薄膜晶体管阵列面板及其制造方法

文档序号:6811724阅读:82来源:国知局
专利名称:薄膜晶体管阵列面板及其制造方法
技术领域
本发明涉及一种薄膜晶体管阵列面板及其制造方法。
背景技术
液晶显示器(LCDs)是目前最广泛使用的平面显示器之一。LCD包括具有产生电场电极的两面和置于其间的液晶层。LCD通过向产生电场电极施加电压以在液晶(LC)层中产生电场显示图像,其可确定液晶层中液晶分子的取向以调整入射光的偏振。
在包括可在相应面板上产生电场电极的液晶显示器中,其中一种液晶显示器具有多个在一个面板上以矩阵形态排列的像素电极、和一个可覆盖另一个面板全部表面的共同电极。这种液晶显示器图像的显示是通过向相应的像素电极施加不同电压实现的。为此将用于控制施加到像素电极电压的多个三端子元件TFT连接到相应的像素电极上,再将传送控制该TFT信号的多个栅极线和传送施加到像素电极电压的多个数据线设置在面板上。
这种用于液晶显示器的面板具有包括多个导电层和多个绝缘层的层状结构。栅极线、数据线、和像素电极由不同导电层(下面分别称“栅极导体”、“数据导体”、和“像素导体”)组成,优选依次沉积且被绝缘层分开。TFT包括三个电极由栅极导体形成的栅极、和由数据导体形成的源极及漏极。源极和漏极之间通常通过位于其下面的半导体连接,而漏极则通常通过绝缘层上的孔连接像素电极。
为了减少栅极线和数据线中的信号滞后,栅极导体及数据导体优选由具有低电阻率的诸如铝和铝合金这类的铝系金属制成。为了施加电压的电场形成和具有透光性,像素电极通常由诸如氧化铟锡(ITO)和氧化铟锌(IZO)这类的透明导电材料制成。
同时,还存在铝系列金属与ITO或IZO接触时铝系列金属腐蚀和接触部分的接触电阻增大的问题。
如上所述,漏极和像素电极通过绝缘体上的接触孔连接。这种连接通过如下步骤形成,首先在绝缘体上打孔以露出漏极的上部铝系列金属层,再通过全面蚀刻(blanket-etching)除去上部金属层的露出部分以露出接触性良好的下部层,最后在其上形成像素电极。但是,在铝系列金属层的全面蚀刻过程中常发生接触孔的侧壁下部的铝系列金属被过度蚀刻,在绝缘层上形成下切(undercut)。这种下切可能导致其后形成的像素电极在下切附近断线或像素电极的侧面在下切附近变脆弱,从而增加了像素电极和漏极之间的接触电阻。

发明内容
本发明提供一种薄膜晶体管阵列面板,其包括在绝缘基板上形成的栅极线;在栅极导电层上形成的栅极绝缘层;在栅极绝缘层上形成的半导体层;在栅极绝缘层上形成且包括源极的数据线;至少部分形成在半导体层上的漏极;形成在数据线及漏极上且具有至少部分露出漏极和栅极绝缘层部分的第一接触孔的钝化层;以及形成在钝化层上并通过第一接触孔连接漏极和栅极绝缘层的露出部分的像素电极。至少栅极线、数据线、和漏极之一优选由铬、钼、或钼合金组成的下部薄膜和由铝或铝合金组成的上部薄膜形成。
钝化层可由氮化硅组成,而像素电极优选由IZO组成。
钝化层可以包括数据线末端部分及与栅极绝缘层一起露出栅极线末端部分的第二及第三接触孔且与像素电极形成在同一层上,还可以包括通过第二及第三接触孔分别与数据线末端部分及栅极线末端部分连接的接触辅助附件。
本发明提供一种制造薄膜晶体管阵列面板的方法,该方法包括以下步骤在绝缘基板上形成栅极线;形成栅极绝缘层;形成半导体层;形成包括数据线和漏极的数据导电层;沉积钝化层;形成包括位于栅极线末端部分的第一部分、比第一部分厚且位于漏极的第二部分、以及比第二部分厚的第三部分的感光耐蚀层;通过使用作为刻蚀掩膜的感光耐蚀层进行蚀刻,露出感光耐蚀层的第二部分下面的钝化层部分和感光耐蚀层的第一部分下面的栅极绝缘层部分;分别形成露出漏极和栅极线末端部分的第一及第二接触孔;以及通过第一接触孔连接漏极的像素电极。
感光耐蚀层还包括设置于数据线末端部分上的第四部分,以及该方法还包括形成露出数据线末端部分的第三接触孔。
优选地,在感光耐蚀层和钝化层的刻蚀比基本上相同的条件下通过干蚀刻进行曝光。
优选地,栅极的露出部分比钝化层的露出部分厚。优选地,第一和第二接触孔是在栅极绝缘层和钝化层的刻蚀比基本上相同的条件下通过干蚀刻形成。
栅极线或数据线是由铬、钼、或钼合金的下部薄膜和铝或铝合金的上部薄膜形成。
该方法可进一步包括在形成像素电极之前除去上部薄膜。
像素电极可由IZO形成,而数据线和半导体层可以由感光耐蚀膜形成。


本发明将通过参考附图详细地描述其具体实施例而变得更加清楚,其中图1是根据本发明一实施例的液晶显示器示意图;图2是根据本发明一实施例用于液晶显示器的一种典型TFT阵列面板的配置图;图3是图2所示的TFT阵列面板沿着III-III′线的截面图;图4A、5A、6A和7A是图2及图3所示的TFT阵列面板根据本发明一实施例制造的方法中其中间步骤的TFT阵列面板的配置图;图4B、5B、6B和7B是图4A、5A、6A和7A所示的TFT阵列面板沿着IVB-VIB′、VB-VB′、VIB-VIB′、以及VIIB-VIIB′线的截面图;图8及图9是如图7A所示的TFT阵列面板的截面图,其是7A及7B下一制造步骤图;图10是根据本发明另一实施例的用于液晶显示器TFT阵列面板的配置图;图11和图12分别是图10所示的TFT阵列面板沿着XI-XI′线及XII-XII′线的截面图;
