发光二极管的制作方法

文档序号:6844094阅读:240来源:国知局
专利名称:发光二极管的制作方法
技术领域
本发明涉及使用半导体的二端子型发光元件,即发光二极管。
背景技术
使用半导体的发光元件,被广泛地用作显示或光源,近年来开始用于照明,替代白炽灯或荧光灯。作为这种发光元件之一,有发光二极管。
发光二极管,是将p型无机半导体和n型无机半导体接合起来的器件(pn结,作为现有文献的例子,有“后藤显也著,光电子学入门,75页,オ一ム出版社,1981年”)。p型半导体和n型半导体是向半导体内扩散p型或n型掺杂物而形成的。p型掺杂物在半导体内产生空穴,n型掺杂物在半导体内产生电子。
pn结型发光二极管是通过将p型半导体和n型半导体接合起来而制成的。通过在pn结型发光二极管上施加正向电压,使存在于n型半导体内的电子和存在于p型半导体内的空穴在pn结部复合而获得发光。
作为这种p型半导体,有掺杂了N的ZnSe(意思是含有Zn、Se,但并不限定它们的含有率。以下相同),作为n型半导体,有掺杂了Cl的ZnSe,将两者接合而制作出ZnSe类的发光二极管(作为现有文献的例子,有“Applied Physics Letter,57卷,1990年,2127页”)。

发明内容
在pn结型发光二极管中,通常只有在无机半导体内添加浓度大于或等于1017/cm3的大量的掺杂物,作为p型半导体或n型半导体才能得到足够的导电性。因此,会因该掺杂物而在半导体晶体内产生畸变、缺陷等,这些畸变、缺陷成为消光中心而使发光效率降低,或导致发出不必要的波长的光。而且,在现有的pn结型发光二极管中,能使用的半导体材料的范围受到限制,例如,由于p-ZnS尚未开发出来,因此还未制作出使用ZnS的pn结二极管。
为解决上述课题,本发明提供具有以下结构的发光二极管。
即,本发明的发光二极管,具有作为电子注入用电极的n电极;作为空穴注入用电极的p电极;以及配置成与两电极接触的发光层;上述发光层是兼有电子输送性和空穴输送性的双极性无机半导体。
该双极性无机半导体,与上述现有的pn结型发光二极管不同,不含用于得到所要极性的掺杂物,所以不会引起晶体结构的畸变、缺陷等。因此,不会产生由消光中心导致的发光效率的降低或发出不必要的波长的光这样的问题。另外,由于不是用p型半导体和n型半导体这两者构成的发光二极管,因此,即使使用不存在p型半导体或n型半导体的半导体,也能制作本发明的发光二极管。例如,可以实现使用了ZnS的发光二极管。
根据本发明,由于不向发光层导入掺杂物,因此可以生长低缺陷密度的晶体,从而可以提供不存在由掺杂物引起的发光效率的降低或因掺杂物而发出的不必要的波长的光、能进行有效发光的发光二极管。另外,可以将金刚石、II-VI族化合物半导体、III-V族化合物半导体等用作发光层,因此,不仅迁移率大而且可以得到足够的发光强度,而且可以在紫外光到红外光的大范围内选择发光波长。并且,由于不需要p型半导体和n型半导体,因此可以将难于p型化或n型化的半导体用作发光层来制作发光极管。另外,作为衬底,不仅可以采用单晶体的衬底,而且可以采用多晶体、非晶态(amorphous)的衬底,因此可以使用玻璃衬底或塑料衬底等,并且,还可以使用透明衬底。根据本发明,可以制造出大面积发光器件。


图1是表示作为本发明一实施方式的发光二极管的结构的剖视图。
图2是表示现有的发光二极管的结构的剖视图。
图3是在0~1×1020/scm3的范围内以梯度(gradation)示出了利用仿真对图1所示的发光二极管内的复合发光速度进行研究的结果的图,按照空穴迁移率,由a~d的4个图组成,图3是表示其中的a和b的图,a~d各图示出了发光二极管的截面,横轴表示沿平行于衬底表面的方向的元件宽度,在任何情况下元件宽度都是10nm,而纵轴表示沿垂直于衬底的方向的元件厚度。
图4与图3相同,是表示a~d 4个图中的c和d的图。
图5是表示利用仿真对图1所示的发光二极管的电压电流特性进行研究的结果的图,横轴为施加于阳极的电压(V),纵轴为阳极电流(A)。
图6是实施例1中使用的飞行时间测量装置的框图。
图7是实施例2中制作的发光二极管的电压电流曲线。
