根据本发明另一实施例的使用回热式热交换器、阴极气体膨胀器和阳极废气燃烧器的燃料电池系统的示意图;图8为垂直轴上的废气温度和水平轴上的系统负载之间关系的曲线图,示出了图5和图7系统的废气温度的对比;图9为垂直轴上的功率与水平轴上的系统负载之间关系的曲线图,示出了建议的绝热膨胀器的输出和用于具有和不具有阳极废气燃烧器的回热式热交换器的电压缩器需求/输出所需的结果之间的对比;图10为使用阴极气体膨胀器和在阴极气体膨胀器之前和之后回热式热交换器的燃料电池系统的示意图;和图11为根据本发明另一实施例的结合使用回热式热交换器和水分离器的燃料电池系统的示意图。
具体实施例方式
以下对涉及燃料电池系统的本发明实施例的讨论本质上仅是示例性的,而不是旨在要将其作为对本发明或其应用或用途的限制。
图2是与上述系统10类似的燃料电池系统70的示意图,其中相似的元件用相同的附图标记表示。根据本发明,系统70包括在管线50中位于压缩机44和热交换器52之间的气体/气体回热式热交换器72。热交换器72为管线50中被压缩的空气提供附加的冷却,使得热交换器52可以提供较少的冷却,并且由此RFM62可以制成更小而仍然能够满足系统热负载的需要。管线34中的阴极废气流经热交换器72并且工作用于冷却增压空气,以使得由热交换器72从被压缩的增压空气中除去的热量被阴极废气流带走。在一个实施例中,系统10中的热交换器52除去全部系统排热的10%左右。对于相同大小的RFM62,通过使用回热式热交换器72,热交换器52只需要除去系统全部排热的1%左右。
在该实施例中,热交换器72位于BPV36和水分离器32之间。因此,回热式热交换器72通过使用阴极废气以提供系统冷却,从而减小了热交换器52上的热负载。阴极废气的温度增加,这有利于用于产物水的适当运输的所需气体组成。
如上所述,热交换器72位于压缩机44和热交换器52之间。然而,这仅是非限制性的实施例,这是因为热交换器72可以位于电池堆12和压缩机44之间的管线50中的任何合适的位置处。
图3为垂直轴上的系统排热与示出系统10和70的废热的水平轴上的系统负载之间关系的曲线图。特别是,曲线80示出了没有回热式热交换器72的系统10的废热。曲线82示出了具有回热式热交换器72的系统70的废热。曲线84示出了由具有回热式热交换器72的系统70提供的废热减少量。
图3还包括垂直轴上的RFM62的散热器表面积,用以示出在具有和不具有回热式热交换器72时提供所需冷却的所需的散热器表面积。特别是,曲线86示出了在不具有回热式热交换器72的系统10中所需的RFM62的散热器表面积,曲线88示出了在具有回热式热交换器72的系统70中所需的RFM62的散热器表面积。对于总热负载,假定一个标准的汽车风扇64,系统10所需的散热器表面积为总的车辆前部面积的71%左右,而系统70所需的散热器表面积为59%左右。由此散热器表面积减少了17%左右。
图4为垂直轴上的废气温度与水平轴上的系统负载之间关系的曲线图,图中示出了系统10和70的阴极废气温度。特别是,曲线90示出了不具有回热式热交换器72的系统10的废气温度,曲线92示出了具有回热式热交换器72的系统70的废气温度。对于更高的系统负载,例如70kW,系统10和70的阴极废气的温度差是180℃。
图5为根据本发明另一实施例的与系统70类似的燃料电池系统100的示意图,其中相同的元件用相同的附图标记表示。在该实施例中,系统100使用一个阴极废气膨胀器102,其接收在管线104上来自热交换器72的被加压并被加热的阴极废气。阴极废气被热交换器72加热。阴极废气膨胀器102将热量转化为机械能。膨胀器102利用阴极气体的温度使其中使轴106旋转的元件旋转。轴106与压缩机44相连并提供至少部分操作能量。因此,气体膨胀器102可使压缩机44所需的功率降低。由此,可以减少马达46的尺寸以使得所需的使系统100运行的能量减少。膨胀的阴极废气然后经由BPV36在管线108中输出到环境中。
