发光装置的制作方法

文档序号:6835689阅读:149来源:国知局
专利名称:发光装置的制作方法
技术领域
本发明涉及发光装置,更具体的说,是涉及由氮化物半导体形成的发光装置的发明。所需说明的是,在以后的说明中,“发光装置”,只要不特别事先说明,均指“发光元件(芯片)”或“含有该发光元件的发光元件的安装结构”。
背景技术
白色发光二极管(LEDLight Emitting Diode)被广泛使用在包括便携电话的便携式信息终端等的显示装置的照明。在将LED应用于便携式信息终端的显示装置的光源的情况下,能够特别地得到提高发光特性的效果。为此,提出了在每次使用后述的蓝宝石基板,装入GaN系发光元件而以n向下(p向上)的方式安装的侧视型LED的制作时,防止发光不均的结构(参照特开2000-223751号公报)。根据该方案,公开了一种分别位于从光取出侧(上侧)俯视发光装置时的矩形的相对的角部的2个电极沿着侧视型LED的厚度方向那样的配置,即在角部竖立的配置等形式。
另外,LED虽然还暗涵有应用于大的空间或大面积的照明的可能性,但无论是否为大面积的照明及便携式信息终端的用途,都有必要提高LED的光的输出效率。
图51中表示现在所提出的GaN系LED的构造(参照特开2003-8083号公报)。在该GaN系LED中,在蓝宝石基板101上设置n型GaN层102,在该n型GaN层102和p型GaN层104之间形成有量子势阱结构103。光是有该量子势阱结构103发出的。在p型GaN层104上以欧姆接触(电阻接触)的方式形成p电极105,另外,在n型GaN层102上以欧姆接触的方式形成n电极106。
所述的p电极105以及n电极106,以软钎球107、108介于中间而与安装部件109相连接。安装部件(辅助安装部件)109由Si基板构成,形成有用于针对来自外部的浪涌电压进行保护的电路。即,与Ga、Al、In等III族的氮化物半导体相关的电路故障的主要原因,重视过渡电压及静电放电等浪涌电压,以不会向发光元件施加较大的顺电压及逆电压的方式,由稳压二极管(齐纳二极管)来形成用于保护发光元件的电力分路电路。对于浪涌电压下的保护,在后详细说明。
上述的GaN系LED具有如下特征点以从蓝宝石基板101的背面侧发出光的方式,(a1)将p型GaN层104安装在下,并且(a2)在n型GaN层102上形成n电极层106。该GaN系LED的结构如图51所示,非常复杂。成为这样的复杂结构的原因的、(a2)在n型GaN层102上形成n电极层的理由是因为蓝宝石基板101为绝缘体而不能在蓝宝石基板上设置n型电极。
不仅是使用了上述蓝宝石基板的发光元件,在应用于发光元件的GaAs系、GaP系、GaN系的化合物半导体中,与发光元件一并设置针对过渡电压及静电放电的保护电路的方案此前多次被提出过(参照特开2000-286457号公报、特开平11-54801号公报、以及特开平11-220176号公报)。尤其是在GaN系化合物半导体中,由于逆向的耐压低至50V左右,并且顺方向电压也只有150V左右的耐压,因此设置用于上述保护的电力分路电路就受到重视。即,在用于辅助安装的Si基板上形成上述GaN系等元件,在该Si基板上形成包含稳压二极管等的保护电路。上述那样的众多的保护电路的提案,正是与Ga、Al、In等III族氮化物半导体相关的电路故障的主要原因表现为过渡电压或静电放电等浪涌电压的佐证。
另外,与设有上述保护电路的发光元件相区别地,还知道一种在设为导电体的SiC基板上形成有GaN系发光元件的例子。即,利用“SiC基板背面的n电极/SiC基板/n型GaN层/量子势阱层叠结构(发光层)/p型GaN层/p电极”的层叠结构而从p型GaN层发出光的构造的LED,也被广泛使用。
另一方面,在上述的图51所示的使用了蓝宝石基板的GaN系LED中,无法避免构造复杂,制造成本上升。为了开拓多样的照明用途需求,必须使LED廉价,因此,上述的构造并不理想。另外,因为向下安装面一侧配置有p电极105和n电极106,所以电极的面积、尤其是p电极的面积受到限制。为了通入较大的电流而得到高输出,希望p电极为特别大的面积,但在图51所示的结构中受到限制,其结果导致光输出受到限制。进而,即使是从使伴随电流而发出的热散发掉的方面考虑,在一侧的面上配置2个电极层也是不理想的。
另外,在n型GaN层102上沿与基板平行的方向通入电流时的电阻较大,还会成为发热及驱动电压、进而消耗功率的增加的原因。尤其是当以成膜工序的缩短化为目的而使n型GaN层的厚度薄化时,除了上述发热及消耗功率增加的问题以外,该n型GaN膜的露出的成品率也会变得非常差。
另外,虽然以上述的使用了蓝宝石基板的发光元件为例而对所有的发光元件进行了说明,但因为散热面积受到限制,另外热阻(每单位面积由单位能量的输入而产生的温度上升)也变大,所以不能使每一发光元件获得较大的注入电流。尤其是在使用了蓝宝石基板的情况下,由于如上所述p电极的面积受到限制,所以通常都是进行几乎没有余量的热设计。
进而,在上述的使用了蓝宝石基板的GaN系LED的情况下,由于散热面积受到制约,所以为了使电阻稍微下降以降低发热量,又出现了采用使p电极和n电极呈梳齿状地组入而扩大接触面积的构造的情况。这样的梳齿状的电极,加工不容易,明显会关系到制造成本的上升。
如上所述,在发光元件中,热条件的设计基本上很重要,在想要获得较大的输出的情况下,由于上述那样的热的条件而受到制约,为了将其稍微缓和不得不采用复杂的电极形状。
进而,还存在如下那样的问题。在将形成在蓝宝石基板上的GaN系发光元件向下安装,将蓝宝石基板的背面设为光的发出面的情况下,因为蓝宝石的折射率为1.8左右,GaN的折射率为2.4左右,所以在发出光并使其传播出来的GaN层和蓝宝石基板的临界面上,规定的入射角或其以上的光发生全反射,而无法向外面射出。即,入射角θ≥sin-1(1.8/2.4)42°的范围的光,留在GaN层内,而不会射出。因此,在蓝宝石基板的主面上的发光效率降低。但是,虽然发光效率的问题也是重要的,但不只于此。上述全反射的光会在GaN层传播,从GaN层的侧部射出。上述的全反射的光量占有相当的比例,另外,因为GaN层薄,所以从侧部射出的光的能量密度就增高。位于GaN层的侧部而受该光照射的密封树脂就会受到损伤,出现发光元件的寿命缩短的问题。
另外,在从p层侧将光取出的“SiC基板背面的n电极/SiC基板/n型GaN层/量子势阱层叠结构(发光层)/p型GaN层/p电极”的结构的GaN系LED中,因为p电极的光吸收率大所以不能高效率地向外部发出光。若使p电极的覆盖率减少、即增大开口率来增加光的放出量,则会因为p型GaN层电阻高而不能使电流遍及p型GaN整体地流动,使发光输出降低,另外,还会出现电阻上升、发热及电源容量的问题。进而,若以使电流同样地流遍p型GaN层整体为目的而使p型GaN层的厚度增加,则由该p型GaN层引起的光的吸收会增大,制约输出。

发明内容
本发明的目的在于提供一种由于结构简单而容易制造,能够长时间稳定地得到较大的发光效率,并且能够容易小型化的发光装置。
本发明的发光装置,其中具备电阻率0.5Ω·cm或其以下的氮化物半导体基板、位于前述氮化物半导体基板(1)的第1主表面侧的n型氮化物半导体层、从前述氮化物半导体基板看位于比前述n型氮化物半导体层更远的位置上的p型氮化物半导体层和位于前述n型氮化物半导体层以及p型氮化物半导体层之间的发光层。并且,将前述氮化物半导体基板以及p型氮化物半导体层中的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极以1个而构成。
在上述的发光装置中,因为在放出光的上侧配置1个电极,所以能够不受电极妨碍地取出较多的光量。另外,因为只要配置1个电极即可,所以LED的小型化、尤其是侧视型LED的薄型化能够较容易地进行,能够实现包括便携电话的便携信息终端的小型化。另外,虽然也有在由1个构成的电极上组合配置焊盘电极等的情况,但只要俯视状态下在1个区域内构成,就设成以1个构成。在以后的说明中也同样。
在上述的配置中,在向下安装p电极侧的情况下,n型氮化物半导体基板的背面侧成为光放出面,因此,例如对n型氮化物半导体基板使用了GaN基板的情况下,因为能够降低电阻所以只要设置较小的n电极即可,即便是加载同样的电力也能够获得较大的光输出。即,在向下安装p电极的情况下,在电阻低的氮化物半导体层的背面(第2主表面)设置n电极,因此即使以较小的覆盖率、即较大的开口率设置n电极,也能够使电流遍及氮化物半导体基板整体地低流动。因此,在放出面将光吸收的机率就变小,能够提高发光效率。显然,光的放出,不仅是在第2主表面,而且还可以从侧面进行。在以下的发光元件中也同样。
另外,在电流并不非常大等情况下,也可以将p型氮化物半导体层的一侧设为光放出面。
进而,由于GaN基板导电性优异,所以尤其是没有必要设置相对于浪涌电压的保护电路,另外耐压性也能够非常优异。
另外,因为没有进行复杂的加工工序,所以降低制造成本也较容易。
另外,以上述氮化物半导体基板为n导电型为前提。另外,氮化物半导体“基板”,是指能够独立地搬运的厚度相应地较厚的板状物体,与在搬运时难以保持其自身的形状的“膜”或“层”不同。对于此后说明的GaN基板及AlN基板也同样。
本发明的其他的发光装置,具备位错密度在108/cm2或其以下的氮化物半导体基板GaN基板、位于前述GaN基板(1)的第1主表面侧的n型氮化物半导体层的n型AlxGa1-xN层(0≤x≤1)、从前述GaN基板看位于比前述n型AlxGa1-xN层更远的位置上的p型AlxGa1-xN层(0≤x≤1)和位于前述n型AlxGa1-xN层以及p型AlxGa1-xN层之间的发光层。以与作为前述GaN基板的与前述第1主表面相对一侧的主表面的第2主表面接触的方式具有n电极,另外以与前述p型AlxGa1-xN层接触的方式具有p电极;将前述n电极以及p电极的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极由1个构成。
根据该结构,还是在放出光的上侧配置1个电极,所以能够不受电极妨碍地取出较多的光量。另外,因为只要设置1个电极即可,所以能够较容易地进行LED的小型化,尤其是薄壁化,且能够实现便携信息终端的小型化。
另外,因为GaN基板能够较容易地降低电阻,所以除了在上述的发光装置中的作用效果以外,能够因为GaN基板的位错密度在108/cm2或其以下而结晶性高,以及在p向下安装的情况下、借助高开口率而提高来自第2主表面的光输出。另外,从侧面也放出光。
如果没有流过高电流,显然能够获得p侧向上安装(n侧向下安装)而耐压性能提高、发热受到抑制、相对于浪涌电压的保护电路省略、制造成本的降低等的优点。
另外,因为折射率的连续性得到保证,所以上述的全反射的问题也不会出现。
本发明的又一发光装置,具备热传导率在100W/(m·k)或其以上的氮化物半导体AlN基板、位于前述AlN基板的第1主表面的一侧上的n型氮化物半导体层的n型AlxGa1-xN层(0≤x≤1)、从前述AlN基板看位于比前述n型AlxGa1-xN层更远的位置上的p型AlxGa1-xN层(0≤x≤1)和位于前述n型AlxGa1-xN层以及p型AlxGa1-xN层之间的发光层。以与作为前述AlN基板的与前述第1主表面相对一侧的主表面的第2主表面接触的方式具有n电极,另外以与前述p型AlxGa1-xN层接触的方式具有p电极;将前述n电极以及p电极的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极由1个构成。
因为AlN热传导率非常高、散热性优异,所以能够从上述的p型AlxGa1-xN层将热传递给引线框等,从而抑制发光元件上的温度上升。另外,还能够使热从上述AlN基板散发掉,有助于抑制温度上升。另外,为了上述的AlN基板具有导电性而以导入了杂质的导电性AlN基板为前提。除了由上述高热传导率带来的性能提高以外,还能够获得在上述的本发明的发光装置中所得到的优点。
本发明的与上述的装置相区别的发光装置,具备电阻率0.5Ω·cm或其以下的氮化物半导体基板、位于前述氮化物半导体基板的第1主表面侧的n型氮化物半导体层、从前述氮化物半导体基板看位于比前述n型氮化物半导体层更远的位置上的p型氮化物半导体层和位于前述n型氮化物半导体层以及p型氮化物半导体层之间的发光层。并且,将前述氮化物半导体基板安装在下侧,在放出光的上侧具有前述p型氮化物半导体层。
根据上述结构,能够获得p侧向上安装(n侧向下安装)而耐压性能提高、发热受到抑制、相对于浪涌电压的保护电路省略、制造成本的降低等优点。另外,能够确保折射率的连续,上述全反射的问题也不会发生。上述发光装置,如上所述,既可以将发光元件(芯片)直接作为产品,也可以做成组装有发光元件的发光元件安装结构。
本发明的与上述的发光装置再一不同的发光装置,其具备位错密度在108/cm2或其以下的GaN基板、位于前述GaN基板的第1主表面的一侧上的n型氮化物半导体层、从前述GaN基板看位于比前述n型氮化物半导体层更远的位置上的p型氮化物半导体层和位于前述n型氮化物半导体层以及p型氮化物半导体层之间的发光层;将前述GaN基板安装在下侧,并在放出光的上侧具有前述p型氮化物半导体层。
根据上述的结构,能够得到地位错密度特有的在高电路区域的高发光效率。另外,与上述p向上安装的发光装置同样地,能够获得耐压性能提高、发热受到抑制、相对于浪涌电压的保护电路省略、制造成本的降低等优点。另外,能够确保折射率连续,上述全反射的问题也不会出现。与上述同样地,本发光装置,既可以将发光元件(芯片)直接做成产品,也可以设成组装了发光元件的发光元件安装结构。


图1是表示本发明的实施例1的本发明例A的层叠结构的图。
图2是表示在本发明例A的制造中,在晶圆上设置元件分离槽的状态的图。
图3是图2的俯视图。
图4是表示搭载了本发明例A的发光元件的侧视型LED灯的立体图。
图5是图4的侧视型LED灯的正面图。
图6是表示本发明的实施例1的比较例B的层叠结构的图。
图7是表示在比较例B的制造中,在晶圆上设置元件分离槽的状态的图。
图8是图7的俯视图。
图9是表示搭载了比较例B的发光元件的侧视型LED灯的立体图。
图10是图9的侧视型LED灯的正面图。
图11是表示实施例1的外加电流和光输出的关系的图。
图12是表示实施例1中的在MQW中的电流密度和光输出的关系的图。
图13是表示除去发热的影响后的外部量子效率的比较图。
图14是表示在实施例1中搭载了荧光剂时的白色LED的外加电流和亮度的关系的图。
图15是表示在实施例1中搭载了荧光剂时的白色LED的在MQW的电流密度和亮度的关系的图。
图16是表示本发明的实施例2的本发明例C的层叠结构的图。
图17是图16的俯视图。
图18是表示本发明的实施例2的本发明例C的安装结构的图。
图19是本发明例C的侧视型LED的正面图。
图20表示本发明的实施例3的本发明例F的光的取出的图解的图。
图21是表示未非镜面处理的发光元件的光的取出的图解的图。
图22是表示本发明的实施例4的本发明例G、H的安装结构的图。
图23是表示本发明的实施例4的本发明例I的安装结构的图。
图24A是表示本发明的实施例5的本发明例J、K的氮化物半导体基板的形状的图,是表示正方形的图。