图13A是图10-12所示的TFT阵列面板根据本发明一实施例制造的方法中第一步骤TFT阵列面板的配置图;图13B和图13C分别是图13A所示TFT阵列面板沿着XIIIB-XIIIB′线及XIIIC-XIIIC′线的截面图;图14A和图14B分别是图13A所示TFT阵列面板沿着XIIIB-XIIIB′线及XIIIC-XIIIC′线的截面图,其显示图13B和图13C的下一步骤;图15A是图14A和图14B下一步骤TFT阵列面板的配置图;图15B和图15C分别是图15A所示TFT阵列面板沿着XVB-XVB′线及XVC-XVC′线的截面图;图16A、17A、18A和图16B、图17B、图18B分别是图15A所示TFT阵列面板沿着XVB-XVB′线及XVC-XVC′线的截面图,其显示图15B和15C所示的步骤的下一步骤;图19A是图18A及图18B所示的步骤的下一步骤的TFT阵列面板的配置图;图19B和19C分别是图19A所示TFT阵列面板沿着XIXB-XIXB′线及XIXC-XIXC′线的截面图;图20A、21A及22A和图20B、图21B及图22B分别是图19A所示TFT阵列面板沿着XIXB-XIXB′线及XIXC-XIXC′线的截面图,其显示图19B和19C所示的步骤的下一步骤;图23是根据本发明另一实施例的TFT阵列面板的配置图;以及图24是图23所示TFT阵列面板沿着XXIII-XXIII′线的截面图。
具体实施例方式
本发明现将参照附图在下文中被说明得更全面,其在本发明的优选实施例中示出。但是本发明可表现为不同形式,它不局限于在此说明的具体实施例。
在附图中,为了清楚起见夸大了各层的厚度及区域。在全篇说明书中对相同元件附上相同的符号,应当理解的是当提到层、膜、区域、或基板等元件在别的部分“之上”时,指其直接位于别的元件之上,或者也可能有别的元件介于其间。相反,当某个元件被提到“直接”位于别的部分之上时,指并无别的元件介于其间。
现在参照附图详细说明根据本发明具体实施例的TFT阵列面板及其制造方法。
图1是根据本发明一实施例的液晶显示器的示意图;参照图1,液晶显示器包括一对面板100和200以及置于其间的液晶层3。一对面板中一个面板100称为“TFT阵列面板”,它包括多个TFTs Q、多个像素电极191、多条栅极线121及多条数据线171。每个像素电极191至少通过一个TFTs Q与一对栅极线121及数据线171连接。另一个显示面板200具有与像素电极191一起产生电场的共同电极270和显示颜色的多个滤色器230。像素电极191和共同电极270以两极之间的液晶层为电介质形成液晶电容器CLC。共同电极270也可以在TFT阵列面板100上,这时像素电极191和共同电极270都是长条形(bars)或条形(stripes)。
参照图2和图3详细说明根据本发明一实施例的用于液晶显示器的TFT阵列面板。
图2是根据本发明一实施例的用于液晶显示器的TFT阵列面板的配置图,图3是图2所示TFT阵列面板沿着III-III′线的截面图。
在绝缘基板110上形成传送栅极信号的多条栅极线121。各栅极线121基本上横向延伸,并且各栅极线121的多个部分形成多个栅极123。各栅极线121包括向下方凸出的多个凸出部分127和具有较宽宽度的末端部分125以用于与其它的层或外部装置连接。
栅极线121包括具有不同物理性质的两个薄膜,即下部薄膜121p和上部薄膜121q。优选地,为了在栅极线121中减少延迟信号或电压下降,上部薄膜121q由低电阻率金属例如铝或铝合金等铝系列金属组成。另一方面,优选地,下部薄膜121p由其它的物质特别是与ITO(indium tin oxide)及IZO(indium zinc oxide)有良好物理、化学、电接触性的物质如铬、钼、钼合金、钽、钛等组成。下部薄膜材料和上部薄膜材料组合的好的例子为铬和铝-钕(Al-Nd)合金。在图2中,栅极123的下部薄膜和上部薄膜分别用附图标记123p、123q表示,凸出部分127的下部薄膜和上部薄膜分别用附图标记127p、127q表示,末端部分125的下部薄膜和上部薄膜分别是用符号125p、125q表示。
各条栅极线121末端部分125的上部薄膜125q的一部分被除掉露出下部薄膜125p。此外,下部薄膜121p和上部薄膜121q的侧面分别倾斜且其倾角为对基板110约成30-80°。
优选地,在栅极线121上形成由氮化硅(SiNx)组成的栅极绝缘层140。