图6为垂直轴上的功率与水平轴上的系统负载之间关系的曲线图,示出了能从具有阴极气体膨胀器102的系统100与从不具有气体膨胀器102的系统70获得的所需系统功率之间的对比。特别是,曲线110示出了能从具有回热式热交换器72和气体膨胀器102的系统70获得的净功率。曲线112示出了不具有回热式热交换器72的系统10净功率需求。曲线114示出了不具有回热式热交换器72和气体膨胀器102的系统10的所需的电动压缩机功率。曲线116示出了具有气体膨胀器102和回热式热交换器72的系统100所需的电动压缩机功率。
图7为根据本发明的另一实施例的与上述系统100类似的燃料电池系统120的示意图,其中相同的元件用相同的附图标记表示。在该实施例中,设置阳极废气燃烧器或者燃烧室122以使阳极废气中的残余氢气燃烧。典型地,在管线28中的阳极废气中残留有少量的氢气。阳极废气燃烧器122接收在管线124上的阳极废气和在管线104上的被加热的阴极废气。阳极废气燃烧器122使氢气燃烧以在阴极废气被送到膨胀器102之前进一步加热阴极废气,并由此进一步降低马达46所需的压缩机功率。阳极燃烧器122可以是任何适用于在此所述用途的燃烧器。
图8为垂直轴上的废气温度和水平轴上的系统负载之间关系的曲线图,示出了这里公开的具有和不具有阳极废气燃烧器122的不同系统的废气温度的对比。特别是,曲线130示出了具有回热式热交换器72和阳极废气燃烧器122的系统120的废气温度。曲线132示出了具有回热式热交换器72但不具有阳极废气燃烧器122的系统100的废气温度。曲线134示出了不具有回热式热交换器72和阳极废气燃烧器122的系统10的废气温度。
在全部负载的情况下,系统10的废气温度与电池堆的工作温度相同。对于具有回热式热交换器72的系统70来说,阴极废气温度,例如,升至170℃左右。对于系统120,阳极燃烧器122可以向废气提供附加的6-7kW的热量。对于大约95g/s的质量流,这相当于温度升高70K左右。阴极气体膨胀器入口气体的温度升高使得从阴极废气中回收更多的能量成为可能。
图9为垂直轴上的功率与水平轴上的系统负载之间关系的曲线图,示出了系统10、70和120的气体膨胀器输出和压缩机输出。特别是,曲线138示出了系统10所需的电动压缩机马达功率。曲线140示出了包括回热式热交换器72的系统70所需的电动压缩机马达功率。曲线142示出了包括回热式热交换器72和阳极燃烧器122的系统120所需的电动压缩机马达功率。曲线144示出了系统10的绝热膨胀器功。曲线146示出了包括回热式热交换器72的系统70的绝热膨胀器功。曲线148使用回热式热交换器72和阳极废气燃烧器122的系统120的绝热膨胀器功。
图10为根据本发明的另一实施例的与上述系统100相似的燃料电池系统150的示意图,其中相同的元件用相同的附图标记表示。在该实施例中,如图所示,在管线50中在回热式热交换器72与热交换器52之间设置第二回热式热交换器152。热交换器152与冷却流体例如乙二醇/水混合物流经的冷却剂回路154相连。冷却剂回路154还与管线108上在膨胀器102输出端的一个废热交换器156相连。管线108上的废气比管线50上的被压缩的空气温度低,以致于使回路154中的冷却流体吸收管线50上被压缩的空气中的热量之后由废气冷却。因此,热交换器52和RFM62所需的冷却可以通过回热式热交换器152进一步减少。
图11为与上述系统10相似的燃料电池系统160的示意图,其中相同的元件用相同的附图标记表示。在该实施例中,在阴极废气管线30中设置一个气体/气体热交换器162。阴极废气由环境空气冷却,如图所示。通过使用环境空气在管线30上冷却阴极废气,分离器32能更好地从阴极废气中除去液体水,以使得更少的水被排放到环境中,其它系统部件获得更多的水。