图8是实施例2中制作的发光二极管的发光光谱,a是本发明的发光二极管的发光光谱,b是作为比较例而制作的pn结型发光二极管的发光光谱。
图9是表示作为本发明一实施方式的发光二极管的结构剖视图。
图10是表示实施例3的发光二极管的结构剖视图。
图11是表示实施例6的发光二极管的结构剖视图。
具体实施例方式
以下,参照附图详细说明本发明的实施方式。
(1)结构图1是表示作为本发明一实施方式的发光二极管的结构图。本发明的发光元件,在衬底11上形成有n电极12,在n电极12之上层叠有作为发光层的双极性无机半导体13,在双极性无机半导体13之上层叠有p电极14。这里的n电极和p电极,也可以相互交换。即,也可以在p电极之上形成双极性无机半导体,并在其上层叠n电极。
另外,作为本发明的发光元件的实施方式,还可以列举出图9那样的发光二极管。在衬底101上形成有作为发光层的双极性无机半导体105,在发光层105上,在与发光层接触、且彼此不接触的状态下形成有n电极103和p电极107。
在本发明的发光二极管中,用于n电极的材料,为能向发光层中注入电子的金属、半导体、或者金属层和半导体层的组合。用于p电极的材料,为能向发光层中注入空穴的金属、半导体、或者金属层和半导体层的组合。一般地说,用于两电极的材料和用于发光层的材料可以不同。
图2是表示现有的pn结型发光二极管的典型结构的图。在导电性衬底21上层叠有p型半导体23和n型半导体24,在导电性衬底21的下面和n型半导体24的上面形成有金属电极22和25。通常,p型半导体和n型半导体,将同一半导体用作基质晶体。
(2)整体动作以下,参照图1说明整体动作。
当在p电极14上施加相对于n电极12的电位为正的电位时,从n电极12向发光层13中注入电子,从p电极14向发光层13中注入空穴。发光层13中的电子和空穴彼此复合,并发出波长与形成发光层13的双极性无机半导体的能带端之间的能量差相当的光。或者,当发光层13中激子(exiton)稳定时,发出波长与激子(电子-空穴对)的结合能相当的光。
如上所述,在本发明的发光二极管中,作为发光源的电子和空穴,都通过电极从外部注入发光层。因此,不需要对发光层的掺杂。
(3)各部的详细说明(功能、材料、制造方法等)以下,对本发明的发光二极管的各部位进行更详细的说明。
①衬底衬底是在其上形成的各层的基座。可以考虑发光层的晶体类型(单晶体、多晶体、非晶态)或晶格常数来选择衬底和发光层的组合。
例如,在使发光层为单晶体时,作为衬底,最好采用单晶体衬底,并通过在单晶体衬底上外延生长发光层来进行制作。这时,形成发光层的晶体和衬底晶体的晶格常数最好相等。此外,如果可以形成单晶体发光层,则也可以使用玻璃衬底作为衬底。
另外,在使发光层为多晶体时,或为非晶态(非晶质)时,作为衬底可以使用例如玻璃衬底或塑料衬底,而无需使用单晶体衬底。玻璃衬底或塑料衬底,与单晶体衬底相比,易于以廉价得到大型(例如几十厘米以上的方形)的衬底,此外,由于毒性小,作为衬底材料是优良的。特别是,塑料衬底重量轻,在具有耐冲击性和挠性方面是理想的。
作为发光层材料和衬底的组合,例如可以列举出如下所述的组合。
当将ZnS用于发光层时,可以使用ZnS单晶体衬底、GaP单晶体衬底、Si单晶衬底、蓝宝石衬底、玻璃衬底、塑料衬底等。
当将ZnSe用于发光层时,可以使用ZnSe单晶体衬底、GaAs单晶体衬底、Si单晶衬底、蓝宝石衬底、玻璃衬底、塑料衬底等。
当将GaN用于发光层时,可以使用GaN单晶体衬底、SiC单晶体衬底、Si单晶衬底、蓝宝石衬底、玻璃衬底、塑料衬底等。
当将SiC用于发光层时,可以使用SiC单晶体衬底、Si单晶衬底、蓝宝石衬底、玻璃衬底、塑料衬底等。
当将C(金刚石)用于发光层时,可以使用金刚石单晶体衬底等。
当将各种双极性无机半导体的非晶态用于发光层时,可以使用玻璃衬底、塑料衬底等。
另外,在本发明中,衬底也可以兼作p电极或n电极。
②发光层将具有双极性的无机半导体用于发光层。这里,半导体最好没有畸变或缺陷,而且不含掺杂物等杂质离子。使用这样的无缺陷高纯度无机半导体,可以从发光部位除去消光中心、抑制产生不必要的波长的发光,并抑制发光效率的降低。