优选地,在栅极绝缘层140上形成由氢化非晶硅(非晶硅简称为“a-Si”)组成的多个半导体条151。各半导体条基本上纵向延伸且从中多个凸出部分154向栅极123延伸。各半导体条151的宽度在靠近栅极线121处变大,以致该半导体条151覆盖栅极线121的较大面积。
优选地,在半导体条151上部形成由硅化物或n型掺杂n+型氢化非晶硅组成的多个欧姆接触条和岛161和165。各欧姆接触条161具有多个凸出部分163,而该突出部分163和欧姆接触岛165成双位于半导体条151的凸出部分154上。
半导体条151和欧姆接触层161和165的侧面也倾斜,倾角为约30-80°。
在欧姆接触层161和165及栅极绝缘层140上分别形成多条数据线171、多个漏极175、及多个储能电容器导体177。
数据线171基本上纵向延伸与栅极线121交叉并传送数据电压。各条数据线171向漏极175延伸的多个支路形成多个源极173。每对源极173和漏极175彼此分开,相对于栅极线123彼此相对。栅极线123、源极173、及漏极175与半导体条151的凸出部分154一起形成具有通道的TFT,其设置在源极173和漏极175之间的凸出部分154中。
储能电容器导体177与栅极线121的凸出部分127重叠。
优选地,数据线171、漏极175及储能电容器导体177还由钼、钼合金、或铬制成的下部薄膜171p、175p、177p和位于其上的铝系列金属制成的上部薄膜171q、175q、177q组成。各条数据线171包括具有较宽宽度的末端部分179以用于与别的层或外部装置连接,而其上部薄膜179q的一部分被除掉露出下部薄膜179p的一部分。
数据线171、漏极175及储能电容器导体177的下部薄膜171p、175p、177p和上部薄膜171q、175q、177q也像栅极线121一样,其侧面各自以约30-80°倾斜。
欧姆接触层161和165只在其下部的半导体条151和其上部数据线171及漏极175之间存在,起降低接触电阻的作用。半导体条151具有未被数据线171及漏极175遮挡的露出部分,其露出部分包括源极173和漏极175之间;在大部分地方半导体条151的宽度比数据线171的宽度小,但如前面说明,在与栅极线121相遇的部分其宽度变宽,以此提高栅极线121和数据线171之间的绝缘。
钝化层180形成于数据线171、漏极175、储能电容器导体177、和半导体条151的露出部分上面。优选地,钝化层180由具有良好平坦化特性且具有感光性的有机物、用等离子体化学汽相沉积法(PECVD)形成的a-Si:C:o或a-Si:O:F等低电介质的绝缘材料和氮化硅类无机物组成。
钝化层180具有分别露出漏极175的下部薄膜175p、储能电容器导体177的下部薄膜177p及数据线171末端部分179的下部薄膜179p的多个接触孔185、187、189。钝化层180和栅极绝缘层140具有露出栅极线121的末端部分125下部薄膜125p的多个接触孔182。
此外,在图2及图3中进一步显示接触孔185、187露出下部薄膜175p、177p边缘的状态。优选各接触孔185的尺寸小于10×10平方微米(square microns)且等于或大于4×4平方微米。还有分别露出栅极线及数据线末端部分125、179的接触孔182、189也可以露出衬垫边界线,为了使接触部分的接触电阻最小,接触孔182、189优选比接触孔185大。
在钝化层180上形成由ITO或IZO组成的多个像素电极191及多个接触辅助附件192和199。
像素电极191通过接触孔185、187分别与漏极175及储能电容器导体177物理、电连接,从漏极175接收数据电压并向储能电容器导体177传送数据电压。
再参照图1,施加数据电压的像素电极191与接收共同电压的另一显示面板200的共同电极270一起形成电场,以此重新取向置于其间的液晶层3中的液晶分子。
如上所述,像素电极191和共同电极270形成液晶电容器CLC,切断TFTQ后也维持施加电压。为了提高电压存储能力,还可以设置与液晶电容器CLC并联的另一电容器,把它称为“储能电容器”。储能电容器由像素电极191及其相邻的栅极线121(称“前段栅极线”)重叠形成。为了增加储能电容器的电容,即储能器容量,设置扩张栅极线121的凸出部分127,扩大重叠面积的同时把与像素电极191连接并与凸出部分127重叠的储能电容器导体177放在钝化层180下面,使两者间距离变小。
虽然像素电极191和栅极线121及数据线171重叠以提高孔径比(aperture ratio),但也可以不重叠。
接触辅助附件192、193通过接触孔182、189分别与栅极线末端部分125及数据线末端部分179连接。接触辅助附件192、199补充栅极线121及数据线171各末端部分125、179与外部装置的接触性,还起到保护它们的作用,但并非必需,是否使用它们因人而异。