前述的讨论仅仅公开和描述了本发明的示例性的实施例。本领域的技术人员会容易地认识到通过这样的讨论和所附的附图以及权利要求,在不偏离下面的权利要求所限定的本发明的精神和范围的条件下,可对本发明作出各种改变、改进和变化。
权利要求
1.一种燃料电池系统,包括一个燃料电池堆,所述燃料电池堆包括多个燃料电池,每个燃料电池包括阳极和阴极,所述燃料电池堆接收氢气阳极气体和增压阴极气体,并排放阳极废气和阴极废气;一个压缩机,所述压缩机压缩增压气体以提供增压阴极气体;第一冷却剂回路,包括在其中流经的冷却流体,所述第一冷却剂回路包括接收和冷却被压缩的增压气体的第一热交换器,和用于冷却已由被压缩的增压气体和燃料电池堆加热的冷却流体的第二热交换器;以及同时接收被压缩的增压气体并对被压缩的增压气体提供附加的冷却的第一回热式热交换器。
2.如权利要求1所述的系统,其中回热式热交换器还接收阴极废气以冷却从中流动的增压空气。
3.如权利要求2所述的系统,进一步包括一个阴极废气膨胀器,所述阴极废气膨胀器通过一个膨胀器轴与压缩机机械相连,所述阴极废气膨胀器接收来自回热式热交换器的被加热的阴极废气致使膨胀器轴旋转以驱动压缩机。
4.如权利要求3所述的系统,进一步包括一个阳极废气燃烧器,所述阳极废气燃烧器接收阳极废气和阴极废气,所述阳极废气燃烧器使阳极废气中的残余氢气燃烧以在阴极废气被送到阴极废气膨胀器之前进一步加热阴极废气。
5.如权利要求3所述的系统,进一步包括一个第二回热式热交换器和一个膨胀器热交换器,所述第二回热式热交换器和所述膨胀器热交换器是具有在其中流经的冷却流体的第二冷却剂回路的一部分,所述第二回热式热交换器还在被压缩的增压气体被施加到燃料电池堆之前接收和冷却被压缩的增压气体,所述膨胀器热交换器接收在流经第二回热式热交换器的第二冷却剂回路中的冷却流体并冷却该冷却流体。
6.如权利要求1所述的系统,其中第二热交换器为散热器风扇模件,其在第一冷却剂回路中通过强排通风使冷却流体冷却。
7.如权利要求1所述的系统,进一步包括一个湿化单元,其接收被压缩的增压气体,所述湿化单元在被压缩的增压气体被送到燃料电池堆之前使之与水蒸气混合。
8.如权利要求1所述的系统,进一步包括一个液体分离器,所述液体分离器接收阴极废气并从其中除去液体水。
9.如权利要求1所述的系统,进一步包括一个废气热交换器,其接收和冷却阴极废气。
10.如权利要求1所述的系统,其中所述燃料电池系统安置在车辆上。
11.一种燃料电池系统,包括一个燃料电池堆,所述燃料电池堆包括多个燃料电池,每个燃料电池包括阳极和阴极,所述燃料电池堆接收氢气阳极气体和增压阴极气体,并排放阳极废气和阴极废气;一个压缩机,所述压缩机压缩增压气体以提供增压的阴极气体;知一个阴极废气膨胀器,所述阴极废气膨胀器通过一个膨胀器轴与压缩机机械相连,所述阴极废气膨胀器接收阴极废气并使膨胀器轴旋转以驱动压缩机。
12.如权利要求11所述的系统,进一步包括一个阳极废气燃烧器,所述阳极废气燃烧器接收阳极废气和阴极废气,所述阳极废气燃烧器使阳极废气中的残余氢气燃烧以在阴极废气被送到阴极废气膨胀器之前加热阴极废气。
13.如权利要求11所述的系统,进一步包括一个回热式热交换器和一个膨胀器热交换器,所述回热式热交换器和所述膨胀器热交换器是具有在其中流经的冷却流体的冷却剂回路的一部分,所述回热式热交换器在被压缩的增压气体被施加到燃料电池堆之前接收和冷却被压缩的增压气体,所述膨胀器热交换器接收流经回热式热交换器的冷却流体并冷却该冷却流体。
14.如权利要求11所述的系统,进一步包括一个液体分离器,所述液体分离器接收阴极废气并从其中除去液体水。
15.如权利要求11所述的系统,进一步包括一个热交换器,其接收和冷却阴极废气。
16.如权利要求11所述的系统,其中该燃料电池系统安置在车辆上。