在此,半导体必须具有双极性。所谓具有双极性的半导体,是同时具有电子输送性和空穴输送性的半导体。双极性,例如可以用基于脉冲光激发的飞行时间法测量。当半导体不具有双极性时,即当不具备电子和空穴的至少一方的输送性时,不能在半导体中产生电子和空穴的复合现象,从而不能使半导体成为有效的发光层。注入到具有双极性的半导体中的电子和空穴,在半导体内彼此复合,通常发出与发光能级间的能量差相当的光。
为了在n电极和p电极的中间有效地产生复合,最好是电子输送性和空穴输送性程度相同。当电子迁移率和空穴迁移率相差极大时,在电极和发光层的界面发生两载流子的复合,从而难以得到足够高的发光效率。这是因为,在界面附近,在与电极层的接合过程中,经常会有杂质混入发光层中,有时会使发光层的结晶性劣化。因此,在本发明中,研究了两载流子的迁移率之比对发光层中的发光部位的影响,并明确了迁移率之比的最佳范围。
关于本发明的发光二极管,通过仿真计算研究了迁移率之比的最佳范围。在计算中,使用日本SILVACO制造的半导体仿真器BLAZE,将图1所示的发光二极管的截面划分为栅格状,并将其作为二维模型,在各栅格点上对泊松方程式和电流连续方程式进行了联立求解。
在图3和图4中示出了计算中使用的发光二极管的截面模型。衬底材料为GaAs,淀积100nm的n-ZnSe作为n电极、层叠500nm的ZnSe作为发光层、再层叠100nm的p-ZnSe作为p电极。在衬底和n电极的界面上,粘贴与n电极非整流接合的金属电极,在p电极的表面粘贴与p电极非整流接合的金属电极。两电极内的n掺杂物和p掺杂物的密度为1×1018/cm3,并假定1种掺杂物生成1种载流子。在各层内,电子的迁移率都固定为20cm2/Vs。空穴的迁移率,在图3的a中为20cm2/Vs,在图3的b中为5cm2/Vs,在图4的c中为1cm2/Vs,在图4的d中为0.1cm2/Vs。
在图3和图4中,在0~1×1020/scm3的范围内以梯度(亮度)示出了复合发光速度的计算结果。由此,可以看到发光二极管截面内的发光部位,越是白的白色部分复合发光速度越大。可以看到这样的情况与电子迁移率相比,随着空穴迁移率减小,发光部位偏离电极间的中心位置,向p电极侧移动。
从该研究结果可以看出,迁移率之比,最好接近于1。具体地说,为1/100~100,1/10~10更为理想。在实验中,可以利用通常的霍尔效应测量或基于脉冲光激发的飞行时间法进行测量。
为获得发光强度,半导体的电子和空穴的迁移率最好都较大。如果迁移率减小,则半导体中的电子电流或空穴电流将变得过小,从而得不到足够高的发光强度。
图5示出了在上述计算中研究迁移率和电流的关系得到的结果的一部分。横轴为施加于阳极的电压(V),纵轴为阳极电流(A)。其中,二极管的x轴方向的宽度为10nm,z轴方向(朝向图里的方向)的宽度为1μm。因此,每cm2的电流密度可以通过将曲线的值乘以1011而得到。曲线上的字母,与图3和图4中记载的两载流子的迁移率的组合相对应。即,在所有曲线的情况下,电子迁移率都为20cm2/Vs。在a的情况下,空穴迁移率为20cm2/Vs,施加5V时的电流密度为450A/cm2。随着空穴迁移率的降低,电流值减小。这种情况与在图3和图4中发光强度随着空穴迁移率的降低而减弱的情况相对应。在d的情况下,空穴迁移率为0.1cm2/Vs,施加5V时的电流密度为2.4A/cm2。当电子迁移率和空穴迁移率都为0.1cm2/Vs时,所得到的电流值更小。由此,可以判断出当两载流子的迁移率小于0.1cm2/Vs时,不能指望得到实用强度的发光。
从该研究结果可以看出,两载流子的迁移率最好都较大。具体地说,最好大于或等于0.1cm2/Vs,大于或等于1cm2/Vs更好,大于或等于10cm2/Vs更为理想。
两载流子的迁移率,将影响到n电极和P电极之间的距离。如果两载流子的迁移率足够大,则从两电极注入的载流子可以在双极性无机半导体内移动,并彼此复合,因此,能使两电极间的距离取得较宽。电极间的适当距离为10nm~10μm。如果使电极间距离小于或等于10nm,则两载流子的复合位置过于靠近电极/发光层界面,容易受到界面的晶体结构的扰乱。另一方面,如果使电极间距离大于或等于10μm,则元件变为高电阻,不能注入足够的电流。当如图1所示依次层叠n电极、发光层和p电极来制作元件时,电极间距离由发光层的厚度决定。