如上所述,在边缘附近露出与ITO、IZO接触性良好的栅极线121的末端部分125、数据线171的末端部分179、漏极175及储能电容器导体177的下部薄膜125p、179p、175p、177p、接触孔182、185、187、189至少露出下部薄膜125p、175p、177p、179p的部分边缘,因此,由IZO组成的像素电极191及接触辅助附件192、199与它们的下部薄膜175p、177p、125p、179p具有充分宽的接触面积,可以确保它们之间低的接触电阻。
根据本发明另一实施例,像素电极191的材料是使用透明的导电聚合物。就反射型液晶显示器而言,用不透明反射性金属也无妨。在这种情况下,接触辅助附件192、199由与像素电极191不同材料组成,特别是可以由ITO或IZO组成。
参照图4A至图9以及图2和图3将图2及图3所示的用于液晶显示器TFT阵列面板的制造方法根据本发明一实施例详细说明。
图4A、图5A、图6A及图7A是图2及图3所示TFT阵列面板根据本发明一实施例制造的方法中,中间步骤TFT阵列面板的配置图,是按照其顺序排列的,而图4B、图5B、图6B及图7B分别是图4A、图5A、图6A及图7A所示的TFT阵列面板沿着IVB-IVB′线、VB-VB′线、VIB-VIB′线及VIIB-VIIB′线的截面图。图8及图9是图7A所示TFT阵列面板的截面图,显示图7A及图7B所示的步骤的下一步骤。
在诸如透明玻璃这类的绝缘基板110上顺次溅射两个导电薄膜,即下部导电薄膜和上部导电薄膜。优选地,上部导电薄膜由Al-Nd合金等铝系列金属组成,用于溅射上部薄膜的Al-Nd靶材优选含有2atm%,而上部薄膜优选具有约2,500的厚度。
参照图4A及4B,对上部导电薄膜和下部导电薄膜顺次制作布线图案,形成包括多个栅极电极123和多个凸出部分127的栅极线121。
参照图5A及5B,连续沉积栅极绝缘层140、纯非晶硅(a-Si)层、以及含杂质的非晶硅层之后,光学蚀刻含杂质的非晶硅层和纯非晶硅层,以在栅极绝缘层140上形成包括多个含杂质的半导体条164及包括多个凸出部分154的纯半导体条151。栅极绝缘层140优选由具有约2,000-5,000厚度的氮化硅组成,而优选沉积温度为约250~500℃的范围内。
将两层导电薄膜,即下部导电薄膜和上部导电薄膜顺次进行溅射。优选地,下部薄膜由钼、钼合金、或铬组成且其厚度为约500。上部导电薄膜优选具有约2,500的厚度,靶材料适合用纯铝或包括2atomic%Nd的Al-Nd合金,而溅射温度为约150℃。
参照图6A及6B,对上部导电薄膜用湿蚀刻、对下部导电薄膜用干蚀刻顺次制作布线图案或对两层都用湿蚀刻制作布线图案形成分别包括多个源极173的多条数据线171、多个漏极175及多个储能电容器导体177。当下部薄膜由钼或钼合金组成时,可以在相同的蚀刻条件下将上部和下部层进行刻蚀。
此后,除掉未被栅极线171、漏极175及储能电容器导体177覆盖而露出的含杂质的半导体条164部分,以形成分别包括多个凸出部分163的多个欧姆接触条(stripes)161和多个欧姆接触岛(islands)165的同时露出其下面的纯半导体条151部分。为了稳定露出的半导体条151的表面,优先接着进行氧等离子体处理。
如图7A及7B所示,在沉积钝化层180之后,在其上面进行旋涂(spin-coated)感光耐蚀膜。通过曝光掩膜(未示出)将感光耐蚀膜进行曝光和显像,被显像的感光耐蚀膜厚度是因位置而异,在图7B中感光耐蚀膜由厚度逐渐变小的第一至第三部分组成。位于区域A1的第一部分和位于活性接触区域C1的第二部分分别用附图标记212和214表示,位于外部接触区域B1的第三部分附图标记未在图里表示,这是因为第三部分的厚度基本上为0,露出了钝化层180下面部分的缘故。位于数据线179的末端部分179上的部分214可以具有与第三部分相同的厚度。第二部分214与第一部分212的厚度比在后续工序当中根据工艺条件调整。优选第二部分214的厚度等于或小于钝化层180的厚度。
感光耐蚀膜的位置决定(position-dependent)厚度可通过几种技术获得,例如,在曝光掩膜上不仅设置透明区域和遮光不透明区域,还设置半透明区域。半透明区域可具有狭缝图案(slit pattern)、晶格图案(lattice pattern)、具有中等透过比或中等厚度的薄膜。在使用狭缝图案时,优选狭缝的宽度或狭缝的间距比用在光学蚀刻的曝光机的分辨率小。另一个实例为,使用回流可能的感光耐蚀薄膜。详细地,即用只有透明区域和不透明区域的普通曝光掩膜形成可回流的感光耐蚀薄膜后进行回流,使之向未残留感光耐蚀薄膜的区域流出,形成薄的部分。
当使用适当的工艺条件时,因存在感光耐蚀薄膜212、214的厚度差,所以可以选择性地蚀刻下部层。因此,获得具有不同厚度的多个接触孔182、185、187和189。