17.一种用于车辆的燃料电池系统,所述系统包括一个燃料电池堆,所述燃料电池堆包括多个燃料电池,每个燃料电池包括阳极和阴极,所述燃料电池堆接收氢气阳极气体和增压空气阴极气体,并排放阳极废气和阴极废气;一个压缩机,所述压缩机压缩增压空气以提供增压空气阴极气体;第一冷却剂回路,包括在其中流经的冷却流体,所述冷却剂回路包括接收和冷却被压缩的增压空气的第一热交换器,和用于冷却已由被压缩的增压空气和燃料电池堆加热的冷却流体的第二热交换器;以及同时接收被压缩的增压空气并对被压缩的增压空气提供附加的冷却的第一回热式热交换器,所述第一回热式热交换器接收阴极废气以冷却增压空气;一个阳极废气燃烧器,所述阳极废气燃烧器接收阳极废气和阴极废气燃烧器,所述阳极废气燃烧器使阳极废气中的残余氢气燃烧以进一步加热阴极废气;以及一个阴极废气膨胀器,所述阴极废气膨胀器通过一个膨胀器轴与压缩机机械相连,所述阴极废气膨胀器接收来自阳极废气燃烧器的被加热的阴极废气使得膨胀器轴旋转以驱动压缩机。
18.如权利要求17所述的系统,进一步包括一个第二回热式热交换器和一个膨胀器热交换器,所述第二回热式热交换器和所述膨胀器热交换器是具有在其中流经的冷却流体的第二冷却剂回路的一部分,所述第二回热式热交换器还在被压缩的增压气体被施加到燃料电池堆之前接收和冷却被压缩的增压气体,所述膨胀器热交换器接收在流经第二回热式热交换器的第二冷却剂回路中的冷却流体并冷却该冷却流体。
19.如权利要求17所述的系统,其中第二热交换器为散热器风扇模件,其在第一冷却剂回路中通过强排通风使冷却流体冷却。
20.如权利要求17所述的系统,进一步包括一个湿化单元,其接收被压缩的增压空气,所述湿化单元在被压缩的增压空气被送到燃料电池堆之前使之与水蒸气混合。
21.如权利要求17所述的系统,进一步包括一个液体分离器,所述液体分离器接收阴极废气并从其中除去液体水。
22.如权利要求17所述的系统,进一步包括一个分离器热交换器,其接收并冷却阴极废气。
23.一种燃料电池系统,包括一个燃料电池堆,所述燃料电池堆包括多个燃料电池,每个燃料电池包括阳极和阴极,所述燃料电池堆接收氢气阳极气体和增压阴极气体,并排放阳极废气和阴极废气;以及一个阳极废气燃烧器,所述阳极废气燃烧器接收阳极废气,所述阳极废气燃烧器使阳极废气中的残余氢气燃烧。
24.如权利要求23所述的系统,其中阳极废气燃烧器还接收阴极废气,以使得阳极废气燃烧器通过使阳极废气中的残余氢气燃烧来加热阴极废气。
25.如权利要求23所述的系统,其中所述燃料电池系统安置在车辆上。
26.一种燃料电池系统,包括一个燃料电池堆,所述燃料电池堆包括多个燃料电池,每个燃料电池包括阳极和阴极,所述燃料电池堆接收氢气阳极气体和增压阴极气体,并排放阳极废气和阴极废气;以及一个热交换器,所述热交换器接收并冷却阴极废气。
27.如权利要求26所述的系统,其中所述燃料电池系统安置在车辆上。
全文摘要
一种燃料电池系统,其使用回热式热交换器用以对输送给燃料电池堆中燃料电池阴极的被压缩的增压空气提供附加的冷却。该阴极废气被送到回热式热交换器以使阴极废气冷却由被压缩的空气加热的增压空气。组合设置阴极废气膨胀器和回热式热交换器,其利用被加热的阴极废气中的能量为增压空气压缩机提供动力。可以设置一个使阳极废气中残余的氢气燃烧的阳极废气燃烧器以在阴极废气被送到膨胀器之前进一步将其加热。
文档编号H01M8/04GK1745494SQ200380109422
公开日2006年3月8日 申请日期2003年12月10日 优先权日2003年1月31日
发明者V·福尔曼斯基, T·赫尔比希, G·R·伍迪, J·P·萨尔瓦多, S·D·伯奇, U·汉内森 申请人:通用汽车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1