图24B是表示本发明的实施例5的本发明例J、K的氮化物半导体基板的形状的图,是表示细长的长方形的图。
图25是表示本发明例J以及K的安装结构的图。
图26是搭载了本发明例J以及K的发光元件的侧视型LED的正面图。
图27A是说明在本发明的实施例5中测定本发明例J以及K的氮化物半导体基板的透过率的方法的图。
图27B是说明在本发明的实施例5中测定比较例L的氮化物半导体基板的透过率的方法的图。
图28是表示本发明的实施例5的各氮化物半导体基板的透过率的图。
图29是表示在本发明的实施例6中影响到GaN基板的电阻率(比电阻)的氧浓度的影响的图。
图30是表示在本发明的实施例6中影响到GaN基板的光(波长450nm)的透过率的氧浓度的影响的图。
图31是表示由使厚度以及氧浓度变化的GaN基板制作发光元件时的该发光元件的光输出以及电流均匀流动的平面尺寸的图。
图32是表示将本发明的实施例7的GaN基板中的芯与外延层相延续的状态的图。
图33是表示与成孔状凹部的外延层相延续的芯的图。
图34是表示在本发明的实施例8中,20mm×20mm的GaN基板的从c面的偏离角度分布的图。
图35是表示本发明的实施例8的、在GaN基板和AlGaN包层之间配置缓冲层的结构的图。
图36是在本发明的实施例8中,将能够得到光输出8mW或其以上的偏离角范围扩大表示的结果的图。
图37是表示本发明的实施例9的发光元件的图。
图38是着眼于本发明的实施例10的发光元件的p电极的剖面图。
图39是透视图38中的发光元件的p电极的俯视图。
图40是表示实施例10的本发明例S5的发光以及反射的图。
图41是表示实施例10的比较例T6的发光以及反射的图。
图42是表示作为实施例10的比较例而列举的本发明例A的发光以及反射的图。
图43是表示在本发明的实施例11中,板状结晶反射区域呈现为晶格状的GaN基板的主面的图。
图44是表示图43的板状结晶反射区域的GaN基板的剖面图。
图45是表示本发明的实施例11的本发明例S6的剖面图。
图46是表示包括在本发明的实施例11内的,与图43不同的并排配置的板状结晶区域的俯视图。
图47是图46的剖面图。
图48是表示本发明的实施例12的本发明例S7的发光以及反射的剖面图。
图49是表示在本发明的实施例12的作为其他的实施例的本发明例S8中的发光以及反射的剖面图。
图50是表示比较例T7的发光以及反射的剖面图。
图51是表示以往的LED的图。
具体实施例方式
其次,利用附图对本发明的实施形态进行说明。
(实施例1)在实施例1中,利用p侧向上(n侧向下)安装在GaN基板上、在GaN基板的背面设置n电极的本发明例的发光装置、和以往的发光装置,制作侧视型LED,并对尺寸以及光输出、亮度进行比较。
(本发明例A)参照图1,在GaN基板1的表面(第1主面)上,按从下到上依次外延成膜,形成n型GaN层2/n型AlxGa1-xN层3/(AlxGa1-xN/AlxInyGa1-x-yN)m的多重量子势阱层(活性层)4/p型AlxGa1-xN层5/p型GaN层6的层叠结构。也有多重量子势阱层是由(GaxN/InxGa1-xN)m构成的情况。重叠的组数m通常设为3,但也可以更多。光放出面是p型GaN层6的表面,在该表面6a上设有后述的p电极。另外,在GaN基板的背面1a上设有n电极。
其次,对上述本发明例A的发光装置的制造方法进行详细说明。
(1)使用从C面错开0.5°的GaN的偏离基板。电阻率是0.01Ω·cm,位错密度是1E7/cm2,基板厚度是400μm。但是,上述的GaN基板在形成下面要叙述的n电极之前,厚度减为200μm。
(2)通过MOCVD(Metal Organic Chemical Vapor Deposition)法在GaN基板的Ga面上,使由GaN缓冲层(图1中省略)/Si掺杂n型GaN层2/Si掺杂n型包层Al0.2Ga0.8N层3/GaN和In0.15Ga0.85N构成的3组MQW(Multi-Quantum Well)层4/Mg掺杂p型包层Al0.2Ga0.8N层5/Mg掺杂p型GaN层6按顺序外延成长(图1)。
(3)通过比较在发光波长为450nm、低温4.2K下的PL(PhotoLuminescence)强度和室温298K下的PL强度而方便地算出的内部量子效率是50%。
(4)对该晶圆进行活性化处理,然后进行Mg掺杂p型层5的低阻力化。通过空穴测定所得到的载流浓度,Mg掺杂p型Al0.2Ga0.8N层5是5E17/cm2,Mg掺杂p型GaN层6是1E18/cm2。
(5)p电极,首先通过光刻技术和蒸镀,在p型GaN层6上依次形成厚度4nm的Ni和厚度4nm的Au的2层结构,每隔350μm的间隔L2,设置边长为300μm的正方形的透明电极12(参照图2以及图3)。通过将其在惰性气体环境中加热处理而将接触阻力设为5E-4 ·cm2。进而,通过光刻技术和蒸镀每隔350μm在透明电极12的中心上设置直径100μm的焊盘电极(图未示)。
(6)参照图2,在GaN基板1的N面1a的整个面上设置n电极11。n电极与GaN基板接触,按Ti20nm/Al100nm/Ti20nm/Au200nm的顺序形成为层叠结构。n电极具有直径D,以间隔L2的间距位于元件的中心。通过将其在惰性气体环境中加热处理,将接触阻力设为1E-5Ω·cm2或其以下。
(7)对该晶圆,进一步通过光刻技术和RIE,从Mg掺杂p型层侧到Si掺杂n型层用Cl系气体通过如图2以及图3所述那样蚀刻,以成为规定的形状的方式设置宽度L3的元件分离槽25。
(8)之后,以变成规定的形状的方式进行划线,再沿着劈开面50分离,并使芯片化后的结构成为发光元件。通过这样而得到的发光元件是边长为325μm的正方形。由于与MQW发光部的面积是0.09mm2相对,p侧焊盘电极是直径100μm,因此没有被光取出面的p焊盘电极覆盖的部分的比例(开口率)是91%。
(侧视型LED)参照图4以及图5,在该侧视型LED上搭载用上述的制作方法制作的发光元件(芯片)10。将发光元件10以矩形的边成水平的方式配置,将Au线31电连接在位于该矩形的中心的p侧焊盘电极22上。将该Au线31的另一端电连接在向引线框32的光放出面侧突出的引线部32b的电极(图未示)上。设在GaN基板的背面的n电极与引线框的芯片配置部32a接触而电连接在一起。在引线框32上设有将从芯片向后方射出的光一直向前方反射的凹状曲面反射镜,芯片10最好位于该凹状曲面的焦点上。
在将这样的侧视型LED使用于便携式信息终端的显示画面的照明用光源的情况下,很重视其厚度和高度S。
(9)如上述所说,上述发光元件,以从p层侧取出光的方式搭载在具有反射镜的引线框的中心部。P型焊盘电极22处于元件的中心,另外,由于没必要在相同的上侧设置n电极,因此即便考虑到用于引线接合的空间,也可以将安装后的LED灯的厚度S设为0.5mm。
(10)另外,当搭载时,为了使来自于发光元件的散热性良好,以发光元件的GaN基板介由粘接剂而与安装部整面接触的方式搭载。另外,粘接剂选择热传导良好的Ag系材料,另外,引线框也选择热传导良好的CuW系的材料。根据这样的方法,所能得到的热阻是8℃/W。
(11)进而,在该n电极侧搭载荧光剂之后,用环氧树脂33将元件以及Au线31进行树脂密封,制作发白色光的灯。例如以接收到从元件发出的蓝色光,荧光剂发出黄色的荧光,整体发出白色光的方式设计。对于荧光剂,使用每450nm的光输出1W能得到180lm(180lm/1W)的荧光剂。与在筐体37的侧面开设的侧窗34相面对的树脂33,以发挥透镜作用的方式成为椭圆曲面状,且被设为从芯片发出的光沿侧窗的长径方向进一步扩大而沿短径方向不怎么扩展的曲面。
(比较例B)参照图6,将该比较例B的发光装置应用在以往的侧视型LED上。比较例B的发光装置的层叠结构是在蓝宝石基板101之上,形成由与上述本发明例A相同的n型GaN层2/n型AlxGa1-xN层3/(AlxGa1-xN/AlxInyGa1-x-yN)m的多重量子势阱层(活性层)4/p型AlxGa1-xN层5/p型GaN层6构成的层叠结构。也有多重量子势阱层是由(GaxN/InxGa1-xN)m构成的情况。光放出面是与本发明例A相同的p型GaN层6的表面6a,p电极设在该表面6a上。可是,由于蓝宝石基板101是绝缘体,因此不能将n电极设在蓝宝石基板上。因此,对层叠结构将缘部从表面6a切到n型GaN层2的层内,使n型GaN层2露出,并将n电极设在该露出的n型GaN层2的面上。
其次,对上述比较例B的发光装置的制造方法进行详细说明。
(1)使用从C面错开0.2°的蓝宝石的绝缘偏离基板101。基板厚度设为400μm。但是,与本发明例A相同的,在电极的形成前厚度减到200μm。
(2)-(4)与上述本发明例A的(2)-(4)相同。
(5)在比较例B的情况下,由于基板是绝缘体,因此n电极需要在与p电极相同的成长膜侧设置。于是,将具有图6的层叠结构的晶圆,进一步通过光刻技术和RIE(Reactive Ion Etching),用Cl系气体从Mg掺杂p型层6蚀刻到Si掺杂n型层2,为了设置n电极,使n型GaN层2露出,并设置与发明例A相同的用于进行元件分离的槽125(参照图7以及图8)。元件的尺寸是边长为325μm的正方形,在p型GaN层6之上形成p电极112。露出部分的n型GaN2,从俯视看具有每1个元件为边长150μm的正方形的形状。在露出的n型GaN层之上,通过光刻技术和蒸镀形成有直径100μm的n电极111。厚度、热处理、接触阻力和本发明例A相同。
(6)以及(7)p电极按以下方式形成。首先,在与边长为325μm的正方形元件中,俯视状态下,从去除了元件分离所必需的分离量的边长300μm的正方形中、进一步去除n型GaN层2的边长150μm的正方形的露出部后得到的相当于“ㄑ”的字形或L字形的部分的p型GaN层6的上面,设置透明电极层112。厚度、热处理、接触阻力和发明例A相同。P侧焊盘电极,在透明电极层的中央附近形成直径100μm的电极层。
(8)之后,要形成规定的形状而进行划线,使芯片化后的结构成为发光元件。得到的发光元件是边长为325μm的正方形。由于相对于MQW发光部的面积为0.0675mm2,p焊盘电极为直径100μm,因此没有被光取出面的p焊盘电极覆盖的部分的比例(开口率)是88%。
(侧视型LED)参照图9以及图10,在该侧视型LED130上搭载用上述的制作方法制作的发光元件(芯片)110。将发光元件110以矩形的对角线成水平的方式配置,将Au线31a电连接在位于该矩形的中心的p侧焊盘电极22上,另外,将Au线31b电连接在n电极111上。将Au线31a的另一端电连接在向引线框32的光放出面侧突出的引线部32b的电极(图未示)上,将Au线31b的另一端电连接在引线框的芯片配置部32a的电极上。在引线框32上设有将从芯片向后方射出的光向前方反射的凹面状反射镜,芯片110最好位于该凹状曲面的焦点上。
(9)如上所述,将发光元件(芯片),以从p层侧取出光的方式搭载在具有反射镜的引线框的中心部。在该情况下,由于将n电极和p电极两个都配置在上侧,因此为了设置将其分别引线接合的空间,将芯片相对于LED灯的长方向倾斜45°配置。因此,即便进行和发明例A相同的安装,灯的厚度为,也会因倾斜了45°相应增厚大约0.14mm,厚度S变为0.64mm。
(10)另外,在搭载时,与发明例A同样地为了使来自于发光元件的散热性良好,以发光元件的蓝宝石基板与安装部整面接触的方式搭载。而粘接剂、引线框材质与发明例A相同。因基板的不同而产生的热阻是10.4℃/W,变差为发明例A的1.3倍。
(11)以与发明例A相同的方式制作白色发光灯。
(实验内容以及其结果)首先,为了进行蓝色光的输出的比较,在将没有设置荧光剂的状态(实施树脂密封)的发明例A和比较例B搭载在积分球内后,施加规定的电流,使之发光。在图11以及图12中表示了从对该发出光进行汇聚的检测器输出的光输出值。将电流不会泄漏地注入MQW层,当在MQW层中的非发光性再结合比较少、另外因发热而导致的元件的温度上升较小的比较理想的状态下,光输出值与施加的电流的增加成比例地增加。例如在注入20mA的电流的情况下,发明例A以及比较例B都能够得到8mW的输出。进而在施加5倍的电流100mA的情况下,在发明例A中能够得到5倍的40mW的输出,但在比较例B中只能得到24mW的输出(图11)。
认为该理由如下。即,可以列举出在本发明例A中发热面积比比较例B大,即便是相同的电流注入量,每单位面积的发热量较小(注入电流100mA的时候的在MQW发光部中的电流密度,在本发明例A中是111A/cm2,在比较例B中是148A/cm2);与比较例B的蓝宝石基板相比使用了热传导比较好的GaN基板;另外,为了将n电极设在GaN基板的N面侧而成为没有使电流密度变得极大的部位的结构。
另一方面,将本发明例A的上述特征反过来看,则在比较例B中,除了散热面积比发明例A小之外,还可以列举为了将n电极设在使n型GaN露出的部分上而在n型GaN层中沿层流过的电流的密度会变为极端地过大,进而增加了发热的情况。
进而,虽然机理不一定明确,但作为理由还可以列举通过在基板上使用较低位错密度的GaN基板,MQW等的外延成长膜的结晶性好,不会引起高电流注入时的发光效率的降低的情况。
于是,为了分离热的影响,在同样没有设置荧光剂并实施了树脂密封的状态下,同样地进行脉冲电流的试验。这时,施加时间设为1μs。当用外加电流100mA,将占空(duty)比从100%逐渐降低来测定输出时,本发明例A以及比较例B都是随着将占空比降低而输出上升。但是,由于在占空比在5%到1%之间都是输出变为恒定并饱和,因此判断为热的影响没有了。
在图13中,表示的是以该结果为基础、在同样的占空比1%时改变脉冲外加电流值、根据输出计算出外部量子效率的结果。根据图13,在比较例B中随着电流的增加外部量子效率减少。与之相比,在本发明例A中,一直到100mA基本都是恒定的。
如上所述,即使将元件尺寸放大而使之与散热面积相同,并以p向下的方式安装而使得不会产生经由基板而来的散热差,在比较例B中,也不能得到由形成在本发明例A所特有的低位错密度的基板上的外延成长膜的结晶性产生的在高电流区域的高输出。
另外,本发明例A与比较例B不同,由于n电极与p电极处于相对的位置上,因此不必担心电短路。另一方面,由于在比较例B中,n电极与p电极位于相同的一侧,因此有时例如为了防止短路而有必须在p电极和n电极之间设置用于电绝缘的膜。由于在本发明例中没有那个必要,因此可防止多余的制造成本的增加。
上述的光输出的结果,只表示了发光波长450nm的一个例子,但即使在改变了发光波长和层结构的情况下,在本发明例A中,与比较例相比,也能得到同样的效果。另外,只要作为发光装置的基板的特性相同,显然代替GaN基板使用AlxGa1-xN基板也具有同样的效果。
其次,在图14以及图15中表示了对设置有荧光剂的本发明例A和比较例B求取与光输出等价的亮度的结果。如图14所示,在施加了电流100mA的情况下,在本发明例A中可得到7.21m的亮度,但在比较例B中只得到了4.31m。