为了方便说明起见,位于区域A1的部分称为第一部分,位于活性接触区域C1的钝化层180、漏极175、储能电容器导体177、数据线171及栅极绝缘层140的部分称为第二部分,而位于外部接触区域B1的钝化层180、栅极绝缘层140及栅极线121的部分称为第三部分。
下面说明形成这样一种结构的典型顺序
如图8所示,通过干蚀刻除掉露在外部接触区域B1的钝化层180的第三部分,对钝化层180及感光耐蚀层212、214基本上用相同蚀刻比进行蚀刻。这是为了下一个蚀刻过程除掉感光耐蚀层的第二部分214或为了缩小其厚度。尽管进行干蚀刻,可能蚀刻栅极绝缘层140的第三部分和钝化层180的第二部分的顶部,但优选使栅极绝缘层140的第三部分厚度比钝化层180的第二部分厚度小,可使栅极绝缘层140的第二部分在下一步骤不被除掉。接着,通过抛光工序,除掉残留在活性接触区域C1的感光耐蚀层第二部分214,以完全露出钝化层180的第二部分。
参照图9,除掉栅极绝缘层140的第三部分和钝化层180的第二部分以形成接触孔183、185、187、189。这种除掉用干蚀刻,对栅极绝缘层140和钝化层180基本上用相同蚀刻比进行蚀刻。若这样做,栅极绝缘层140的第三部分比钝化层180的第二部分薄,因此可以完全除掉栅极绝缘层140第三部分和钝化层180的第二部分,同时留下栅极绝缘层140的第二部分,以防止储能电容器导体177和漏极175下面的栅极绝缘层140的下切。
接着,除掉栅极线121上部薄膜125q的第三部分和漏极175、储能电容器导体177及数据线171的末端部分179上部薄膜175q、177q、179q的第二部分,露出其下面的下部薄膜125p、175p、177p、和179p。
最后,如图2及图3所示,通过溅射和光学刻蚀ITO或IZO层,在钝化层180上形成多个像素电极191和多个接触辅助附件192、199。这时,像素电极191在漏极175及储能电容器导体177下部不出现下切,可以使像素电极191的外轮廓变得平滑。此外,像素电极191和接触辅助附件192、199与在IZO或ITO层之间具有低电阻的栅极线121及数据线171的下部薄膜125p、179p和漏极175及储能电容器导体177下部薄膜175p、177p相连接,降低了接触部分的接触电阻。
在根据本实施例的TFT阵列面板中,栅极线121及数据线171包括具有低电阻率的铝或铝合金,同时使像素电极191之间的接触电阻变得最小。
参照图10至图12,详细说明根据本发明另一实施例的用于液晶显示器的TFT阵列面板。
图10是根据本发明另一实施例的用于液晶显示器TFT阵列面板的配置图,图11及图12分别是图9所示TFT阵列面板沿着XI-XI′线及XII-XII′的截面图。
如图10至图12所示,根据本发明实施例的用于液晶显示器的TFT阵列面板的层状结构几乎与图2及图3所示的用于液晶显示器的TFT阵列面板的层状结构相同。即,在基板110上形成包括多个栅极123的多条栅极线121,在其上顺次形成栅极绝缘层140、包括多个凸出部分154的多个半导体条151、分别包括多个凸出部分163的多个欧姆接触条161及多个欧姆接触岛165。在欧姆接触层161、165及栅极绝缘层140上面形成包括多个源极173的多条数据线171、多个漏极175,在其上形成钝化层180。在钝化层180和/或栅极绝缘层140上形成多个接触孔182、185、189,钝化层180上形成多个像素电极191和多个接触附件192、199。
与图2及图3所示的TFT阵列面板不同,根据本发明实施例的TFT阵列面板栅极线121在栅极线121的相同层设置与栅极线121分开的多个储能电极线131。储能电极线131也像栅极线121一样包括下部薄膜131p和上部薄膜131q,上部薄膜131q的边缘与下部薄膜131p隔一定距离位于内侧。储能电极线131从外部接收共同电压之类的预定电压。不设置图2及图3所示的储能电容器导体177,而是延长漏极175与储能电极线131重叠形成储能电容器。若栅极线121和像素电极191重叠产生的存储容量充足时可以省略储能电极线131和用于储能电容器导体177。
此外,接触孔182、189露出栅极线121和数据线179末端部分125、179的边缘,以确保它们和接触辅助附件192、199之间具有良好的接触。
另外,与半导体条151及欧姆接触层161、165一起,多个半导体岛157及其下面的多个欧姆接触层167形成于储能电容器导体177和栅极绝缘层140之间。
半导体条和半导体岛151、157除了TFT所在的凸出部分154之外几乎具有与数据线171、漏极175、储能电容器导体177及其下部欧姆接触层161、165、167同一平面形态。具体说,半导体岛157和储能电容器导体177及欧姆接触岛167基本上具有同一平面形态。半导体条151包括不被数据线171及漏极175和储能电容器导体177覆盖的某些露出部分,例如位于源极173和漏极175之间的部分。