双极性无机半导体在室温下的电阻率值最好较大。理想的是,在双极性无机半导体内原来不存在载流子,只是从n电极和p电极注入的载流子在双极性无机半导体内移动。这里,所谓原来的载流子,是由存在于双极性无机半导体中的缺陷或杂质离子(包括掺杂物)生成的空穴或电子。因此,所谓电阻率值大,既意味着是缺陷少的优质晶体,又意味着是不含杂质离子的晶体。具体地说,室温下的电阻率值最好大于或等于108Ωcm。如果直流电阻率值小于或等于108Ωcm,则由缺陷或杂质离子生成的载流子的密度高,从n电极和p电极注入的载流子的比率相对地减小,从而妨碍作为发光元件的控制性。
在电阻率值的测量中,不适于使用四端子法等通常的直流电阻测量法。当所使用的金属电极的功函数小到能够将电子注入到双极性无机半导体内、或大到能够注入空穴时,双极性无机半导体内的载流子密度由从电极流入的载流子决定。因此,不能测量双极性无机半导体内原来存在的载流子产生的电阻值。相反,当所使用的金属电极的功函数没有小到能够将电子注入到双极性无机半导体内、或没有大到能够注入空穴时,不能向双极性无机半导体内供给电流。因此,在任何情况下,都不能测量双极性无机半导体内原有的直流电阻值。
如果用基于脉冲光激发的飞行时间法求取双极性无机半导体的迁移率、且用电容电压测量法求取双极性无机半导体内的载流子密度,则可以根据两者计算出电阻率值,另外,也可以使用不向双极性无机半导体内注入载流子的电极,用求取交流电阻的方法进行测量。
如果从双极性无机半导体内的载流子浓度的角度来看,载流子浓度最好小于或等于1016/cm3。小于或等于1014/cm3更好。当载流子浓度大于或等于1016/cm3时,从n电极和p电极注入的载流子的比率相对地减小,从而妨碍发光元件的控制性。双极性无机半导体内的载流子浓度,可以用电容电压测量法测量。另外,如上所述,在现有的pn结型发光二极管的p型半导体或n型半导体中,只有在无机半导体内添加大于或等于1017/cm3的大量的掺杂物,才能得到足够的导电性。
如果从双极性无机半导体内的掺杂物离子浓度(与掺杂物浓度相等,是指能生成载流子的掺杂物的浓度)的角度来看,掺杂物浓度按原子比最好小于或等于0.1%。小于或等于1ppm更好。当掺杂物浓度大于或等于0.1%时,从n电极和p电极注入的载流子的比率相对地减小,从而妨碍发光元件的控制性。掺杂物浓度,可以用X线光电子分光法、X线荧光测量法、电感耦合等离子体分析法、二次离子质量分析法等进行测量。
另外,双极性无机半导体内的掺杂物浓度,最好是着眼于破坏双极性的离子种类来进行控制。如上所述,作为双极性无机半导体,掺杂物浓度最好较低,但对所有的离子种类而言高纯度的半导体,其制作本身不容易,而且,作为半导体的特性也不是必须的。即,最好是使破坏双极性的种类的掺杂物浓度小于或等于1016/cm3。作为破坏双极性的种类,本发明人找出了F、Cl、Br、I的卤族元素、Li、N、Cu,并证实了关于这些种类,通过使掺杂物浓度小于或等于1016/cm3可以得到良好的双极性无机半导体。另外,关于O、H、C元素,也从发光效率的角度证实了最好使浓度小于或等于1016/cm3。
用作双极性无机半导体的材料,最好是纯度高的本征半导体。如后文所述,作为双极性无机半导体,除了ZnS类以外,还可以使用其它的II-VI族半导体、III-V族半导体、碳类、SiC,进而还可以使用CuInO2等半导体氧化物、Si3N4、AlN等半导体氮化物等晶体材料。
在此,所谓II-VI族半导体,是由周期表上的IIB族元素、即Zn、Cd、Hg中的至少一种元素、以及VIA族元素、即O、S、Se、Te、Po中的至少一种元素构成的半导体,例如,ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe等。另外,所谓III-V族半导体,是由周期表上的IIIA族元素、即B、Al、Ga、In、Tl中的至少一种元素、以及VA族元素、即N、P、As、Sb、Bi中的至少一种元素构成的半导体,例如,AlN、AlP、AlAs、GaN、GaP、GaAs、InN、InP、InAs等。