这样与比较例B相对,即便是相同的芯片尺寸,本发明例在能够将侧视型LED灯的厚度变薄、使之小型化的同时,还能够得到高输出。在比较例B中,即便以将灯的厚度变薄为目的而减小芯片尺寸,但必须要有用于设置n电极的蚀刻空间和p焊盘电极部的一定面积,结果是开口率变得极小而不能得到充分的光输出或亮度。
另外,在比较例B中,即便在将芯片的边与侧视型LED灯的长方向平行地配置的情况下,由于在芯片的相对的2个角中之一上有n电极而在之另一个上有p电极,因此便需要额外的用于进行引线接合的空间,不可能将侧视型LED灯的厚度变得与发明例A一样薄。
其次,对上述的本发明例A以及比较例B进行耐静电压的试验。耐静电压试验就是使发光元件与充了静电的电容器相对,使两者间产生放电,测定产生放电时的两者间的电压。
结果是在比较例B中,在大约100V的静电压下就发生了破坏。另一方面,在本发明例A中,一直到大约8000V都没有发生破坏。因而,可知在本发明例A中具有比较例B的约80倍的耐静电压。
(实施例2)在本发明的实施例2中,其特征点在于对本发明例C、本发明例D以及比较例E,进行p向下安装,然后将n型层或n型半导体基板背面作为光放出面。本发明例D的位错密度为1E9/cm2,特别地,相对于使氮化物半导体基板的位错密度降低的类型的本发明的发光装置,位错密度在范围外,但属于其他类型的本发明的发光装置。在本实施例中,比较例E使用蓝宝石基板,虽然在蓝宝石基板的层叠结构侧设置n电极以及p电极,并试着将这2个电极安装向下,但由于n电极不能形成与本发明例C、D相同的尺寸,因此只将制作进行到一半便结束了。比较主要在本发明例C和本发明例D之间进行,因而验证位错密度的影响。
(本发明例C)参照图16以及图17对本发明例C进行说明。
(1)使用从C面错开0.5°的GaN的偏离基板。使用电阻率0.01Ω·cm、位错密度1E6/cm2、基板厚度400μm的基板。但是,与本发明例A同样地,在电极形成前厚度减到200μm。
(2)~(4)施加与本发明例A相同的处理。
(5)在GaN基板的N面上,在整个面上通过光刻技术和蒸镀每隔250μm在元件的中心上设置直径100μm的n电极。n电极,与GaN基板相接,按Ti 20nm/Al 100nm/Ti 20nm/Au 200nm的顺序成膜而成为层叠结构。通过将其在惰性气体环境中进行加热处理,使接触阻力成为1E-5Ω·cm2或其以下。
(6)p电极是在p型GaN层整个面上将厚度4nm的Ni和厚度4nm的Au按顺序成膜而成2层结构。通过将其在惰性气体环境中进行加热处理,使接触阻力成为5E-4Ω·cm2。
(7)对该晶圆进一步通过光刻技术和RIE,利用Cl系气体从Mg掺杂p型层侧蚀刻到Si掺杂n型层,设置规定的形状的元件分离槽。
(8)之后,为了成为规定的形状而进行划线,使芯片化后的制品成为发光元件。所得到的发光元件是边长225μm的正方形。由于与MQW发光部的面积为0.04mm2相对,n焊盘电极直径为100μm,因此没有被光取出面的n焊盘电极覆盖的部分的比例(开口率)是80%(参照图16以及图17)。
(侧视型LED)(9)将该发光元件,如图18所示那样,以从n层侧取出光的方式p在下地安装到具有反射镜的引线框安装部32a的中心部,制作侧视型LED(参照图19)。在向引线框搭载时使用了导电性粘接剂14。n焊盘电极11位于元件的中心。由于没必要像比较例B那样将p电极和n电极都设在上侧,因此即便考虑到用于引线接合的空间,也可以将安装后的侧视型LED灯的厚度变薄,可将上述厚度S设成0.4mm。
(10)另外,在搭载时,为了使来自于发光元件的散热性良好,如上述所说那样,以发光元件的GaN基板与整面安装部接触的方式搭载。另外,导电性粘接剂14使用热传导良好的Ag系材料,另外,引线框也使用热传导良好的CuW系的材料。其结果,所能得到的热阻是9℃/W。
(11)进而,在该n电极侧搭载了荧光剂后用环氧树脂进行树脂密封,制作发白色光的灯。荧光剂使用每450nm的光输出1w能得到180lm的荧光剂。
(本发明例D)(1)使用从C面错开0.5°的GaN的偏离基板。使用电阻率0.01Ω·cm,位错密度1E9/cm2,基板厚度400μm的基板。但是,与本发明例A、C相同地厚度减为200μm。
(2)~(11)施加与本发明例C相同的处理。
(比较例E)(1)使用从C面错开0.2°的蓝宝石基板的绝缘偏离基板。使用位错密度1E7/cm2,基板厚度400μm的基板。但是,与本发明例A、C、D同样地厚度减到200μm。
(2)~(4)与本发明例A相同。
(5)在比较例E中,由于蓝宝石基板是绝缘体,因此n电极需要设在与p电极相同的层叠结构一侧上。于是,对实施了上述的处理的晶圆,进一步通过光刻技术和RIE,利用Cl系气体从Mg掺杂p型层侧蚀刻到Si掺杂n型层,设置用于设置n电极的n型GaN层露出部和与比较例B同样的元件分离槽。元件的尺寸是为边长225μm的正方形,其中使之露出的部分的n型GaN层的范围是每1个元件为边长150μm的正方形。在使之露出的n型GaN层之上,通过光刻技术和蒸镀设有直径100μm的n电极。厚度、热处理、接触阻力与比较例B相同。
(6)电极,首先,边长225μm的正方形的元件中,从去除了元件分离所必需的分离量的边长200μm的正方形中、进一步去除n型GaN层的边长150μm的正方形的露出部后得到“ㄑ”的字形或L字形的部分,在与该部分相当的、p型GaN层的一部分上,形成透明电极。厚度、热处理、接触阻力与比较例B相同。虽然焊盘电极要在“ㄑ”的字形或L字形的透明电极的顶点部的中央附近设置直径100μm的电极,但只有边长50μm正方形的空间,不能制作与比较例B同样的电极式样的芯片。
(实验内容以及其结果)在与实施例1同样地只进行没有搭载荧光剂的树脂密封的状态下,测定光输出的结果,在本发明例C以及本发明例D中,在外加电流20mA下均得到7mW的输出,另外,在外加电流50mA下分别得到17.5mW以及10.5mW的输出。本发明例C与本发明例D相比,位错密度低了3个数量级左右,由于该低位错密度,可以得到比本发明例D高的发光输出。在本发明例C和本发明例D中,由于发热和散热相同,所以确认该差不影响热,因此虽然施加占空比1%、外加时间1μs的100μs循环的脉冲电流来比较,但同样地在外加电流50mA下分别得到17.5mW以及10.5mW的输出。因而,虽然机理不一定明确,但可以认为不是由于热的影响而是由于上述位错密度的差而可以得到在高电流下的发光输出的差。
另外,在改变发光波长和层结构的情况下、以及在设置荧光剂做成白色的情况下,得到的结果为在本发明例C中,在外加电流20mA下得到1.26lm,另外在外加电流50mA下得到3.15lm;并且在本发明例D中,在外加电流20mA下得到1.26ml,另外在外加电流50mA下得到1.89lm。即,能得到通过实验确认能得到低位错密度的效果的结果。
另外,在比较例E的情况下,由于如上述所说那样没有空间,因此不能安装和本发明例A、C、比较例B相同的直径100μm的电极。可以认为,即使缩小n型GaN层的露出部的尺寸和n电极、p焊盘电极的尺寸,可形成与本发明例C、D相同尺寸的n电极等,但是,虽然与大小有关,也会产生在电极部的发热、因在MQW的过大电流密度所导致的发热、p电极的开口率的难以确保这样的问题,不能得到本发明例C那样的光输出、进而不能得到本发明例D那样的光输出。
(实施例3)在本发明的实施例3中,对作为在上述本发明例C上实施非镜面加工的发光装置的本发明例F,对在发光层与安装部(引线框等)之间设置反射层的发光装置,验证光输出等性能。
(本发明例F)参照图20,在作为光放出面的GaN基板的背面(N面)以及侧面和层叠结构的侧面实施非镜面处理。即,将GaN基板的N面以及元件端面做成非镜面。为了做比较,在图21中表示了光从镜面的发光元件10放出的图解。
做成非镜面的方法有RIE等通过干刻或湿刻的方法、机械地研磨的方法等,但在本发明中,采用了作为蚀刻剂使用KOH水溶液的湿刻方法。在本发明例F中,在将温度保持在40℃的状态下将浓度4mol/1(mol/dm3)的KOH水溶液充分搅拌后,将晶圆浸泡在超音波洗涤机内30分钟,将GaN基板的N面以及元件端面做成非镜面。
(实施例4)在本发明的实施例4中,调查在本发明例C的引线框和发光元件之间设置反射层的影响。
(本发明例G)本发明例G,如图22所示,其特征在于在p电极之下配置高反射膜35。P电极12,在成膜时,在p型GaN层6之上,按厚度4nm的Ni、厚度4nm的Au和厚度100nm的Ag的顺序成膜,形成3层的层叠膜(安装的时候,由于是p向下安装,因此上下颠倒)。通过将其在惰性气体环境中进行加热处理,使接触阻力成为5E-4Ω·cm2。
另外,在上述电极的3层膜中,将厚度4nm的Ni膜和厚度4nm的Au膜安装在玻璃板上进行相同的热处理后测定透过率。当从Ni侧照射波长450nm的入射光时,其透过率为70%。另外,将厚度100nm的Ag膜安装在玻璃板上测定反射率。当照射波长450nm的入射光时,其反射率为88%。于是,将厚度4nm的Ni膜、厚度4nm的Au膜和厚度100nm的Ag膜按顺序层叠在玻璃板之上形成3层结构,在进行上述的热处理后测定反射率。当照射波长450nm的入射光时,反射率为44%。这与波长450nm的入射光以透过率70%透过4nm厚的Ni膜和4nm厚的Au膜之后、在Ag层以88%的反射率反射,再次以透过率70%透过4nm厚的Ni和4nm厚的Au膜而算出的反射率非常一致。
(本发明例H)本发明例H,与图22中所示的本发明例G的发光元件同样地,特征点在于在p电极的下方配置高反射膜。P电极12,将4nm厚的Ni膜、4nm厚的Au膜、100nm厚的Al膜和100nm厚的Au膜,按顺序整面成膜在p型GaN层6上后形成。通过将其在惰性气体环境中进行加热处理,使接触阻力成为5E-4Ω·cm2。
在上述层叠膜中,将4nm厚的Ni膜和4nm厚的Au膜安装在玻璃板上进行相同的热处理后测定透过率。其结果,是相对于来自于Ni侧的450nm的入射光,得到70%的透过率。进而,将100nm厚的Al膜安装在玻璃板上测定反射率的结果,是相对于450nm的入射光得到84%。于是,在玻璃板上形成按4nm厚的Ni膜、4nm厚的Au膜、100nm厚的Al膜的顺序成膜的层叠结构。之后,进行与上述相同的热处理后测定反射率。其结果是,相对于450nm的入射光得到42%的反射率。这与波长450nm的入射光以70%的透过率透过4nm后的Ni膜和4nm后的Au膜后、在Al膜以42%的反射率反射,再次以70%的透过率透过4nm厚的Ni膜和4nm厚的Au膜而算出的反射率非常一致。
(本发明例I)本发明例I,特征点在于在本发明例C的p电极上使用高反射率的材料Rh(参照图23)。p电极12,通过当成膜时在GaN层6之上,将相对于该p型GaN层欧姆接触并且高反射率的Rh以100nm厚度整面成膜来形成。接触阻力是5E-4Ω·cm2。
将该p电极的Rh膜在玻璃板上成膜后测定透过率的结果,是相对于450nm的入射光、透过率为60%。
(实验内容以及其结果)与实施例1-2同样地,对各试验体进测定光输出的结果是,本发明例F、G、H、I,分别在外加20mA时得到8.1mW、8.4mW、8.4mW、9.1mW的蓝色光。在没有配置反射材料的本发明例C中,是7mW。另外,在配置荧光剂放出白色光的情况下,分别在外加20mA时得到1.45lm、1.51lm、1.51lm、1.64lm的亮度。在没有配置反射材料的本发明例C中,是1.26lm。
根据上述的结果,将表面非镜面化的本发明例F、在p电极的下方具有高反射膜的本发明例G、H以及p电极使用高反射材料的本发明例I,都能够得到比发明例C更高的光输出。
不用说非镜面化即便在改变了发光波长的情况下也具有同样的效果。再者,通过实验明确了在使用KOH水溶液的情况下,如果在浓度为0.1~8mol/l(mol/dm3)、温度为20~80℃的范围内进行,也能得到同样的效果。
在反射电极的情况下,在改变发光波长的情况下,由于在Ag层和Al层的反射率和在Au以及Ni层的吸收率改变而效果的程度不能一概而论,但无论多长的光波都是有效果这是不言而喻的。另外,代替Rh使用具有同等以上的功函数并具有同等以上的反射率的元素,也可以得到同等以上的效果。
(实施例5)在本发明的实施例5中,使用使氮化物半导体基板发生各种变化,并将厚度变薄的GaN基板以及AlxGa1-xN基板来验证氮化物半导体基板的影响。另外,为了调查厚度较薄、横向细长的侧视型LED灯的特性,讨论将厚度变薄的GaN基板的光放出面的形状的影响。
(本发明例J)在本发明例J中,特征点在于将GaN基板的厚度变薄。另外,如之后所说明那样,对光放出面的形状,除了正方形的以外,还调查了包括加工成细长形的情况。
(1)使用从C面错开0.5°的GaN的偏离基板。设成电阻率0.01Ω·cm、位错密度1E7/cm2、基板厚度100μm。
(2)用MOCVD法在GaN基板的Ga面上,依次成长由GaN缓冲层、Si掺杂n型GaN层、Si掺杂n型包层Al0.2Ga0.8N层、GaN和In0.05Ga0.95N构成的3组MQW层、Mg掺杂p型包层Al0.2Ga0.8N层、Mg掺杂p型GaN层。
(3)通过比较发光波长380nm、低温4.2K下的PL强度和室温298K下的PL强度而方便地算出的内部量子效率是50%。
(4)-(7)进行与发明例C相同的处理。
(8)为了成为规定的形状而进行划线,并使芯片化的部分成为发光元件。发光元件,如图24A以及图24B所示,光放出面,即基板1的背面1a制作成边长250μm的正方形和250μm×1mm的长方形。MQW发光部的面积与从上述基板去除元件分离槽后的部分相同,分别变为0.051mm2(边长225μm的正方形以及0.22mm2(225μm×975μm))。由于n电极的直径为100μm,因此没有被光取出面(光放出面)的n电极覆盖的部分的比例(开口率)分别是85%以及96%。
(侧视型LED)
(9)将该发光元件以从n层侧取出光的方式p在下地安装在具有反射镜的引线框的中心部上(参照图25以及图26)。n电极处于发光元件的中心,另外,由于没必要将p电极设在相同的上侧,因此即便考虑到用于引线接合的空间,也可以将安装后的侧视型LED灯的厚度变薄,可以将厚度S设为0.425mm。图26是表示搭载了形成在250μm×1mm的细长面的基板上的发光元件的侧视型LED灯的图。
(10)另外,在搭载时,为了使来自于发光元件的散热性良好,以发光元件的GaN基板与安装部整面接触的方式使用高热传导性粘接剂来搭载。粘接剂选择热传导良好的Ag系材料,另外,引线框也选择热传导良好的CuW系的材料。由此,所能得到的热阻是9℃/W。
(11)进而,在该n电极侧搭载荧光剂后用环氧树脂进行树脂密封,制作发白色光的灯。对此使用每380nm的光输出1W能得到180lm的荧光剂。
(本发明例K)在本发明例K中,其特征在于,在氮化物半导体基板上使用AlxGa1-xN基板。
(1)使用从C面错开0.5°的AlxGa1-xN的偏离基板。使用电阻率0.01Ω·cm、位错密度1E7/cm2、基板厚度100μm的基板。制作基板的Al组成是x=0.2、0.5、1的3种。
(2)~(11)进行与发明例J同样的处理。
(比较例L)(1)使用从C面错开0.5°的GaN的偏离基板。使用电阻率0.01Ω·cm、位错密度1E7/cm2、基板厚度1mm(1000μm)的基板。