现在,参照图13A至图22B及图10至图12详细说明根据本发明一实施例制造具有图10至图12结构的用于液晶显示器的TFT阵列面板的方法。
图13A是根据本发明一实施例制造图10至图12所示的TFT阵列面板方法中第一步骤的TFT阵列面板的配置图,图13B及图13C分别是图13A所示TFT阵列面板沿着XIIIB-XIIIB′线及XIIIC-XIIIC′线的截面图。图14A及图14B分别是图13A所示TFT阵列面板沿着XIIIB-XIIIB′线及XIIIC-XIIIC′线的截面图,是图13B及图13C的下一步骤图示,图15A是图14A及图14B下面步骤TFT阵列面板的配置图,图15B及图15C分别是图15A所示TFT阵列面板沿着XVB-XVB′线及XVC-XVC′线的截面图,图16A、图17A、图18A和图16B、图17B、图18B分别是图15A所示TFT阵列面板沿着XVB-XVB′线及XVC-XVC′线的截面图,根据工艺顺序图示了图15B及图15C下面步骤,图19A是图18A及图18B下面步骤的TFT阵列面板的配置图,图19B及图19C分别是图19A所示TFT阵列面板沿着XIXB-XIXB′线及XIXC-XIXC′线的截面图;以及图20A、图21A及图22A和图20B、图21B及22B分别是图19A图示的TFT阵列面板沿着XIXB-XIXB′线和XIXC-XIXC′线的截面图,是图19B和图19C的下一步骤图示。
参照图13A至图13C所示,在绝缘基板110上通过光学蚀刻形成分别包含多条栅极线123的多条栅极线121及多条储能电极线131。栅极线121和储能电极线131分别包括下部薄膜121p、131p和上部薄膜121q、131q。
如图14A及14B所示,利用化学汽相沉积法(CVD)分别以约1,500-5,000、约500-2,000、以及约300-600厚度连续沉积栅极绝缘层140、纯非晶硅层150、以及含杂质的非晶硅层160。接着用溅射之类方法连续沉积下部薄膜170p和上部薄膜170q形成导电层170,并在其上面以1-2μm厚度涂布感光耐蚀膜310。
通过曝光掩膜将感光耐蚀膜310曝光之后显像。显像的感光耐蚀层厚度因位置而异,在图15B及图15C的感光耐蚀层由厚度逐渐变小的第一至第三部分组成。位于布线区域A2的第一部分和位于通道区域C2的第二部分分别用附图标记312和314表示,位于其它区域B2的第三部分的附图标记在图中未示出,这是因为第三部分的厚度基本上为0以露出其下面的导电层170的缘故。第二部分314和第一部分312的厚度比可以根据后续工序当中的工艺条件来调整。优选第二部分314厚度等于或小于第一部分312厚度的1/2,尤其是,等于或小于4,000。
若提供适当的工艺条件,因感光耐蚀层312、314存在厚度差,所以可以选择性蚀刻下部层。接着,通过一系列的蚀刻步骤形成包括多个源极173的多条数据线171及多个漏极175,形成分别包括多个凸出部分163的多个欧姆接触条161及多个欧姆接触岛165,还形成包括多个凸出部分154的多个半导体条151、以及多个半导体岛157。
为了方便说明起见,位于布线区域A2的导电层170、含杂质的非晶硅层160、纯非晶硅层150的部分称为第一部分,位于通道区域C2的导电层170、含杂质的非晶硅层160、纯非晶硅层150的部分称为第二部分,位于其它区域B2的导电层170、含杂质的非晶硅层160、以及纯非晶硅层150的部分称为第三部分。
形成这种结构的顺序一个例子如下(1) 除掉位于布线区域A2的导电层170、含杂质的非晶硅层160、以及纯非晶硅层150的第三部分;(2) 除掉感光耐蚀层的第二部分314;(3) 除掉位于通道区域C2的导电层170及含杂质的非晶硅层160的第二部分;以及(4) 除掉感光耐蚀层的第一部分312;这种顺序的另一个例子如下(1) 除掉导电层170的第三部分;(2) 除掉感光耐蚀层的第二部分314;
(3) 除掉含杂质的非晶硅层160及纯非晶硅层150的第三部分;(4) 除掉导电层170的第二部分;(5) 除掉感光耐蚀层的第一部分312;以及(6) 除掉含杂质的非晶硅层160的第二部分。
将实施例1进行详细描述。
如图16A及16B所示,用湿蚀刻或干蚀刻除掉露在其它区域B2的导电层170的第三部分,露出其下面的含杂质的非晶硅层160的第三部分。Mo、MoW、Al、Ta或Ta的薄膜可以通过干蚀刻和湿蚀刻中任一种进行刻蚀,但用干蚀刻方法几乎不能除掉Cr薄膜。当下部薄膜170p由Cr组成时,可以使用CeNHO3蚀刻液的湿刻蚀。下部薄膜170p为Mo或MoW时,可以使用CF4和HCl的气体混合物或CF4和O2的气体混合物,而后者的气体混合物采用与导电薄膜相似的刻蚀比刻蚀感光耐蚀层。
附图标记174表示包括数据线171和漏极175且依附在一起的导电层170部分。可以使用干蚀刻来刻蚀感光耐蚀层312、314的顶部。