将晶体材料用作双极性无机半导体的优点在于,迁移率高、能带端的定域能级引起的无辐射迁移少、在ZnSe、ZnS、C(金刚石)等中自由激子稳定地存在,有助于高效率的发光等。
如果发光层为单晶体的双极性无机半导体,则在发光层内不存在晶界,所以载流子的迁移特性优良,并能实现高效率的发光,因此是理想的。
另外,在发光层为多晶体的双极性无机半导体的情况下,作为衬底无需使用单晶体衬底,因此易于制作,而且,在成本方面也是理想的。例如,可以在玻璃衬底或塑料衬底上制作,因此可以用大型衬底(例如1m的方形)实现大面积器件,另外,在制作小面积器件时,通过使用大面积衬底,也可以减少工序数,而且,在成本方面也是理想的。
另一方面,作为双极性无机半导体,也可以使用C或Si等非晶态半导体。将非晶态材料用作双极性无机半导体的优点在于,成膜温度低、组成的自由度高、具有各向同性的物性等。特别是,由于成膜温度低,因此可以使用塑性材料作为衬底等,衬底的选择范围变宽。用作塑料衬底的高分子材料的选择余地也变宽。
另外,在发光层为非晶态的双极性无机半导体的情况下,在发光层内不存在晶界,所以不会产生由晶界引起的载流子迁移特性的劣化、或发光效率的降低,因此是理想的。
注入到作为发光层的双极性无机半导体内的电子和空穴,彼此复合,并以与发光能级间的能量差相当的波长发光。所谓发光能级,意思是对发光有贡献的电子的能级和空穴的能级的组,其位置分为几种情况。
第一发光能级组,为传导带端和价电子带端。在这种情况下,发光能级间的能量差,相当于双极性无机半导体的禁带宽度。第二发光能级组,为激子能级和价电子带端、或激子能级和传导带端。第三发光能级组,为存在于双极性无机半导体中的缺陷形成的能级和传导带或价电子带或由缺陷形成的能级的组。在本发明中,最好不存在由缺陷形成的能级,双极性无机半导体,最好尽可能是纯粹的晶体或非晶态。
以下,按物质类型分别说明用作发光层的双极性无机半导体。
(1)ZnS类半导体ZnS类发光层,是含有Zn和从S、Se、Te中选择的至少一种元素的物质,具体地说,可以列举出ZnS、ZnSe、ZnTe、ZnSxSe(1-x)(0<x<1)等。这些物质,熔点高、室温下稳定,即使受日光照射也不变质,因此为本发明的发光二极管提供了高的可靠性。
ZnS类发光层也可以是非晶态,但是,如果从发光效率的角度来看,则最好是晶体。晶体结构,决定发光层的能带结构,并决定发光波长或发光效率,因而是重要的因素。ZnS、ZnSe和ZnTe的晶体具有ZnS型(β-ZnS结构、闪锌矿结构)、或纤维锌矿型(α-ZnS结构)的晶体结构,这两种晶体结构都可以用作本发明的发光层。
(A)ZnS关于ZnS,除了ZnS型晶体结构之外,还有纤维锌矿型晶体结构,ZnS型为低温相,在1020℃下转变为纤维锌矿型。ZnS具有3.7eV的禁带宽度。3.7eV的能量,作为光的波长对应于335nm。另外,ZnS还是直接跃迁型半导体,这是发光效率高的一个原因。即,如果比较直接跃迁型和间接跃迁型的电子和空穴的复合发光系数,则直接型的复合发光系数大大约4位。发光是由存在于ZnS的能带端的电子和空穴的直接复合、或位置靠近能带端的激子的复合引起的,因此本发明的发光二极管发射出波长335nm左右的紫外光。
迄今为止,ZnS的pn结型发光二极管还没有实现。其原因是,由于不存在向ZnS的价电子带中注入空穴的技术,因此p-ZnS尚未实现。因此,在使用ZnS的电流注入型发光器件中,空穴通过肖特基势垒(MES器件)注入、或利用隧道发射(电场发射)(MIS器件)注入、或从界面能级注入。因此,不能以适于实用的低电压注入足够大的电流,从而,使用ZnS的发光器件还不能广泛地向社会普及。
在本发明的发光二极管中,不对发光层进行用于生成载流子的掺杂,因此不需要p-ZnS。在本发明中,使欧姆接合的p电极和n电极与作为发光层的ZnS层接触,并高效地向ZnS层中注入空穴和电子,因此能在适于实用的低电压下流过足够大的电流,从而可以实现实用性高的固体发光元件。