(2)~(11)进行与发明例J同样的处理。再者,在本比较例L中,由于像本发明例J的那样划线后进行断开再进行芯片化的做法较困难,因此通过切断来芯片化。
(实验内容以及其结果)首先,准备基板厚度比上述实施例1-3的基板薄的本发明例J(GaN基板100μm厚)以及本发明例K(AlxGa1-xN;x=0.2、0.5、1.0)和非常厚的比较例L(GaN基板1000μm厚)的各个的基板,如图27A以及图27B所示那样测定相对于波长380nm的入射光的透过率。对于本发明例J以及K,对光放出面为边长250μm的正方形和250μm×1mm的长形这2种进行测定。其结果,如图28所示,分别是本发明例J为70%(光放出面的形状2种都相同),本发明例K为90%(光放出面的形状2种都相同,并且x=0.2、0.5、1.0这3种全都相同)以及比较例L为10%。
于是,在将不搭载荧光剂而只进行了树脂密封的例子、搭载了荧光剂然后使之白色化的本发明例J、本发明例K和比较例L搭载在积分球内之后,外加规定的电流,被聚光并进行从检测器输出的光输出值的比较以及亮度的比较。
当施加了电流20mA时,按本发明例J、本发明例K、以及比较例L的顺序,能得到4.2mW(亮度0.76lm;发光元件的尺寸2种都相同)、5.4mW(亮度0.97lm;发光元件的形状2种都相同,并且x的3种全都相同)以及0.6mW(亮度0.11lm)的输出。另外,当外加电流240mA时,对于本发明例J以及K,发光元件的尺寸为边长250μm正方形的发光装置(电流密度474A/cm2),因热的影响随着时间光输出变小,没能得到电流相应的光输出。可是,250μm×imm的发光装置在本发明例J中,得到了20mA施加时的12倍的50mW(9.1lm),另外在本发明例K中,还是得到了20mA施加时的12倍的64mW(11.6lm)。
在上述的结果中,20mA施加时的光输出的差是因基板的透过率的差而产生的。在GaN基板的情况下,由于在比波长400nm短的波长区域中光的透过率极小,因此在波长区域比400nm短的波长的情况下,通过如本发明例K那样将基板设为AlxGa1-xN基板,就可以得到更高的光的取出。另外,通过将GaN基板变薄,也可以得到较高的光的取出。可是,从在n型层使电流均匀地扩展的观点来看,厚度过薄就有得不到均匀的发光从而得不到充分的输出,或光局部地集中从而使树脂局部劣化的情况。另一方面,由于如果过厚就如前述那样取出效率变差,因此虽然与发光波长有关,但厚度最好是50μm~500μm。例如,在如250μm×1mm芯片那样接近1mm且想要均匀地将电流扩展的情况下,将厚度设为50~100μm是更理想的,这已由之前的实验证明了。
另外,通过如本发明例那样使用GaN基板的厚度较薄的基板,可以降低GaN基板的制造成本,能制造更低成本的发光元件。其结果,显然无论发光波长如何都能低成本化。进而,例如通过像本发明例的250μm×1mm那样将芯片的光放出面做成长方形,可以在将侧视型LED灯的厚度S变薄到0.425mm的状态下扩大面积,并得到与面积相对应的高输出。长方向侧的尺寸如前述那样,显然越是以电流在n型层上均匀地扩展的方式将基板的厚度变厚,就越是能够将尺寸加长。
(实施例6)本发明的实施例6的发光元件,以掌握GaN基板的氧浓度和电阻率以及光的透过率的关系为基础。在根据该关系以p为下的方式安装、即以GaN基板为光放出面的发光元件中,其特征点在于在规定的光放出面积的情况下,建立最适合的GaN基板厚度和氧浓度的关系。如果是上述那样的p为下安装,则光放出面变为GaN基板,因此如以下所表示的那样,对电阻率和光透过率有较大影响的氧浓度特别重要。
根据图29,电阻率0.5Ω·cm或其以下,可通过使氧浓度到1E17个/cm3以上来实现。另外,根据图30,可知当氧浓度超过2E19个/cm3时波长450nm的光的透过率急剧下降。由图29和图30可知,氧浓度的增大在使GaN基板的电阻率减少、扩大发光面的方面是有效的,但也使光的透过率降低。因而,作为使用在p向下安装的发光元件上的GaN基板,如何设定氧浓度、GaN基板的厚度、发光的平面尺寸变得非常重要。
参照图31,对灯的光输出来说,厚度越厚,另外氧浓度越高,光输出就越具有降低的倾向。另外,对电流均匀地流动的最大的平面尺寸来说,厚度越厚,另外氧浓度越高,就越具有变大的倾向。
根据图31,例如,如果在电流均匀地流动的平面尺寸为一边0.5mm(一边1mm)的正方形的情况下,在作为光输出在以发明例C的大小施加20mA时得到相当于7mW或其以上的输出的时候,在厚度50μm的GaN基板上将氧浓度设为3E18个/cm3以上(在一边1mm正方形上7E18个/cm3或其以上),则以本发明例C的大小施加20mA时就确保了7mW或其以上的光输出,从而就能够得到均匀的发光。即,在使本发明例C的发光层的大小为一边200μm的正方形时的20mA施加和电流密度相一致的情况下,在一边0.5mm(一边1mm)的正方形上相当于施加125mA(500mA),在施加125mA(500mA)时,可与外加电流成比例地确保44mW(175mW)或其以上的光输出,其结果是能够得到均匀的发光。
另外,在厚度200μm的GaN基板上,在与上述厚度50μm的情况相同目标性能的时候,只要在一边0.5mm正方形上设为1E18个/cm3或其以上(在一边1mm正方形的情况下,氧浓度2E18个/cm3或其以上)即可。可是,在厚度200μm上如果不将氧浓度设为1E19个/cm3或其以下,在本发明例C的大小下施加20mA时就不能得到相当于7mW或其以上的光输出。
进而,在厚度400μm的GaN基板上,与电流均匀地在一边0.5mm正方形上流动的氧浓度5E17个/cm3或其以上相比,无论任何氧浓度在本发明例C的大小下都达不到施加20mA时相当于7mW或其以上。可是,如果氧浓度是1E19个/cm3或其以下,则在本发明例C的大小下在施加20mA时可以确保相当于6mW或其以上,并没有光输出变得极小的情况,且能够得到均匀的发光。
另外,根据图31可知,在GaN基板的厚度在100μm~300μm的情况下,在一边0.5mm的正方形上均匀地通入电流,在本发明例C的大小下施加20mA时能够得到相当于7mW或其以上的输出的氧浓度范围在实际应用上足够宽。在厚度为100μm时,可知氧浓度在比2E18个/cm3高、且比2E19个/cm3低的氧浓度下是能够实现的。另外在厚度为300μm时,在比6E17个/cm3高且比5E18个低的氧浓度下是能够实现的。
同样地,根据图31可知,对于在GaN基板的厚度为200μm~300μm的情况下,在一边2mm的正方形上均匀地通入电流,在本发明例C的大小下施加20mA时能够得到相当于7mW或其以上的输出的氧浓度范围,在实际应用上是足够宽的。
下面,对具体的实施例进行说明。在实施例中采用了如下的试验体。
(本发明例S1)使用了根据1E19个/cm3氧浓度而被n型化的厚度为200μm的GaN基板。该GaN基板的电阻率为0.007Ω·cm,相对于波长450nm的光的透过率为85%。在利用上述GaN基板组装成发光元件之际,除了上述以外的部分采用了与既已说明的本发明例C相同的条件。即,GaN基板的平面尺寸,光放出面取为一边的长度为0.2mm的正方形(参照实施例2的(1)),(a2)以MOCVD在作为GaN基板的第1主面的Ga面上形成如下的层叠结构,即,具有“Si掺杂n型GaN层/包层的Si掺杂n型Al0.2Ga0.8N层/将GaN层和In0.15Ga0.85N层的双层结构重叠3层所得到的MQW/包层的Mg掺杂p型Al0.2Ga0.8N层/Mg掺杂p型GaN层”的层叠结构。
(比较例T1)使用了厚度400μm、且根据氧浓度5E19个/cm3而被n型化的GaN基板。该GaN基板的电阻率为0.002Ω·cm,相对于波长450nm的光的透过率为35%。除了上述以外的条件,与本发明例S1相同。
(比较例T2)使用了厚度400μm、且根据氧浓度2E16个/cm3而被n型化的GaN基板。该GaN基板的电阻率为1.0Ω·cm,相对于波长450nm的光的透过率为90%。除了上述以外的条件,与本发明例S1相同。
(试验及其结果)当组装上述试验体的p向下安装的发光元件后、施加20mA的电流时,结果在本发明例S1中能够得到7mW的光输出。与其相比,在比较例T1中只能得到2.9mW的光输出,在比较例T2中只能得到5mW的光输出。比较例T1的2.9mW这样的光输出,能够称为与该GaN基板的透过率相对应的输出。对于比较例T2,观察从作为发光面的GaN基板的第2主面侧发光的状态,然后确认了在面内发光的强弱。即,在n电极的周围,发光强度非常强,随着远离n电极而发光强度急剧变弱。这是因为GaN基板的电阻率大,经由n电极的电流不能充分地扩展到发光元件的面内的缘故。因此,发光仅在电流集中的p电极周围产生。其结果是,比较例T2的发光元件整体的发光输出,比本发明例S1差。
(实施例7)本发明的实施例7,其特征点在于对p向下安装的发光元件中的GaN基板内的位错束的密度进行限定而提高了光输出。在GaN基板的形成时,为了提高大部分区域的结晶性,使不可避免地发生的位错集中、并使位错束以离散的方式分布,从而提高其间的大部分区域的GaN基板的结晶性。在p向下安装的发光元件中,可以推定出如下的事实若为了将GaN基板配置在光发出侧,位错束的密度超过规定值(位错束密度4E2个/cm2),则发光装置的制造成品率就会超过预定而受到急剧的影响。
上述GaN基板的位错束,如图32所示,也与p型GaN层等外延膜的p型GaN层6相延续,作为芯61而表现在外延膜上。因此,位错束密度与芯密度几乎一致。该芯61,根据外延膜的成膜条件,会成为如图33所示的孔状凹部。在以GaN基板位放出面的p向下安装发光装置中,对制造成品率会有巨大的影响。
所利用的试验体如下。
(本发明例S2)使用了位错束平均每500μm×500μm分布1个的GaN基板。其与位错束密度4E6个/m2(4E2个/cm2)的密度相对应。其它的条件与本发明例S1相同。
(比较例T3)在比较例中使用了位错束每10μm×10μm分布1个的GaN基板。其与位错束密度1E10个/m2(1E6个/cm2)的密度相对应。其它的条件与本发明例S2相同。
(试验及其结果)将上述GaN基板按实际生产基础分别组装在多个发光元件上。向各试验体外加20mA的电流,调查光输出能够在7mW或其以上的成品率。其结果是,在本发明例S2中成品率为97%,而在比较例T3中成品率为75%。即,只要位错束密度在4E6个/m2或其以下,就能够达到可实施制造的成品率,但若超过上述密度,则实际上在商业基础上已不可能再继续制造。
拆解作为光输出不足7mW的器件的发光元件,取出芯片来进行调查。若将取出的芯片以适当的酸溶液除去电极,从p型半导体侧观察,则会观察到有多个例子是在GaN基板的位错束所在的部位没有形成外延成长层。在位错束所在的部位,观察到了直径1μm左右的孔状凹部。上述孔状凹部,在光输出为7mW或其以上的产品中没有发现。
另外,对于上述的试验体,在形成了两电极的步骤,在施加20mA的电流后,含有上述孔状凹部的发光元件,驱动电压均不足1V。这可以认为是因为电极中含有孔状凹部,p电极侧与n电极侧的层相互电短路,其结果导致电流扩展到活性层整体而不能供给充足的量,所以导致光输出较低。
因为成品率与位错束密度有关,所以,芯片尺寸越大则成品率越差。在比较例T3中,因为光放出面为边长200μm的正方形,所以成品率停留在75%,而若为边长400μm的正方形则成品率低至50%左右,这是根据发明人的试验证实了的。
(实施例8)(实施例8-1)本发明的实施例8-1的特征点在于在GaN层和n型AlGaN包层3之间配置有n型AlGaN缓冲层和n型GaN缓冲层。通常,在基板上有翘曲,而在GaN基板上翘曲尤其严重。这是因为在GaN基板上,偏离角也如图34所示,在基板面内变动较大。参照图34,若在该GaN基板上形成外延膜再按发光元件分成逐个片,将GaN基板作为光放出面(上侧)而对光输出进行测定,则在位于角部并形成在偏离角小至0.05°的水平的区域R1以及偏离角大至1.5°的区域R2上的发光装置,相对于20mA的外加电流不能得到8mW或其以上的光输出。这是因在GaN基板上形成的外延膜的结晶性不良而引起的。因此,如图35所示,进行如下的试验在GaN基板和AlGaN包层3之间,配置具有两者中间的晶格常数的n型AlGaN缓冲层71、和n型GaN缓冲层2,缓和晶格常数的不同。更具体而言,其特征在于,在上述位置上配置有n型AlGaN缓冲层71。
使用的试验体如下。
(本发明例S3)使用的GaN基板,如图34所示,在20mm×20mm的面内,自C面偏离的偏离角从0.05°的区域到1.5°的区域连续地变化。该GaN基板的电阻率为0.01Ω·cm,位错密度为1E7/cm2,厚度为400μm。利用这样的具有偏离角分布的GaN基板,按照实施例1的本发明例A的外延层制造工序,从上述20mm×20mm的基板的位置制造了发光元件。此时如图35所示,在GaN基板1和n型GaN缓冲层2之间配置有厚度50μm的Al0.15Ga0.85N缓冲层。
(比较例T4)GaN基板,使用了在20mm×20mm的面内、自C面偏离的偏离角从0.05°的区域向1.5°的区域连续地变化的基板。该GaN基板的电阻率为0.01Ω·cm,位错密度为1E7/cm2,厚度为400μm。按照实施例1的本发明例A的外延层制造工序,根据各位置制造多个发光元件。在比较例T4中,与GaN基板1相接触地形成n型GaN层,在GaN基板和n型GaN层之间,没有配置Al0.15Ga0.85N缓冲层。
(试验及其结果)当在发光元件上施加20mA的电流时,在本发明例S3中,在20mm×20mm的GaN基板的包含上述区域R1、R2在内的0.05°~1.5°的区域中,能够得到8mW或其以上的光输出(参照图36)。但是在比较例T4中,仅是在偏离角度0.1°~1.0°的区域上形成的发光元件中,能得到8mW或其以下的光输出。在0.05°及1.5°的偏离角水平下则达不到8mW的光输出。这是因为在本发明例S3中,虽然使用了偏离角度较大地变动的GaN基板,但如上所述,通过配置Al0.15Ga0.85N缓冲层能够形成结晶性优异的缓冲层。
(实施例8-2)本发明的实施例8-2,其特征在于通过与实施例8-1同样地,在GaN基板和n型AlGaN包层3之间,配置n型AlGaN缓冲层和n型GaN缓和层,从而消除了实施例10那样的在GaN基板的位错束的部分上形成有外延膜时产生的图41所示的孔状凹部。
(本发明例S2-2)与比较例T3同样,使用了位错束每10μm×10μm分布有1个的直径2英寸的GaN基板。这与位错束密度1E6个/cm2的密度相对应。如图43所示,在GaN基板1和n型GaN缓冲层2之间配置了厚度50nm的Al0.15Ga0.85N缓冲层。其它的条件与本发明例S2相同。
(试验及其结果)在生成了外延层后,用微分干涉显微镜及SEM(扫描型电子显微镜)观察外延层侧的晶圆面内,但图41那样的孔状凹部一个都没有发现。将上述直径2英寸的GaN基板从外周除去边缘5mm左右,全部组装在发光元件上。将发光元件以每50个取1个的比例取样,施加20mA的电流,调查能够得到8mW或其以上的光输出的成品率。成品率为100%。