参照图17A及图17B,优选通过干刻蚀除掉位于区域B2的含杂质的非晶硅层160及纯非晶硅层150的第三部分以露出导电体174的第二部分314。除掉感光耐蚀层的第二部分314与除掉含杂质的非晶硅层160及纯非晶硅层150的第三部分同时进行或分别进行。使用SF6和HCl的气体混合物或SF6和O2的气体混合物,可以以几乎相同的蚀刻比刻蚀非晶硅层160和150。通过抛光除掉残留在通道区域C2上的感光耐蚀层的第二部分314的残渣。
如图18A及图18B所示,除掉位于通道区域C2的导电体174及含杂质的非晶硅条164的第二部分,以及除掉感光耐蚀层的第一部分312。
对导电体174和含杂质的半导体条164都可以使用SF6和O2的气体混合物进行干蚀刻。
可供选择地,导电体174进行干蚀刻,同时对含杂质的半导体条164进行干蚀刻。这时,导电体174的侧面被干蚀刻,而含杂质的半导体条164的侧面几乎未被蚀刻,因此形成阶梯状的侧轮廓。使用SF4和O2和SF4和O2的气体混合物的实施例如上所述。后者的气体混合物可以剩下厚度均匀的纯半导体条151。
如图18B所示,可以除掉位于通道区域C2的纯半导体条151的凸出部分154的顶部以减小厚度,并且感光耐蚀层的第一部分312也刻蚀成预定的厚度。
如此,将各导电体174分成一条数据线171和多个漏极175以最终完成,将各含杂质的半导体条164分成一个欧姆接触条161和多个欧姆接触岛165以最终完成。
如图19A及图19B所示,在沉积钝化层180后,在其上旋涂感光耐蚀膜410。通过曝光掩膜(未示出)将感光耐蚀膜410曝光后显像,显像的感光耐蚀层具有位置决定性的厚度。如图19B所示的感光耐蚀层由厚度逐渐变小的第一至第三部分组成。位于区域A3的第一部分和位于活性接触区域C3的第二部分,分别用附图标记412、414表示;位于外部接触区域B3的第三部分未用附图标记表示,这是因为第三部分厚度基本上为0以露出钝化层180的下面部分的缘故。第一部分412和第二部分414的厚度比根据后续工序中的工艺条件而定,优选第二部分414的厚度等于或小于比钝化层180的厚度。
当提供适当的工艺条件时,因感光耐蚀层412、414存在厚度差,所以可以选择性蚀刻下部层。接着通过一系列蚀刻步骤形成不同厚度的接触孔182、185、187和189。
为了方便说明起见,位于区域A3的部分称为第一部分,位于活性接触区域C3的钝化层180、漏极175、数据线171及栅极绝缘层140的部分称为第二部分,位于外部接触区域B3的钝化层180、栅极绝缘层140及栅极线121的部分称为第三部分。
说明形成这种结构的例子如下如图20A及20B所示,蚀刻除掉露在外部接触区域B3的钝化层180的第三部分。若进行干蚀刻,可能蚀刻栅极绝缘层140的第三部分和钝化层180的第二部分的顶部,优选使栅极绝缘层140的第三部分的厚度比钝化层的第二部分厚度小,使栅极绝缘层140的第二部分在下一步骤中不被除掉。接着,通过抛光工序完全除掉残留在活性接触区域C3的感光耐蚀层的第二部分414的残渣,以露出钝化层180的第二部分。
如图21A及图21B所示,除掉栅极绝缘层140的第三部分和钝化层180的第二部分以形成接触孔183、185、和189。这种蚀刻用干蚀刻,对栅极绝缘层140和钝化层180基本上用相同蚀刻比进行蚀刻。这样,栅极绝缘层140的第三部分比钝化层180的第二部分薄,因此完全除掉栅极绝缘层140的第三部分和钝化层180的第二部分的同时保留栅极绝缘层140的第二部分,从而防止漏极175下面的栅极绝缘层140的下切。
如图22A及图22B所示,除掉栅极线121上部薄膜125q的第三部分和漏极175及数据线171的末端部分179上部薄膜175q、179q的第二部分,露出其下面的下部薄膜125p、175p、和179p。
最后,如图10至图12所示,用溅射方法沉积约500至约1,500厚度的ITO或IZO层并进行光学蚀刻,以形成多个像素电极191及多个接触辅助附件192、199。IZO层优选地,使用HNO3/(NH4)2Ce(NH3)6/H2O等用于铬蚀刻液的湿蚀刻,这种蚀刻液不腐蚀数据线171、和漏极175的铝。
在本实施例中用一个光学蚀刻工序形成数据线171及漏极175和欧姆接触层161、165及167和半导体条和岛151和157,以此可以简化制造工艺。
参照图23及图24详细说明根据本发明另一实施例的用于液晶显示器的TFT阵列面板。
图23是根据本发明另一实施例的TFT阵列面板的配置图,图24是图23所示的TFT阵列面板沿着XXIV-XXIV′线的截面图。