(B)ZnSeZnSe是具有ZnS型晶体结构并具有2.8eV的禁带宽度的直接跃迁型的宽禁带半导体。在半导体特性上,有优于ZnS或ZnTe的一面。禁带宽度比ZnS窄。与2.8eV的能量对应的光的波长为440nm,因此具有比440nm长的波长,可用于可见光和红外光的发光。与ZnS一样,是直接跃迁型半导体,因此复合发光系数大。发光是由存在于ZnSe的能带端的电子和空穴的直接复合、或位置靠近能带端的激子的复合引起的,因此本发明的发光二极管发射波长440nm左右的蓝色光。
由于可以对ZnSe进行n型和p型的掺杂,因此不仅可以制作pn结,而且可以实现发光二极管或激光二极管这样的发光器件。由ZnSe的pn结构成的发光二极管,发光特性优良,作为视觉效率实现了8lm/W(板东完治等,应用物理,第71卷,1518页,2002年)。
但是,ZnSe类发光二极管,元件结构复杂。而且,元件寿命短,因此还没有达到实用化。可以认为,其原因是由p-掺杂或n-掺杂等在ZnSe晶体中生成的缺陷在电场施加过程中增加,并起到消光中心的作用。
另一方面,在本发明的发光二极管中,不对发光层进行用于生成载流子的掺杂。只需使欧姆接合的p电极和n电极与作为发光层的ZnSe层接触,并向ZnSe层中注入空穴和电子即可。因此,能大范围地选择电极材料,而且可以使元件结构简单化。另外,作为发光层的ZnSe不含p型或n型的掺杂物,因此不会因掺杂物而使结晶性降低,缺陷密度低,很难产生因施加电场而引起的缺陷密度的增加,因而可以加长元件寿命。
(C)ZnTe
ZnTe是具有ZnS型晶体结构或纤维锌矿型晶体结构、并具有2.3eV禁带宽度的直接跃迁型的宽禁带半导体。在半导体特性上,有优于ZnS或ZnSe的一面。禁带宽度比ZnSe窄。与2.3eV的能量对应的光的波长为520nm,与ZnS一样,是直接跃迁型半导体,因此复合发光系数大。发光是由存在于ZnTe的能带端的电子和空穴的直接复合引起的,因此本发明的发光元件发出波长520nm左右的绿色光。
在本发明的发光二极管中,不对发光层进行用于生成载流子的掺杂。只要使欧姆接合的p电极和n电极与作为发光层的ZnTe层接触并向ZnTe层中注入两载流子,即可实现发光元件。
(D)固溶体ZnS、ZnSe及ZnTe具有相同的晶体结构,并且相互间全域固溶,因此可以制成ZnSexSe(1-x)或ZnSyTe(1-y)等固溶体,并可以用作本发明的发光层。随着进行S→Se→Te这样的置换,禁带变窄,因此可以发出波长更长的光。
关于能带端的能量差,ZnS在3.7eV下相当于波长335nm,ZnSe在2.8eV下相当于波长440nm,ZnTe在2.4eV下相当于波长520nm。也可以用Cd、Mg、Ca、Sr、Ba等置换一部分Zn。例如,可以将ZnxCd(1-x)S、ZnxMg(1-x)Se、ZnxCa(1-x)Te、ZnxCd(1-x)SeyS(1-y)等用作发光层。在这种情况下,所置换的Zn为Zn中的10%左右。通过置换一部分Zn,可以使禁带变宽或变窄,因此可以调整发光波长。
(2)GaN类半导体在本说明书中,所谓GaN类半导体是含有从Ga、In、Al中选择的至少一种元素和N的物质,具体地,可以列举出GaN、InN、AlN、GaxIn(1-x)N、GaxAl(1-x)N等。随着进行In→Ga→Al这样的置换,可以控制传导带端的位置并加宽禁带宽度,因此可以发出波长更短的光。由于GaN类半导体是直接半导体,因此处于传导带的电子和处于价电子带的空穴间的发光复合概率高,从而能实现高效率的发光。GaN类半导体,最好是高结晶性的。
(3)SiC类半导体在本发明中,所谓SiC类半导体是含有Si和C的物质。在SiC晶体中,存在着数量众多的同质多晶形,每种晶体结构,其物性值都不同。禁带宽度,在3C-SiC中为2.39eV,在6H-SiC中为3.02eV,在4H-SiC中为3.27eV。由于SiC类半导体是间接半导体,处于传导带的电子和处于价电子带的空穴间的发光复合概率低,为实现高效率的发光,最好导入后文所述的发光中心。SiC类半导体,最好是高结晶性的。