(实施例9)本发明的实施例9,其特征在于在MQW4/p型AlGaN缓冲层5/p型GaN层6的外侧配置提高导电性的p型AlGaN层,作为配置在下侧的p电极,仅将反射率高的Ag电极层配置在整个面上。因此,没有设置考虑功函数(仕事関数)等的其它的金属电极。通过该结构,在下侧底部具有高反射率,因此,在使用了其它的金属电极的情况下产生的光的吸收减小,能够提高光放出效率。
试验体如下。
(本发明例S4(参照图37))与本发明例C中的外延层叠结构同样地,在作为GaN基板的第1主面的Ga面上具有如下的层叠结构(/MQW4/包层的Mg掺杂p型Al0.2Ga0.8N层5/Mg掺杂p型GaN层6/厚度5nm的Mg掺杂InGaN层72)。
在上述的层叠结构中,其特征点在于与Mg掺杂p型GaN层6相接触地具有厚度5nm的Mg掺杂InGaN层72。进而,在本发明例S4中,作为配置在下侧的p电极不形成Ni/Au电极层,而取而代之形成厚度100nm的Ag层73。
(比较例T5)作为配置在下侧的p电极,与Ni/Au电极层相接触地进一步配置了厚度100nm的Ag电极层。
(试验及其结果)在本发明例S4中,因为与p型GaN层6相接触地具有p型InGaN层72,所以接受级降低。因此,载流浓度增加,即使将功函数不那么大的Ag反射膜73作为p电极而与p型InGaN层72相接触地配置,Ag反射膜73和p型InGaN层72的接触电阻也不会变得那么大。虽然对本发明例的发光元件的驱动电压和比较例T5的发光元件的驱动电压进行了比较,但差不足0.05V,不能够认为是有意义的差。
在本发明例S4中,当施加了20mA的电流时能够得到10.1mW的光输出,与此相比,在比较例T5中是8.4mW。另外,对与本发明例A相同的(GaN基板+外延层叠结构)进行p向下安装所得到的灯的光输出为7mW。
如上所述,之所以在本发明例S4中能够得到较大的光输出,是因为从发光层射向p半导体层侧的光,因为没有Ni/Au电极层而不会被Ni/Au电极层吸收,能够被反射率88%的Ag层反射的缘故。另一方面,在比较例T5中,p电极层中的光的反射率低到=由Ni/Au进行的吸收70%×Ag反射率×再吸收70%=44%。其结果是,在本发明例S4中,能够取出到外部的光输出,达到比较例T5的1.2倍。
另外,在本实施例中,虽然对p电极使用了Ag膜,但除此以外,只要反射率高且与p型InGaN 层72的接触电阻不那么高,使用什么样的材料都可以,例如可以使用Al、Rh。
(实施例10)在本发明的实施例10中,其特征在于通过将配置在下侧的p电极,以离散地配置与p型GaN层的接触电阻小的Ni/Au层、并填埋其间隙地覆盖Ag膜的方式形成,从而提高光输出。参照图38及图39,在外延层的下侧底面上,以规定的间距离散地配置有Ni/Au电极层12a。进而以将其间填埋,覆盖外延层的下侧底面及Ni/Au电极层12a地配置Ag层73。
另外,离散的Ni/Au电极层12a的典型的间距为3μm。间距3μm,是以根据在通常的p型GaN层及p型AlGaN包层中、其电阻率使电流扩展的范围的直径尽可能为6μm而决定的。即,通过将间距设为3μm,电流可从一个离散电极送达相邻的离散电极。为了使电流遍及电极层以不会遗漏的方式流动,最好将间距设为3μm或其以下,但若将间距设定得太小,则就会因离散配置的Ni/Au电极层导致光的有效取出量降低。
例如,在离散地配置的Ni/Au电极的面积率为20%时,如果是如38即图39所示的p电极的构造,则光的反射率(计算)=反射率88%×面积率80%+反射率40%×面积率20%=78%(计算)。以本试算为基础实际地制作上述构造的p电极,测定光输出。试验体如下。
(本发明例S5)按照与实施例2的本发明例C相同的制造工序,制造外延层叠结构,但在p电极的制造工序中,与p型GaN层相接触地形成厚度4nm的Ni层,在其上全面地形成厚度4nm的Au层。接着,带着抗蚀剂掩模进行图案形成,形成离散地分布的Ni/Au电极(参照图38及图39)。接着,在惰性气体环境中进行加热处理,将接触电阻设为5E-4Ω·cm2。然后,以将Ni/Au电极的间隙填埋,并且覆盖Ni/Au电极地在整个面上形成Ag层,制成反射电极。离散地配置的Ni/Au的在p型GaN层上的占有率设为20%,Ag的占有率设为80%。另外,Ni/Au电极层12的间距设为3μm(参照图40)。
(比较例T6)按照与实施例2的本发明例C相同的制造工序在GaN基板上形成层叠结构。但p电极,与p型GaN层相接触地在整个面上配置Ni/Au层,进行热处理。接着,与本发明例C的结构不同,进一步与Ni/Au层相接触地在整个面上形成Ag层(参照图41)。
为了比较,对本发明例C的发光元件,在图42中表示向下侧的光的反射状况。
(试验及其结果)对如上那样制造的各发光元件外加电流20mA,测定光输出。在本发明例S5中得到了10.1mW的光输出,但在比较例T6中为8.4mW。另外,从活性层向安装侧(下侧)的光之中,由p电极反射而从出射面设成的比率,在本发明例中达到86%(参照图40)。与此相对,在比较例T6中为67%(图41)。另一方面,本发明例C的发光元件中的上述比率为40%(图42)。
在本发明例S5中,向下侧的光,通过p电极的占有80%的Ag,该80%的部分被以88%的反射率反射,另外,通过p电极的占有20%的Ni/Au层,该20%的部分被以超过40%的反射率(并非单纯地为反射率40%)反射。其结果是,在本发明例S5中,上述的比率为86%。在比较例T6中,通过位于Ni/Au层的下侧的Ag层被进一步反射,因为有该反射部分所以比本发明例C比率更大。
另外,显然比较例T6的最宽的内容也属于本发明例。只是为了说明本实施例而简易地称为比较例。
上述的Ni/Au电极层,也可以由Pt电极层或Pd电极层置换。另外,反射电极Ag层,也可以由Pt层或Rh层置换。
同样地,在Ni/Au电极的面积率为10%、施加20mA时的光输出为10.3mW,在Ni/Au电极的面积率为40%时、施加20mA时的光输出为9.3mW,则与该面积率相对应地能够得到比比较例T6大的光输出,但在Ni/Au电极的面积率为不足10%的2%时的光输出,只能得到与比较例T6相同的8.4mW,存在有在Ni/Au电极的周围的发光极强这样的不均,这一点已由本发明人进行的试验予以证实。
(实施例11)本发明的实施例11,其特征在于从GaN基板中除去在外延层传播地并行的多个板状结晶反转区域,每个该板状结晶反转区域的间隙区域配置有被配置于下侧的p电极。在GaN基板上,沿GaN基板的厚度方向并行地分布而呈带状地表现在GaN基板的主面上,该结晶反转区域在外延层2、3、4、5、6中传播。图43、图44中表示的板状结晶反转区域在主面上被配置成晶格状。
在本实施例中,其特征在于将上述外延层中的结晶反转区域完全除去,另外将GaN基板的结晶反转区域除去直至达到第1主面侧的规定深度,将各外延层隔开,在每一被隔开的外延层设置p电极(参照图45)。板状结晶反转区域,如图43所示,板状结晶反转区域可以从在主面上交叉的晶格状结晶反转区域形成,还可以是如后面所说明的那样在主面上沿一定方向对齐分布的并行配置。板状结晶反转区域,是位错高密度地聚集的区域。虽然与图32所示的位错束或芯61相类似,但与位错束为带状或粗的某种线状相对,板状结晶反转区域51,具有厚度而配置成面状。
(本发明例S6)在图43、图44所示的GaN基板中,外延层侧的第1主表面,面方位为(0001)面、即c面。处于与该第1主表面面对称的关系的结晶反转区域,为(000-1)面,即-c面。c轴反转成长,在c面中,表面为排列有Ga原子的Ga面,在结晶反转区域中,其表面为排列有N原子的N面。在本发明例S6中,使用了在第1主表面上以每100μm间隔呈晶格状地排列有宽度30μm的结晶反转区域的GaN基板。结晶反转区域,向形成在GaN基板上的外延膜传播。
利用上述GaN基板,以与本发明例C中的层叠结构相同的制造方法形成本发明例S6的层叠结构。在形成p电极的工序中,在p型GaN层上如图44所示的那样利用仅覆盖传播的结晶反转区域的掩模图案,在仅在掩模间隙的c面的区域上形成了p电极层之后,去除掩模图案。
接着,将在上述GaN基板的第2主面(背面)整个面上覆盖了掩模的半导体基板,保持在8N(规定)80℃的KOH中,将第1主面侧的结晶反转区域经由p型GaN层等外延层蚀刻除去直到GaN基板之中,从而设置了槽52。因为板状结晶反转区域51为位错密度高的位错密集部,所以由KOH进行的蚀刻比较容易。GaN基板内的蚀刻深度,达到从外延层和GaN基板的临界面向GaN基板侧进入150μm的位置。然后除去掩模,以填埋槽52的方式堆积绝缘膜(图45)。
(试验及其结果)将上述的本发明例S6组装成发光元件,当施加20mA的电流时,能够得到8.4mW的光输出。这是本发明例C的发光元件的光输出7mW的1.2倍。
如上述那样,在本发明例S6中,呈晶格状地配列有板状结晶反转区域,但板状结晶反转区域并非必须是晶格状,如图46及图47所示,也可以是在GaN基板的主面上只是沿一定方向并排地配置的板状结晶反转区域。另外即便在使用了规则地存在有点状(实际上为面或小圆点)的结晶反转区域的基板的情况下,也能够与蚀刻孔的大小、深度相对应地与发明例S6同样得到比本发明例C更大的光输出。
(实施例12)在本发明的实施例12中,如图48所示,其特征在于在半导体芯片的上方,与GaN基板1相面对地配置荧光板46,而后由树脂15密封。与p向下安装中的成为放射面的GaN基板相面对地配置有荧光板的结构是新颖的。所用的试验体是图48所示的本发明例S7、S8及比较例T7。
(本发明例S7)本发明例S7,基本上是在形成外延层叠结构的步骤,进行与在本发明例C中相对应的处理相同的处理。然后以成为规定的形状的方式进行划线,将芯片化后的制品制成发光装置。所得到的发光装置为边长225μm的正方形。如图48所示,在p向下搭载的芯片之上与GaN基板1背面相面对地配置荧光板46,用环氧树脂15密封而制成白色发光装置。
上述的荧光板46,以如下的制造方法制成。通过卤素输送法制作扩散有I(碘)的块状的ZnSSe结晶,将该块状ZnSSe结晶在Zn、Cu气氛中加热,由此使Cu扩散到ZnSSe内部。接着,将该块状ZnSSe结晶用较粗的研磨盘研磨到厚度为0.5mm,然后切割成可收容在引线框中的形状。由上述的方法制作成的荧光板的表面及背面的粗糙度,Rmax=1μm。
(本发明例S8)在本发明例S8中,在上述荧光板46的与GaN基板相面对的表面46a上形成凹凸(参照图49)。凹凸的高度设为2μm,凹凸的平均间距设为5μm。其他的结构与本发明例S7相同。
(比较例T7)如图50所示,在p向下搭载的芯片的上方与芯片相面对地配置有荧光板46,用环氧树脂15进行密封而制成白色发光装置。
(试验及试验结果)在向从上述的GaN基板组装而成的发光装置施加20mA电流时,所得到的发光的亮度如下所述。在本发明例S7中为1.39lm,在本发明例S8中为1.51lm,均能够得到较高的亮度,另一方面,比较例T7的亮度为1.05lm。上述的结果显示,在p向下搭载中与GaN基板相面对地配置荧光板的,能够确保得到比在p向上搭载中配置荧光板时高的亮度,且判明,通过使荧光板的与GaN基板相面对的表面粗糙化能够进一步提高亮度。
下面,虽然有与上述的实施例重复的部分,但罗列地列举本发明的实施例而进行说明。
上述的GaN基板通过氧掺杂而被n型化,可以设定为氧浓度在氧原子1E17个/cm3~2E19个/cm3的范围内,GaN基板的厚度为100μm~600μm。
如上所述,通过设定氧浓度在1E17个/cm3或其以上,能够提高GaN基板的电阻率,能够使从p电极导入的电流充分地扩展到GaN基板中,能够使活性层的宽度足够宽而使其进行发光。另外,通过设定氧浓度在2E19个/cm3或其以下,能够确保相对于波长450nm的光有60%或其以上的透过率,能够提高成为放射面的GaN基板的透过率,并确保光输出。上述的氧浓度范围,在p向下搭载的结构中,在GaN基板的厚度为100μm~600μm的情况下,能够尤其有效地发挥作用。
另外可以设定为,上述的氧浓度,处在氧原子2E18个/cm3~5E18个/cm3的范围内,上述GaN基板的厚度在100μm~300μm的范围内,上述第2主表面的放出光的面的矩形形状的面的两侧的边,在0.5mm或其以下的范围内。
根据这种结构,能够使其在发光面的全部区域上发光,并且能够得到充分的光输出。
另外也可以设定为,上述的氧浓度,在氧原子3E18个/cm3~5E18个/cm3的范围内,上述GaN基板的厚度在200μm~300μm的范围内,上述第2主表面的发出光的矩形形状的面的两侧的边在2mm或其以下的范围内,上述第2主表面的放出光的面的矩形的面的两侧的边在0.5mm或其以下的范围内。
根据该构成,即便在将芯片尺寸放大到最大边长2mm的正方形的情况下,也可以使发光面的整个区域发光,并得到充分的光输出。
还可以使用位错束在GaN基板的第1主表面上以平均4E6个/cm2或其以下的密度分布的GaN基板,其中位错束是为了提高上述的GaN基板的大部分区域的结晶性而将在其形成时不可避免地生成的位错离散地、呈带状地集中化,然后使之沿基板厚度方向分布而成的。
根据该构成,可以用较高制造成品率来制造具有规定值或其的光输出的发光元件。
也可以设为上述的位错束在第1主表面上以平均4E2个/cm2或其以下的密度分布,第2主表面的放出光的面的短边在200μm~400μm的范围内。
当在上述那样的小型的发光元件中包含位错束的情况下,不能避免其特性劣化,直接导致成品率降低。通过如上述那样使位错束的密度降低,可使成品率降低停留在实用上能够允许的范围内。
另外,还可设为在上述的GaN基板和n型AlxGa1-xN层(0≤x≤1)之间,n型AlGaN缓冲层位于与GaN基板接触的位置,另外n型GaN缓冲层位于与该n型AlGaN缓冲层接触的位置,并且n型AlxGa1-xN层(0≤x≤1)位于与该n型GaN缓冲层相接触的位置。
在上述那样的异质外延层叠结构的情况下,也可以在GaN基板与作为活性层的包层的n型AlxGa1-xN层(0≤x≤1)之间,如上述那样配置n型AlGaN缓冲层和n型GaN缓冲层。
通过在上述那样的GaN基板与包层之间不仅加有n型GaN缓冲层还增加了n型AlGaN缓冲层,可形成结晶性良好的异质外延层叠结构。
尤其是上述的层叠结构最好在GaN基板中,具有偏离角为0.10°或其以下的区域和1.0°或其的区域的情况下使用。
根据该构成,即便在GaN基板翘曲,如上述那样偏离角变动的情况下,通过除了n型GaN层之外还配置n型AlGaN缓冲层,可得到结晶性良好的异质外延层叠结构。
还可具备与上述的p型AlxGa1-xN层(0≤x≤1)接触地位于下侧的p型GaN缓冲层,和位于与该p型GaN缓冲层相接触的位置上的p型InGaN接触层。
根据上述的构成,可在安装有p电极层的该下层上配置电传导度良好的p型InGaN接触层,并且作为p电极层最重视功函数地选择其材料的必要性减小。因此,例如可最重视反射率等来选择p电极的材料。
可将上述的p型InGaN接触层的Mg浓度设在Mg原子1E18个/cm3~1E21个/cm3的范围内。
根据上述的构成,可充分确保电传导度,可将导入到p电极的电流遍及外延膜的整体地扩展。