如图23及图24所示,根据本实施例的TFT阵列面板的层状结构几乎与图2及图3所示的TFT阵列面板的层状结构相同。即,在基板110上形成分别包括多个栅极121及多个凸出部分127的多条栅极线121,在其上顺次形成栅极绝缘层140、分别包括多个凸出部分154的多个半导体条151、还有包括多个凸出部分163的多个欧姆接触条161及多个欧姆接触岛165。在欧姆接触层161、165上面形成分别包括多个源极173的多条数据线171、多个漏极175、多个储能电容器导体177,其上形成钝化层180。在钝化层180和/或栅极绝缘层140上形成多个接触孔182、185、187、和189,在钝化层180上形成多个像素电极191和多个接触辅助附件192和199。
与图2及图3所示TFT阵列面板不同,多个红、绿、蓝滤色器R、G、和B形成于钝化层180下面。彩色滤色器R、G、和B具有露出漏极175和储能电容器导体177的多个开口部分C1和C2。彩色滤色器R、G、和B可以相互重叠以阻挡光泄漏,并且将接触孔185和187设置于开口部分C1和C2内。
如上所述,想在接触部分露出漏极边缘时残留漏极下部的绝缘层,以防止信号线处的下切,并防止接触部分的轮廓变光滑,从而防止像素电极的断线。此外,露出具有低接触电阻的导电薄膜,以确保接触部分的可靠性。另外,形成包括低电阻的上部薄膜以改善产品的质量。而且,可以简化制造工艺。
虽然本发明参考优选实施例进行了描述,应当理解本发明不局限于这些优选具体实施例,本领域技术人员在所附权利要求的精神和范围内可以进行各种替换和修改。
权利要求
1.一种薄膜晶体管阵列面板,包括栅极线,形成在绝缘基板上;栅极绝缘层,在所述栅极导电层上;半导体层,在所述栅极绝缘层上;数据线,形成在所述栅极绝缘层上并包括源极;漏极,至少部分形成在所述半导体层上;钝化层,形成在所述数据线和所述漏极上且具有至少部分露出所述漏极和所述栅极绝缘层部分的第一接触孔;以及像素电极,形成在所述钝化层上并通过所述第一接触孔连接所述漏极和所述栅极绝缘层的露出部分。
2.根据权利要求1所述的薄膜晶体管阵列面板,其特征在于,所述栅极线、所述数据线、和所述漏极由铬、钼、或钼合金的下部薄膜以及铝或铝合金的上部薄膜形成。
3.根据权利要求2所述的薄膜晶体管阵列面板,其特征在于,所述钝化层由氮化硅形成。
4.根据权利要求1所述的薄膜晶体管阵列面板,其特征在于,所述像素电极由IZO形成。
5.根据权利要求1所述的薄膜晶体管阵列面板,其特征在于,所述钝化层具有露出所述栅极线和所述数据线末端部分的第二及第三接触孔,并且所述薄膜晶体管阵列面板还包括连接所述栅极线和所述数据线的露出末端部分的接触辅助附件。
6.一种薄膜晶体管阵列面板的制造方法,所述方法包括以下步骤在绝缘基板上形成栅极线;形成栅极绝缘层;形成半导体层;形成包括数据线和漏极的数据导电层;沉积钝化层;形成包括位于所述栅极线末端部分的第一部分、比所述第一部分厚且位于所述漏极的第二部分、以及比所述第二部分厚的第三部分的感光耐蚀层;通过使用作为刻蚀掩膜的所述感光耐蚀层进行蚀刻,露出所述感光耐蚀层的第二部分下面的所述钝化层部分和所述感光耐蚀层的第一部分下面的所述栅极绝缘层部分;分别形成露出所述漏极和所述栅极线末端部分的第一及第二接触孔;以及通过所述第一接触孔连接所述漏极的像素电极。
7.根据权利要求6所述的方法,其特征在于,所述感光耐蚀层还包括设置于所述数据线末端部分上的第四部分,以及所述方法还包括形成露出所述数据线末端的第三接触孔。
8.根据权利要求6所述的方法,其特征在于,在所述感光耐蚀层和所述钝化层的刻蚀比基本相同的条件下通过干蚀刻进行曝光。
9.根据权利要求6所述的方法,其特征在于,所述栅极的露出部分比所述钝化层的露出部分厚。
10.根据权利要求6所述的方法,其特征在于,所述第一和第二接触孔是在所述栅极绝缘层和所述钝化层的刻蚀比基本相同的条件下通过干蚀刻形成。
11.根据权利要求6所述的方法,其特征在于,所述栅极线或所述数据线由铬、钼、或钼合金的下部薄膜和铝或铝合金的上部薄膜形成。
12.根据权利要求11所述的方法,还包括在形成所述像素电极之前除去所述上部薄膜。
13.根据权利要求6所述的方法,其特征在于,所述像素电极由IZO形成。
14.根据权利要求6所述的方法,其特征在于,所述数据线及所述半导体层由一种感光耐蚀膜形成。
全文摘要
本发明提供一种薄膜晶体管阵列面板,其包括在绝缘基板上形成的栅极线;在栅极导电层上形成的栅极绝缘层;在栅极绝缘层上形成的半导体层;在栅极绝缘层上形成且包括源极的数据线;至少部分形成在半导体层上的漏极;形成在数据线和漏极上且具有至少部分露出漏极和栅极绝缘层部分的第一接触孔的钝化层;形成在钝化层上并通过第一接触孔连接漏极及栅极绝缘层的露出部分的像素电极。
文档编号H01L21/28GK1517771SQ20041000099
公开日2004年8月4日 申请日期2004年1月17日 优先权日2003年1月17日
发明者昔俊亨, 李正荣, 尹钟秀, 崔权永, 白范基 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1