(4)金刚石类半导体在本发明中,所谓金刚石类半导体,是将主要形成sp3杂化轨道的碳作为主要成分的物质。通过形成sp3杂化轨道,可以得到半导体的性质。是否形成有sp3杂化轨道、或其结构比,可以通过NMR或紫外喇曼分光分析、电子束能量损失能谱分析等进行检查。最好是大于或等于80at%的碳原子形成了sp3杂化轨道。更理想的是全部组成原子中的大于或等于90at%的碳原子形成了sp3杂化轨道。
整体的结构,既可以是结晶质也可以是非晶态。还可以是非晶态中含有结晶质。这些情况下的结晶质,最好是金刚石为多晶体结构。即,无论整体的结构是结晶质还是非晶态中的结晶质,所含有的结晶质,都最好具有金刚石型晶体结构。在具有金刚石型晶体的半导体中,最好是单晶体金刚石。作为整体的结构为结晶质的材料,可以列举出多晶体金刚石或单晶体金刚石。
作为非晶态的物质,可以列举出非晶态碳(a-C)、氢化非晶态碳(a-C:H)、非晶态氮化碳(a-CxNy)、氢化非晶态氮化碳(a-CxNy:H)、氮化非晶态碳(a-C:N)、卤化非晶态碳(a-C:F、a-C:Cl等)。
在金刚石晶体中,电子和空穴的迁移率高,由于金刚石晶体是间接半导体,处于传导带的电子和处于价电子带的空穴间的发光复合概率低。但是,由于可以形成电子和空穴的准稳定状态(自由激子、激子),而且,基于该自由激子的复合的发光效率非常高,因此可以进行高效率的发光。自由激子,在电子被空穴束缚的状态下,可以构成准稳定的中间状态。在本发明的情况下,由于主要从n电极注入的电子被主要从p电极注入的空穴束缚,因此形成了作为中间状态的自由激子。来自自由激子的发光,相当于大约5.2eV的光子能量,作为波长约为238nm。
在非晶态碳的情况下,处于传导带的电子和处于价电子带的空穴间的发光复合概率高,因此能实现高效率的发光。非晶态碳的发光波长,大约为400~600nm。具体地,在典型的四面体非晶态碳(ta-C)的情况下,复合能级间的能量差约为2.5eV,这相当于波长500nm。
(5)Si半导体本发明中的Si半导体,是指以Si为主成分的半导体。在以Si为主成分的半导体中有Si晶体和非晶Si。
Si晶体具有金刚石结构,禁带宽度为1.1eV。由于Si晶体是间接半导体,因此处于传导带的电子和处于价电子带的空穴间的发光复合概率低。Si晶体最好是高结晶性的。
③n电极和p电极n电极和p电极,具有通过在电极间施加电压而分别向发光层注入电子和空穴的功能。如上所述,n电极和p电极,都可以是能够向发光层中注入电子或空穴的金属、半导体、或金属和半导体的组合,并选择在形成了发光层的双极性无机半导体之间可以形成不产生势垒的结的物质。这是因为,在本发明的双极性无机半导体中,原来并不存在载流子,因此如果与电极之间不能实现无势垒接合,则不能向双极性无机半导体中注入电子和空穴。
在n电极的情况下,如果使n电极的功函数小于双极性无机半导体的传导带端能量,则为在两者之间不产生势垒的组合。而在p电极的情况下,如果使p电极的功函数大于双极性无机半导体的传导带端能量,则为在两者之间不产生势垒的组合。当进行与双极性无机半导体的接合时,必须选择这样的物质不会引起化学反应等而形成不想要的势垒,并精心设计制作工艺。
可以与双极性无机半导体无势垒接合的物质,即使具有与双极性无机半导体不同的化学组成或晶体结构也没有关系。例如,当选择ZnSe作双极性无机半导体时,已发表的ZnSe的传导带端能量为3.8eV(Bhargava编,Properties of Wide Bandgap II-VI Semiconductors,38页,Inspec公司,1997年)。另一方面,所记载的Mg的功函数为3.46eV(滨川圭弘编著,半导体器件工学,31页,オ一ム出版社)。因此,如果在两者之间不因化学反应等而形成不想要的势垒,可以由ZnSe和Mg的组合实现无势垒接合。
可以与双极性无机半导体无势垒接合的物质,并不限于金属。例如,Morita等发现了Cu-Al-Se类的新化合物,制作出其与ZnSe的接合并研究了电流电压特性(日本应用物理期刊,30卷,3802页,1991年)。发现了这种物质后,也可以制作与双极性无机半导体的接合,并注入电子或空穴。