也可以设为与上述的p型InGaN接触层接触地具有由Ag层构成的p电极层的构成。
根据上述的构成,通过加大来自于搭载部即发光元件底部的反射率来减少被损失的光,可增大光输出。
还可以设为上述的GaN基板,具有遍及其厚度方向与该GaN基板面内连续地延伸的板状结晶反转区域,将该GaN基板内的板状结晶反转区域和在形成在GaN基板的上面的n型以及p型氮化物半导体层上传播的板状结晶反转区域,从p型氮化物半导体层侧经过n型氮化物半导体层到GaN基板内的位置除去,与除去之后剩下的p型氮化物半导体层相接触地在每个p型氮化物半导体层上设置p电极。
根据该构成,由于可增大光取出面,因此可使光输出提高。
还可具备与上述的p型氮化物半导体层接触并离散地配置在该p型氮化物半导体层的表面上的第1p电极,和由填充该第1p电极的间隙地覆盖p型氮化物半导体层和第1p电极的Ag构成的第2p电极。
根据该构成,不仅可将导入p电极的电流遍及整个面地充分扩展,还可提高反射率从而使光输出提高。
还可将上述的离散地配置的第1p电极的p型氮化物半导体层的表面的覆盖率设在10~40%的范围内。
根据该构成,不仅可确保电传导度,还可将导入的电流遍及面内地扩展。在上述覆盖率不到10%的情况下不能使电流没有遗漏地流过整个外延层。另外,当超过40%时,就不能无视其对于根据离散地配置的p电极层而实现的光的取出效率的不良影响。
还可以离开上述的氮化物半导体基板,与氮化物半导体基板的第2主表面相对的方式配置荧光板。
通过在构成p向下搭载的光放射部的氮化物半导体基板的正上方配置荧光板,可将在荧光板的背面反射回来的光在氮化物半导体表面再反射,从而面向荧光板侧。其结果,可提高光输出。
可在上述荧光板的与氮化物半导体基板的第2主表面相对的表面上进行凹凸化处理。
根据上述的构成,可进一步提高光的取出效率。
也可以用树脂密封上述的发光装置,并在发光装置的任意部分以及上述树脂的任意部分上含有荧光体,荧光体接受光然后发出荧光,将从树脂向外部放出的光变成白色光。
根据该构成,可很容易地得到具备本发明的上述优点、发白色光的装置。
另外,上述的位于上侧的1个电极,也可以是在俯视各层状态下位于发光装置的中央部。
根据上述的构成,可使进行引线接合的空间充足,并且在形成侧视型LED的情况下可将厚度变薄。
另外,还可将上述的发光装置以装入了该发光装置形成的侧视型LED灯的厚度变为0.5mm或其以下、或者0.4mm或其以下的方式构成。
其结果,可使例如包括便携电话的便携式信息终端等的显示装置小型化。
还可使上述的发光装置的耐静电压在3000V或其以上。
根据该构成,相当于来自于外部的脉冲电压可具有耐久性,并可稳定地维持高性能。另外,没必要设置从来自于外部的脉冲电压下保护发光装置的保护装置。即,尤其还可不具备用于针对加在上述的氮化物半导体基板与p型氮化物半导体层的一侧之间的过渡电压或静电放电来保护发光元件的保护电路。尤其可不具备包括用于处理上述过渡电压或静电放电的稳压二极管的电力分路电路。
另外,还可以是上述的发光装置通过施加4V或其以下的电压来发光。
通过使用电传导度高、即电阻小的氮化物半导体基板,能以较低电压外加来在发光时将足够的电流注入发光层,并使之发光。因此,由于搭载较少数量的电池就可以,因此可有助于装入了发光元件的照明装置的小型化、轻量化、低成本化。另外,在消耗电力的抑制方面也有效。
还可以是上述的氮化物半导体基板的厚度在50μm或其以上、500μm或其以下。
根据该构成,在从点状或小面积的n电极流出电子的情况下,电子随着从GaN基板或n型氮化物半导体基板的表面进入内部而逐渐扩展。因此,最好GaN基板或n型氮化物半导体基板较厚。在上述基板的厚度不到50μm并缩小n电极的面积的情况下,在到达量子势阱结构的活性层的时候没有充分扩展,在活性层上就产生不发光的部分或发光不充分的部分。通过使上述基板的厚度到50μm或其以上,即便因较低电阻而缩小n电极的面积,也可看见在上述基板内电流充分扩展,可将在活性层的发光部分充分扩大。更好的是使之达到75μm或其以上。但是,由于如果过厚就不能忽视被基板吸收的情况,因此要在500μm或其以下。进而,优选400μm或其以下,最好是300μm或其以下。
还可以是上述的上侧的电极不到占有率50%,而其开口率或透明部分在50%或其以上。
根据该构成,可提高来自于光放出面的光的放出效率。由于开口率越大被n电极吸收的光量越减少,因此可使光输出增大。因此,开口率最好在75%或其以上,更好的是在90%或其以上。
还可以使上述的上侧的面的至少一边在350μm或其以下。根据该构成,可使侧视型LED的高度小型化到0.5mm或其以下。
进而,还可使上述上侧的面的至少一边在250μm或其以下。根据该构成,可使侧视型LED的高度小型化到0.4mm或其以下。
还可将上述的上侧的面镶边,使相对的边都具有400μm或其以上的长度。
根据上述构成,可一定地保持矩形的相对的2边的间隔地使光放出面成为细长,其结果,可使面积增大,使光输出增大。
还可将上述的上侧的面镶边,使相对的边具有1.6mm或其以下的长度。
在将氮化物半导体基板的最小厚度设为50μm并将p安装向下时,为了从位于光放出面的中央的1个电极注入电流,然后使电流不仅沿着矩形的短边方向还遍及细长方向在发光层整面上蔓延,最好将细长方向的长度设为1.6mm或其以下。
还可以上述的热阻成为30℃/W或其以下的方式构成。
发光装置因温度上升而发光效率降低,另外,在发生温度过度上升的情况下,发光装置将受损伤。因此,在发光装置中,温度或热阻是重要的设计因素。以往,大约将热阻设在60℃/W(上述专利文献1)。但是,如上述那样,通过将热阻设定在30℃/W或其以下,即便充分进行向发光装置的电力投入,也不会明显产生发光效率的降低,另外也不会产生发光装置的损伤。上述那样的热阻减半,是如上述那样通过使用电阻率小的GaN基板而首次实现的。
进而,还可以将在连续发光状态下温度上升最高的部分的温度设在150℃或其以下。
根据该构成,将温度上升最高的部分,即发光层的温度设在150℃或其以下,可确保充分高的发光效率。进而与以往的发光元件比较,还可得到寿命的大幅延长。
还可将上述的n形氮化物半导体层的厚度设在3μm或其以下。
该n形氮化物半导体层是使之在氮化物半导体基板的上面外延成长的部分,如果过厚,在成膜处理时就需要很长时间,并且原料费用也增大。通过如上述那样将n形氮化物半导体层的厚度设在3μm或其以下,可得到很大的成本降低。进而最好设在2μm或其以下。
还可以将上述的p形氮化物半导体层向下安装,在作为光放出面的上述的氮化物半导体基板的第2主表面(背面)上,在电极没有覆盖的部分上实施非镜面处理。
根据该构成,可防止在第2主表面、即放出面上,在发光层发出的光通过全反射被封闭在上述基板内而导致的效率降低。不用说也可以在层叠结构的侧面实施非镜面处理。
还可以将实施上述的非镜面处理的表面设为用氢氧化钾(KOH)水溶液、氢氧化钠(NaOH)水溶液、氨(NH3)水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
通过上述的非镜面化处理只对GaN基板的N面进行处理而高效率地得到凹凸较大的表面。Ga面侧不被蚀刻。
还可将实施了上述的非镜面处理的表面设为用硫酸(H2SO4)水溶液、盐酸(HCl)水溶液、磷酸(H2PO4)水溶液、氟酸(HF)水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
另外,实施了上述的非镜面处理的表面还可以是用反应性离子蚀刻(Reactive Ion EtchingRIE)进行非镜面化的表面。由此,通过干式流程可得到面积的尺寸精度良好的非镜面。进而,即使通过干刻的RIE以及由碱性水溶液进行的湿刻中的任意一种,通过与光刻技术组合,都可得到规定的凹凸间隔。
配置在上述的安装侧的电极可以由反射率0.5或其以上的材质形成。
根据该构成,可以防止在安装面侧的光的吸收,并将在上述基板的第2主表面反射的光量增多。该反射率最好更高,最好在0.7或其以上。
还能以覆盖上述的氮化物半导体基板的第2主表面的方式配置荧光体。另外,还可使氮化物半导体基板上含有发荧光的杂质以及缺陷的至少一方。
根据上述的构成,可一起形成白色LED。
本发明的发光装置可包括2个或其以上的上述列举的任意一种发光装置的结构,并将这些发光装置的结构串联连接。
根据上述的构成,使用高电压电源,可得到将上述的高效率的发光装置在引线框等上搭载多个的照明部件。
另外,本发明的其他的发光装置可包括2个或其以上的上述的发光装置的机构,并将这些发光装置的结构并联连接。
根据上述的构成,使用高电流电源,可得到由上述的高效率的发光装置构成的照明部件。
还可采用包括本发明的其他的发光装置和用于使这些发光装置发光的电源电路,并在电源电路中,将并联连接2个或其以上的发光装置的2个或其以上的并联部串联连接的构成。
根据该构成,可一面满足各个发光装置的发光条件一面得到照明部件的容量与电源容量的匹配。再者,也可以在上述的电源电路中,在使照明装置的容量成为可变的情况下,具有并联串联切换部,从而可通过该并联串联切换部,切换施加在发光装置上的配线。
在上述内容中,虽然对本发明的实施形态进行了说明,但在上述公开的本发明的实施形态,终究只是示例,本发明的范围不限定于这些发明的实施形态。本发明的范围,通过权利要求的范围的记载展示,进而包括在与技术方案的范围的记载均等的意思以及范围内的全部的变化。
本发明的发光元件,通过使用导电性高的氮化物半导体基板,不论为p向下安装还是n向下安装(1)均可在光放出面上只设置1个电极,并可在组装侧视型LED的时候将厚度进一步变薄。另外,(2)通过使用上述导电性高的氮化物半导体基板并且将n向下安装,可得到小型化的发光元件。进而在将p向下安装的情况下,(3)放热性良好、没必要设置复杂的电极结构、可实现大输出的发光;(4)导电性良好、没必要设置用于针对过渡电压和静电放电保护发光元件的保护电路、大面积发光以及耐静电压良好;(5)由于从发光层到基板没有折射率从大到小的较大的不连续性,因此在从发光层到放出面之间很难产生全反射,因而不会产生因全反射而导致的效率降低和侧面部的树脂劣化;(6)由于该结构简单,因此制造容易且便宜,维护性也良好。因此,期待今后在包括便携电话等的便携式信息终端的照明部件上被广泛利用。
权利要求
1.一种发光装置(30),其中,具备电阻率0.5Ω·cm或其以下的氮化物半导体基板(1)、位于前述氮化物半导体基板(1)的第1主表面侧的n型氮化物半导体层(3)、从前述氮化物半导体基板(1)看位于比前述n型氮化物半导体层(3)更远的位置上的p型氮化物半导体层(5)和位于前述n型氮化物半导体层(3)以及p型氮化物半导体层(5)之间的发光层(4);将前述氮化物半导体基板(1)以及p型氮化物半导体层(5)的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极由1个构成。
2.如权利要求1所述的发光装置(30),其中,具备与前述p型氮化物半导体层(5)接触并离散地配置在该p型氮化物半导体层(5)的表面上的第1p电极(12a),和填充该第1p电极(12a)的间隙并覆盖前述p型氮化物半导体层(5)及前述第1p电极(12a)的由Ag、Al或Rh构成的第2p电极(73)。
3.如权利要求2所述的发光装置(30),其中,前述第1p电极(12a)的在前述p型氮化物半导体层(5)的表面的覆盖率,在10~40%的范围内。
4.如权利要求1所述的发光装置(30),其中,前述发光装置(30)被树脂(33)密封,在前述发光装置(30)的任意部分以及前述树脂(33)的任意部分上含有荧光体,前述荧光体接受前述光而发出荧光,并使从前述树脂(33)向外部放出的光成为白色光。
5.如权利要求1所述的发光装置(30),其中,位于前述上侧的1个电极,在俯视前述各层状态下,位于前述发光装置(30)的中央部。
6.如权利要求1所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.5mm或其以下的方式被构成。
7.如权利要求1所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.4mm或其以下的方式被构成。
8.如权利要求1所述的发光装置(30),其中,前述发光装置(30)的耐静电压为3000V或其以上。
9.如权利要求1所述的发光装置(30),其中,尤其不具备用于针对加在前述氮化物半导体基板(1)和前述p型氮化物半导体层(5)的一侧之间的过渡电压或静电放电来保护前述发光装置(30)的保护电路。
10.如权利要求9所述的发光装置(30),其中,不具备包含用于应对前述过渡电压或静电放电的稳压二极管的电力分路电路。
11.如权利要求1所述的发光装置(30),其中,前述发光装置(30)通过施加4V或其以下的电压来发光。
12.如权利要求1所述的发光装置(30),其中,前述氮化物半导体基板(1)的厚度在50μm或其以上、且500μm或其以下。
13.如权利要求1所述的发光装置(30),其中,前述上侧的电极占有率不到50%,其开口率或透明部分是50%或其以上。
14.如权利要求1所述的发光装置(30),其中,前述上侧的面的至少一边是350μm或其以下。
15.如权利要求14所述的发光装置(30),其中,将前述上侧的面镶边,相对的边都具有400μm或其以上的长度。
16.如权利要求14所述的发光装置(30),其中,将前述上侧的面镶边,相对的边具有1.6mm或其以下的长度。
17.如权利要求1所述的发光装置(30),其中,前述上侧的面的至少一边在250μm或其以下。
18.如权利要求1所述的发光装置(30),其中,以热阻成为30℃/W或其以下的方式构成。
19.如权利要求1所述的发光装置(30),其中,在连续发光状态下温度上升最高的部分的温度在150℃或其以下。
20.如权利要求1所述的发光装置(30),其中,前述n型氮化物半导体层(3)的厚度在3μm或其以下。
21.如权利要求1所述的发光装置(30),其中,向下安装前述p型氮化物半导体层(5),在作为光放出面的前述氮化物半导体基板(1)的第2主表面上,在前述电极没有覆盖的部分上实施非镜面处理。
22.如权利要求21所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用氢氧化钾即KOH水溶液、氢氧化钠即NaOH水溶液、氨即NH3水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
23.如权利要求21所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用硫酸即H2SO4水溶液、盐酸即HCl水溶液、磷酸即H2PO4水溶液、氟酸即HF水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
24.如权利要求21所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用反应性离子蚀刻进行非镜面化处理后的表面。
25.如权利要求1所述的发光装置(30),其中,配置在前述安装侧的电极由反射率0.5或其以上的材质形成。
26.如权利要求1所述的发光装置(30),其中,以覆盖前述氮化物半导体基板(1)的第2主表面的方式配置荧光体。
27.如权利要求1所述的发光装置(30),其中,以从前述氮化物半导体基板(1)离开并与前述氮化物半导体基板(1)的第2主表面相对的方式配置荧光板(46)。
28.如权利要求1所述的发光装置(30),其中,将前述荧光板(46)的与前述氮化物半导体基板(1)的第2主表面相对的表面进行凹凸化处理。
29.如权利要求1所述的发光装置(30),其中,前述氮化物半导体基板(1)包含有发出荧光的杂质以及缺陷的至少一方。
30.一种发光装置(30),其中,包括2个或其以上的权利要求1所述的发光装置(30),并将这些发光装置(30)串联连接或并联连接。
31.一种发光装置(30),其中,包括权利要求1所述的发光装置(30)和用于使这些发光装置(30)发光的电源电路,在前述电源电路中,将并联连接2个或其以上的前述发光装置(30)的2个或其以上的并联部串联连接。
32.一种发光装置(30),其中,具备位错密度在108/cm2或其以下的氮化物半导体基板GaN基板(1)、位于前述GaN基板(1)的第1主表面侧的n型氮化物半导体层的n型AlxGa1-xN层(3)、从前述GaN基板(1)看位于比前述n型AlxGa1-xN层(3)更远的位置上的p型AlxGa1-xN层(5)和位于前述n型AlxGa1-xN层(3)以及p型AlxGa1-xN层(5)之间的发光层(4),其中0≤x≤1;以与作为前述GaN基板(1)的与前述第1主表面相对一侧的主表面的第2主表面接触的方式具有n电极(11),另外以与前述p型AlxGa1-xN层(5)接触的方式具有p电极(12);将前述n电极(11)以及p电极(12)的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极由1个构成。
33.如权利要求32所述的发光装置(30),其中,将前述GaN基板(1)安装在上侧,并通过氧掺杂使之n型化,该氧浓度在氧原子1E17个/cm3~2E19个/cm3的范围内,前述GaN基板的厚度为100μm~600μm。
34.如权利要求32所述的发光装置(30),其中,将前述GaN基板(1)安装在上侧,并通过氧掺杂使之n型化,该氧浓度在氧原子2E18个/cm3~5E18个/cm3的范围内,前述GaN基板(1)的厚度在100μm~300μm的范围内,前述第2主表面的放出光的面的矩形的面的两侧的边在0.5mm或其以下的范围内。
35.如权利要求32所述的发光装置(30),其中,将前述GaN基板(1)安装在上侧,并通过氧掺杂使之n型化,该氧浓度在氧原子3E18个/cm3~5E18个/cm3的范围内,前述GaN基板(1)的厚度在200μm~300μm的范围内,前述第2主表面的放出光的矩形的面的两侧的边在2mm或其以下的范围内。
36.如权利要求32所述的发光装置(30),其中,位错束在前述GaN基板(1)的第1主表面上以平均4E6个/cm2或其以下的密度分布,其中位错束是为了提高前述GaN基板(1)的大部分区域的结晶性而将在其形成时不可避免地生成的位错离散地、呈带状地集中化,使之沿基板厚度方向分布而成的。
37.如权利要求36所述的发光装置(30),其中,前述位错束在前述第1主表面上以平均4E2个/cm2或其以下的密度分布,前述第2主表面的放出光的面的短边在200μm~400μm的范围内。
38.如权利要求32所述的发光装置(30),其中n型AlGaN缓冲层(71)与前述GaN基板(1)接触地位于前述GaN基板(1)和前述n型AlxGa1-xN层(3)之间,另外n型GaN缓冲层(2)与该n型AlGaN缓冲层(71)接触地位于前述GaN基板(1)和前述n型AlxGa1-xN层(3)之间,并且前述n型AlxGa1-xN层(3)位于与该n型GaN缓冲层(2)相接触的位置,其中0≤x≤1。
39.如权利要求38所述的发光装置(30),其中,前述GaN基板(1),具有偏离角为0.10°或其以下的区域、和1.0°或其以上的区域。
40.如权利要求32所述的发光装置(30),其中,具备与前述p型AlxGa1-xN层(5)接触地位于下侧的p型GaN缓冲层(6),和位于与该p型GaN缓冲层(6)相接触的位置上的p型InGaN接触层,其中0≤x≤1。
41.如权利要求40所述的发光装置(30),其中,前述p型InGaN接触层的Mg浓度,在Mg原子1E18个/cm3~1E21个/cm3的范围内。
42.如权利要求40所述的发光装置(30),其中,与前述p型InGaN接触层接触地具有由Ag、Al或Rh构成的p电极层。
43.如权利要求32所述的发光装置(30),其中,前述GaN基板(1),具有沿着其厚度方向与该GaN基板面内的1方向连续地延伸成平面状的板状结晶反转区域(51),将该GaN基板内的板状结晶反转区域(51)和在形成于前述GaN基板之上的前述n型以及p型氮化物半导体层(3,5)中传播的板状结晶反转区域(51),从前述p型氮化物半导体层(5)侧经过前述n型氮化物半导体层(3)到前述GaN基板内(1)的位置除去,与除去之后剩下的p型氮化物半导体层(5)相接触地在每个p型氮化物半导体层(5)上设置p电极(12)。
44.如权利要求43所述的发光装置(30),其中,用KOH水溶液除去前述板状结晶反转区域(51)。
45.如权利要求32所述的发光装置(30),其中,具备与前述p型氮化物半导体层(5)接触并离散地配置在该p型氮化物半导体层(5)的表面上的第1p电极(12a),和填充该第1p电极(12a)的间隙并覆盖前述p型氮化物半导体层(5)和前述第1p电极(12a)的由Ag、Al或Rh构成的第2p电极(73)。
46.如权利要求45所述的发光装置(30),其中,前述第1p电极(12a)的在前述p型氮化物半导体层(5)的表面的覆盖率,在10~40%的范围内。
47.如权利要求32所述的发光装置(30),其中,前述发光装置(30)被树脂(33)密封,在前述发光装置(30)的任意部分以及前述树脂(33)的任意部分上含有荧光体,前述荧光体接受前述光而发出荧光,并使从前述树脂(33)向外部放出的光成为白色光。
48.如权利要求32所述的发光装置(30),其中,位于前述上侧的1个电极,在俯视前述各层状态下,位于前述发光装置(30)的中央部。
49.如权利要求32所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.5mm或其以下的方式被构成。
50.如权利要求32所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.4mm或其以下的方式被构成。
51.如权利要求32所述的发光装置(30),其中,前述发光装置(30)的耐静电压为3000V或其以上。
52.如权利要求32所述的发光装置(30),其中,尤其不具备用于针对加在前述氮化物半导体基板(1)和前述p型氮化物半导体层(5)的一侧之间的过渡电压或静电放电来保护前述发光装置(30)的保护电路。
53.如权利要求52所述的发光装置(30),其中,不具备包含用于应对前述过渡电压或静电放电的稳压二极管的电力分路电路。
54.如权利要求32所述的发光装置(30),其中,前述发光装置(30)通过施加4V或其以下的电压来发光。
55.如权利要求32所述的发光装置(30),其中,前述氮化物半导体基板(1)的厚度在50μm或其以上、且500μm或其以下。
56.如权利要求32所述的发光装置(30),其中,前述上侧的电极占有率不到50%,其开口率或透明部分是50%或其以上。
57.如权利要求32所述的发光装置(30),其中,前述上侧的面的至少一边是350μm或其以下。
58.如权利要求57所述的发光装置(30),其中,将前述上侧的面镶边,相对的边都具有400μm或其以上的长度。
59.如权利要求57所述的发光装置(30),其中,将前述上侧的面镶边,相对的边具有1.6mm或其以下的长度。
60.如权利要求32所述的发光装置(30),其中,前述上侧的面的至少一边在250μm或其以下。
61.如权利要求32所述的发光装置(30),其中,以热阻成为30℃/W或其以下的方式构成。
62.如权利要求32所述的发光装置(30),其中,在连续发光状态下温度上升最高的部分的温度在150℃或其以下。
63.如权利要求32所述的发光装置(30),其中,前述n型氮化物半导体层(3)的厚度在3μm或其以下。
64.如权利要求32所述的发光装置(30),其中,向下安装前述p型氮化物半导体层(5),在作为光放出面的前述氮化物半导体基板(1)的第2主表面上,在前述电极没有覆盖的部分上实施非镜面处理。
65.如权利要求64所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用氢氧化钾即KOH水溶液、氢氧化钠即NaOH水溶液、氨即NH3水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
66.如权利要求64所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用硫酸即H2SO4水溶液、盐酸即HCl水溶液、磷酸即H2PO4水溶液、氟酸即HF水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
67.如权利要求64所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用反应性离子蚀刻进行非镜面化处理后的表面。
68.如权利要求32所述的发光装置(30),其中,配置在前述安装侧的电极由反射率0.5或其以上的材质形成。
69.如权利要求32所述的发光装置(30),其中,以覆盖前述氮化物半导体基板(1)的第2主表面的方式配置荧光体。
70.如权利要求32所述的发光装置(30),其中,以从前述氮化物半导体基板(1)离开并与前述氮化物半导体基板(1)的第2主表面相对的方式配置荧光板(46)。
71.如权利要求32所述的发光装置(30),其中,将前述荧光板(46)的与前述氮化物半导体基板(1)的第2主表面相对的表面进行凹凸化处理。
72.如权利要求32所述的发光装置(30),其中,前述氮化物半导体基板(1)包含有发出荧光的杂质以及缺陷的至少一方。
73.一种发光装置(30),其中,包括2个或其以上的权利要求32所述的发光装置(30),并将这些发光装置(30)串联连接或并联连接。
74.一种发光装置(30),其中,包括权利要求32所述的发光装置(30)和用于使这些发光装置(30)发光的电源电路,在前述电源电路中,将并联连接2个或其以上的前述发光装置(30)的2个或其以上的并联部串联连接。
75.一种发光装置(30),其中,具备热传导率在100W/(m·k)或其以上的氮化物半导体AlN基板(1)、位于前述AlN基板(1)的第1主表面侧的n型氮化物半导体层的n型AlxGa1-xN层(3)、从前述AlN基板(1)看位于比前述n型AlxGa1-xN层(3)更远的位置上的p型AlxGa1-xN层(5)、和位于前述n型AlxGa1-xN层(3)以及p型AlxGa1-xN层(5)之间的发光层(4),其中0≤x≤1;以与作为前述AlN基板(1)的与前述第1主表面相对一侧的主表面的第2主表面接触的方式具有n电极(11),另外以与前述p型AlxGa1-xN层(5)接触的方式具有p电极(12);将前述n电极(11)以及p电极(12)的任意一方安装在放出光的上侧,另外将另一方安装在下侧,且位于该上侧的电极由1个构成。
76.如权利要求75所述的发光装置(30),其中,具备与前述p型氮化物半导体层(5)接触并离散地配置在该p型氮化物半导体层(5)的表面上的第1p电极(12a),和填充该第1p电极(12a)的间隙并覆盖前述p型氮化物半导体层(5)和前述第1p电极(12a)的由Ag、Al或Rh构成的第2p电极(73)。
77.如权利要求76所述的发光装置(30),其中,前述第1p电极(12a)的在前述p型氮化物半导体层(5)的表面的覆盖率,在10~40%的范围内。
78.如权利要求75所述的发光装置(30),其中,前述发光装置(30)被树脂(33)密封,在前述发光装置(30)的任意部分以及前述树脂(33)的任意部分上含有荧光体,前述荧光体接受前述光而发出荧光,并使从前述树脂(33)向外部放出的光成为白色光。
79.如权利要求75所述的发光装置(30),其中,位于前述上侧的1个电极,在俯视前述各层状态下,位于前述发光装置(30)的中央部。
80.如权利要求75所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.5mm或其以下的方式被构成。
81.如权利要求75所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.4mm或其以下的方式被构成。
82.如权利要求75所述的发光装置(30),其中,前述发光装置(30)的耐静电压为3000V或其以上。
83.如权利要求75所述的发光装置(30),其中,尤其不具备用于针对加在前述氮化物半导体基板(1)和前述p型氮化物半导体层(5)的一侧之间的过渡电压或静电放电来保护前述发光装置(30)的保护电路。
84.如权利要求83所述的发光装置(30),其中,不具备包含用于应对前述过渡电压或静电放电的稳压二极管的电力分路电路。
85.如权利要求75所述的发光装置(30),其中,前述发光装置(30)通过施加4V或其以下的电压来发光。
86.如权利要求75所述的发光装置(30),其中,前述氮化物半导体基板(1)的厚度在50μm或其以上、且500μm或其以下。
87.如权利要求75所述的发光装置(30),其中,前述上侧的电极占有率不到50%,其开口率或透明部分是50%或其以上。
88.如权利要求75所述的发光装置(30),其中,前述上侧的面的至少一边是350μm或其以下。
89.如权利要求88所述的发光装置(30),其中,将前述上侧的面镶边,相对的边都具有400μm或其以上的长度。
90.如权利要求88所述的发光装置(30),其中,将前述上侧的面镶边,相对的边具有1.6mm或其以下的长度。
91.如权利要求75所述的发光装置(30),其中,前述上侧的面的至少一边在250μm或其以下。
92.如权利要求75所述的发光装置(30),其中,以热阻成为30℃/W或其以下的方式构成。
93.如权利要求75所述的发光装置(30),其中,在连续发光状态下温度上升最高的部分的温度在150℃或其以下。
94.如权利要求75所述的发光装置(30),其中,前述n型氮化物半导体层(3)的厚度在3μm或其以下。
95.如权利要求75所述的发光装置(30),其中,向下安装前述p型氮化物半导体层(5),在作为光放出面的前述氮化物半导体基板(1)的第2主表面上,在前述电极没有覆盖的部分上实施非镜面处理。
96.如权利要求95所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用氢氧化钾即KOH水溶液、氢氧化钠即NaOH水溶液、氨即NH3水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
97.如权利要求95所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用硫酸即H2SO4水溶液、盐酸即HCl水溶液、磷酸即H2PO4水溶液、氟酸即HF水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
98.如权利要求95所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用反应性离子蚀刻进行非镜面化处理后的表面。
99.如权利要求75所述的发光装置(30),其中,配置在前述安装侧的电极由反射率0.5或其以上的材质形成。
100.如权利要求75所述的发光装置(30),其中,以覆盖前述氮化物半导体基板(1)的第2主表面的方式配置荧光体。
101.如权利要求75所述的发光装置(30),其中,以从前述氮化物半导体基板(1)离开并与前述氮化物半导体基板(1)的第2主表面相对的方式配置荧光板(46)。
102.如权利要求75所述的发光装置(30),其中,将前述荧光板(46)的与前述氮化物半导体基板(1)的第2主表面相对的表面进行凹凸化处理。
103.如权利要求75所述的发光装置(30),其中,前述氮化物半导体基板(1)包含有发出荧光的杂质以及缺陷的至少一方。
104.一种发光装置(30),其中,包括2个或其以上的权利要求75所述的发光装置(30),并将这些发光装置(30)串联连接或并联连接。
105.一种发光装置(30),其中,包括权利要求75所述的发光装置(30)和用于使这些发光装置(30)发光的电源电路,在前述电源电路中,将并联连接2个或其以上的前述发光装置(30)的2个或其以上的并联部串联连接。
106.一种发光装置(30),其中,具备电阻率0.5Ω·cm或其以下的氮化物半导体基板(1)、位于前述氮化物半导体基板(1)的第1主表面侧的n型氮化物半导体层(3)、从前述氮化物半导体基板(1)看位于比前述n型氮化物半导体层(3)更远的位置上的p型氮化物半导体层(5)、和位于前述n型氮化物半导体层(3)以及p型氮化物半导体层(5)之间的发光层(4);将前述氮化物半导体基板(1)安装在下侧,在放出光的上侧具有前述p型氮化物半导体层(5)。
107.如权利要求106所述的发光装置(30),其中,前述发光装置(30)被树脂(33)密封,在前述发光装置(30)的任意部分以及前述树脂(33)的任意部分上含有荧光体,前述荧光体接受前述光而发出荧光,并使从前述树脂(33)向外部放出的光成为白色光。
108.如权利要求106所述的发光装置(30),其中,位于前述上侧的1个电极,在俯视前述各层状态下,位于前述发光装置(30)的中央部。
109.如权利要求106所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.5mm或其以下的方式被构成。
110.如权利要求106所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.4mm或其以下的方式被构成。
111.如权利要求106所述的发光装置(30),其中,前述发光装置(30)的耐静电压为3000V或其以上。
112.如权利要求106所述的发光装置(30),其中,尤其不具备用于针对加在前述氮化物半导体基板(1)和前述p型氮化物半导体层(5)的一侧之间的过渡电压或静电放电来保护前述发光装置(30)的保护电路。
113.如权利要求112所述的发光装置(30),其中,不具备包含用于应对前述过渡电压或静电放电的稳压二极管的电力分路电路。
114.如权利要求106所述的发光装置(30),其中,前述发光装置(30)通过施加4V或其以下的电压来发光。
115.如权利要求106所述的发光装置(30),其中,前述氮化物半导体基板(1)的厚度在50μm或其以上、且500μm或其以下。
116.如权利要求106所述的发光装置(30),其中,前述上侧的电极占有率不到50%,其开口率或透明部分是50%或其以上。
117.如权利要求106所述的发光装置(30),其中,前述上侧的面的至少一边是350μm或其以下。
118.如权利要求117所述的发光装置(30),其中,将前述上侧的面镶边,相对的边都具有400μm或其以上的长度。
119.如权利要求117所述的发光装置(30),其中,将前述上侧的面镶边,相对的边具有1.6mm或其以下的长度。
120.如权利要求106所述的发光装置(30),其中,前述上侧的面的至少一边在250μm或其以下。
121.如权利要求106所述的发光装置(30),其中,以热阻成为30℃/W或其以下的方式构成。
122.如权利要求106所述的发光装置(30),其中,在连续发光状态下温度上升最高的部分的温度在150℃或其以下。
123.如权利要求106所述的发光装置(30),其中,前述n型氮化物半导体层(3)的厚度在3μm或其以下。
124.如权利要求106所述的发光装置(30),其中,向下安装前述p型氮化物半导体层(5),在作为光放出面的前述氮化物半导体基板(1)的第2主表面上,在前述电极没有覆盖的部分上实施非镜面处理。
125.如权利要求124所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用氢氧化钾即KOH水溶液、氢氧化钠即NaOH水溶液、氨即NH3水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
126.如权利要求124所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用硫酸即H2SO4水溶液、盐酸即HCl水溶液、磷酸即H2PO4水溶液、氟酸即HF水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
127.如权利要求124所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用反应性离子蚀刻进行非镜面化处理后的表面。
128.如权利要求106所述的发光装置(30),其中,配置在前述安装侧的电极由反射率0.5或其以上的材质形成。
129.如权利要求106所述的发光装置(30),其中,以覆盖前述氮化物半导体基板(1)的第2主表面的方式配置荧光体。
130.如权利要求106所述的发光装置(30),其中,以从前述氮化物半导体基板(1)离开并与前述氮化物半导体基板(1)的第2主表面相对的方式配置荧光板(46)。
131.如权利要求106所述的发光装置(30),其中,将前述荧光板(46)的与前述氮化物半导体基板(1)的第2主表面相对的表面进行凹凸化处理。
132.如权利要求106所述的发光装置(30),其中,前述氮化物半导体基板(1)包含有发出荧光的杂质以及缺陷的至少一方。
133.一种发光装置(30),其中,包括2个或其以上的权利要求106所述的发光装置(30),并将这些发光装置(30)串联连接或并联连接。
134.一种发光装置(30),其中,包括权利要求106所述的发光装置(30)和用于使这些发光装置(30)发光的电源电路,在前述电源电路中,将并联连接2个或其以上的前述发光装置(30)的2个或其以上的并联部串联连接。
135.一种发光装置(30),其中,具备位错密度在108/cm2或其以下的GaN基板(1)、位于前述GaN基板(1)的第1主表面侧的n型氮化物半导体层(3)、从前述GaN基板(1)看位于比前述n型氮化物半导体层(3)更远的位置上的p型氮化物半导体层(5)、和位于前述n型氮化物半导体层(3)以及p型氮化物半导体层(5)之间的发光层(4);将前述GaN基板(1)安装在下侧,并在放出光的上侧具有前述p型氮化物半导体层(5)。
136.如权利要求135所述的发光装置(30),其中,位错束在前述GaN基板(1)的第1主表面上以平均4E6个/cm2或其以下的密度分布,其中位错束是为了提高前述GaN基板(1)的大部分区域的结晶性而将在其形成时不可避免地生成的位错离散地、呈带状地集中化,然后使之沿基板厚度方向分布而成的。
137.如权利要求136所述的发光装置(30),其中,前述位错束在前述第1主表面上以平均4E2个/cm2或其以下的密度分布,前述第2主表面的放出光的面的短边在200μm~400μm的范围内。
138.如权利要求135所述的发光装置(30),其中,n型AlGaN缓冲层(71)与前述GaN基板(1)接触地位于前述GaN基板(1)和前述n型AlxGa1-xN层(3)之间,另外n型GaN缓冲层(2)与该n型AlGaN缓冲层(71)接触地位于前述GaN基板(1)和前述n型AlxGa1-xN层(3)之间,并且前述n型AlxGa1-xN层(3)位于与该n型GaN缓冲层(2)相接触的位置,其中0≤x≤1。
139.如权利要求138所述的发光装置(30),其中,前述GaN基板(1),具有偏离角为0.10°或其以下的区域和1.0°或其以上的区域。
140.如权利要求135所述的发光装置(30),其中,前述发光装置(30)被树脂(33)密封,在前述发光装置(30)的任意部分以及前述树脂(33)的任意部分上含有荧光体,前述荧光体接受前述光而发出荧光,并使从前述树脂(33)向外部放出的光成为白色光。
141.如权利要求135所述的发光装置(30),其中,位于前述上侧的1个电极,在俯视前述各层状态下,位于前述发光装置(30)的中央部。
142.如权利要求135所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.5mm或其以下的方式被构成。
143.如权利要求135所述的发光装置(30),其中,前述发光装置(30),以组入了该发光装置(30)而形成的侧视型LED灯(30)的厚度在0.4mm或其以下的方式被构成。
144.如权利要求135所述的发光装置(30),其中,前述发光装置(30)的耐静电压为3000V或其以上。
145.如权利要求135所述的发光装置(30),其中,尤其不具备用于针对加在前述氮化物半导体基板(1)和前述p型氮化物半导体层(5)的一侧之间的过渡电压或静电放电来保护前述发光装置(30)的保护电路。
146.如权利要求145所述的发光装置(30),其中,不具备包含用于应对前述过渡电压或静电放电的稳压二极管的电力分路电路。
147.如权利要求135所述的发光装置(30),其中,前述发光装置(30)通过施加4V或其以下的电压来发光。
148.如权利要求135所述的发光装置(30),其中,前述氮化物半导体基板(1)的厚度在50μm或其以上、且500μm或其以下。
149.如权利要求135所述的发光装置(30),其中,前述上侧的电极占有率不到50%,其开口率或透明部分是50%或其以上。
150.如权利要求135所述的发光装置(30),其中,前述上侧的面的至少一边是350μm或其以下。
151.如权利要求150所述的发光装置(30),其中,将前述上侧的面镶边,相对的边都具有400μm或其以上的长度。
152.如权利要求150所述的发光装置(30),其中,将前述上侧的面镶边,相对的边具有1.6mm或其以下的长度。
153.如权利要求135所述的发光装置(30),其中,前述上侧的面的至少一边在250μm或其以下。
154.如权利要求135所述的发光装置(30),其中,以热阻成为30℃/W或其以下的方式构成。
155.如权利要求135所述的发光装置(30),其中,在连续发光状态下温度上升最高的部分的温度在150℃或其以下。
156.如权利要求135所述的发光装置(30),其中,前述n型氮化物半导体层(3)的厚度在3μm或其以下。
157.如权利要求135所述的发光装置(30),其中,向下安装前述p型氮化物半导体层(5),在作为光放出面的前述氮化物半导体基板(1)的第2主表面上,在前述电极没有覆盖的部分上实施非镜面处理。
158.如权利要求157所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用氢氧化钾即KOH水溶液、氢氧化钠即NaOH水溶液、氨即NH3水溶液或其他的碱性水溶液进行非镜面化处理后的表面。
159.如权利要求157所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用硫酸即H2SO4水溶液、盐酸即HCl水溶液、磷酸即H2PO4水溶液、氟酸即HF水溶液以及其他的酸性水溶液的至少1种进行非镜面化处理后的表面。
160.如权利要求157所述的发光装置(30),其中,实施了前述非镜面处理的表面,是用反应性离子蚀刻进行非镜面化处理后的表面。
161.如权利要求135所述的发光装置(30),其中,配置在前述安装侧的电极由反射率0.5或其以上的材质形成。
162.如权利要求135所述的发光装置(30),其中,以覆盖前述氮化物半导体基板(1)的第2主表面的方式配置荧光体。
163.如权利要求135所述的发光装置(30),其中,以从前述氮化物半导体基板(1)离开并与前述氮化物半导体基板(1)的第2主表面相对的方式配置荧光板(46)。
164.如权利要求135所述的发光装置(30),其中,将前述荧光板(46)的与前述氮化物半导体基板(1)的第2主表面相对的表面进行凹凸化处理。
165.如权利要求135所述的发光装置(30),其中,前述氮化物半导体基板(1)包含有发出荧光的杂质以及缺陷的至少一方。
166.一种发光装置(30),其中,包括2个或其以上的权利要求135所述的发光装置(30),并将这些发光装置(30)串联连接或并联连接。
167.一种发光装置(30),其中,包括权利要求135所述的发光装置(30)和用于使这些发光装置(30)发光的电源电路,在前述电源电路中,将并联连接2个或其以上的前述发光装置(30)的2个或其以上的并联部串联连接。
全文摘要
一种发光装置(30),它具备电阻率 0.5Ω·cm或其以下的氮化物半导体基板(1)、位于氮化物半导体基板的第1主表面侧的n型氮化物半导体层(3)、从氮化物半导体基板看位于比n型氮化物半导体层(3)更远的位置上的p型氮化物半导体层(5)和位于n型氮化物半导体层(3)以及p型氮化物半导体层(5)之间的发光层(4);将氮化物半导体基板(1)以及p型氮化物半导体层(5)的任意一方安装在放出光的上侧,另外将另一方安装在下侧,位于该上侧的电极由1个构成。由此,能够得到可小型化,另外因结构简单而制造容易,可长期稳定地得到较大的发光效率的发光元件。
文档编号H01L33/42GK1624944SQ200410098298
公开日2005年6月8日 申请日期2004年12月3日 优先权日2003年12月3日
发明者永井阳一, 木山诚, 中村孝夫, 樱田隆, 秋田胜史, 上松康二, 池田亚矢子, 片山浩二, 吉本晋 申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1