本发明的n电极和p电极,包括由金属层和半导体层的组合构成的电极。例如,在与双极性无机半导体不进行无势垒接合的金属层和双极性无机半导体之间形成半导体层并作为n电极、p电极,由此可以注入载流子。
例如,当作为双极性无机半导体使用ZnSe半导体时,如果与ZnSe接触地先形成p-ZnSe,再将Pt等金属与p-ZnSe接合,则可以在ZnSe半导体中注入空穴。在这种情况下,可以将p-ZnSe/Pt的层叠结构部分称为p电极。关于n电极也是一样,例如,如果制作n-ZnSe/Al的层叠结构,则可以向ZnSe半导体中注入电子。
p-ZnSe是通过向ZnSe中导入Li或N作为受主实现的。特别是,N作为生成高浓度空穴的受主是有效的,能以良好的再现性得到1×1018/cm3左右的空穴密度(S.W.Lim等,应用物理通讯,65卷(1994),2437页)。另外,n-ZnSe是通过向ZnSe中导入Al或Cl作为施主实现的。
本发明的发光二极管,包括n型电极、p型电极中的至少一个电极的与发光层接触部分的材料使用与发光层材料实质上不同的材料形成的发光二极管。这里,所谓“实质上不同的材料”,当然包括组成、晶体结构等不同的材料,但不包括例如在形成发光层的双极性无机半导体材料中扩散了掺杂物的材料。
另外,本发明的发光二极管,从功能方面、结构方面来看与现有的所谓pin结构完全不同。现有的pin型二极管,被广泛地用作光检测用的光电二极管。pin型二极管的发光,通过将从p型半导体层输送来的空穴和从n型半导体层输送来的电子封闭在处于p型半导体层和n型半导体层中间的i层内,由此获得高的发光效率。因此,在pin型二极管中,为了将两载流子在空间上封闭在i层内,通常以几nm~几十nm的厚度形成i层。另外,为了将两载流子在能量上封闭在i层内,将i层的禁带宽度设计得比p层和n层的禁带宽度窄。因此,在现有的pin型二极管中,i层的空间厚度(膜厚)小,因此p型半导体层和n型半导体层中的载流子浓度存在上限。即,当p型半导体层和n型半导体层的载流子浓度高(例如,表示金属传导性的程度)时,施加在两层上的电位差集中在i层,i层内的电场强度变高(例如,1MV/cm),很容易造成绝缘破坏,从而起不到二极管的作用。因此,必须抑制p型半导体层和n型半导体层中的载流子浓度,从而使所施加的电位差不仅由i层而且还由p型半导体层和n型半导体层一起承载。
另一方面,当本发明的发光二极管中为“p电极(有时包括p型半导体)/发光层/n电极(有时包括n型半导体)”的层叠结构时,p电极和n电极之间的距离,相当于由双极性无机半导体材料构成的发光层的膜厚,但本发明的发光层可以设计得较厚(例如,大于或等于100nm)。因此,即使在来自p电极和n电极的载流子浓度高(例如,表示金属传导性的程度)的情况下,也能使所施加的电位差集中在发光层上,因而可以从各种材料中选择两电极的材料。
另外,现有的pin型二极管,为用单晶体衬底作为衬底并在其上依次外延生长p型(或n型)半导体层、i层、n型(或p型)半导体层的结构。因此,衬底被限定于单晶体衬底,而且,p型半导体层、i层、n型半导体层,必须在同一半导体材料中添加p掺杂物或n掺杂物来制作。
而本发明的发光二极管,并不限于由双极性无机半导体材料构成的发光层的晶体结构、材料,而是可以从各种材料中选择。作为一例,当发光层为单晶体时,只需将发光层单晶体化即可,而没有必要使p电极、n电极的材料为与发光层相同的材料类型。当在n电极之上形成发光层时,只要单晶体的发光层良好地电连接在n电极上即可。例如,在氧化物单晶体的情况下,已知晶格常数的一致性不是外延生长的必要条件,因此,可以在蓝宝石单晶体衬底上,外延生长掺杂Ga的ZnO单晶体层作为n电极后,再外延生长ZnSe层作为发光层,进而层叠具有黄铜矿结构的CuFeS2(系数,不表示严格的组成比。以下相同)作为P电极来制作本发明的发光二极管。另外,本发明的发光二极管,如上所述,发光层也可以是多晶体或非晶态,所以衬底也可以使用多晶体衬底、玻璃衬底等。
以下,给出具体的实施例,并更详细地说明实施方式。
(实施例1)作为形成发光层的双极性无机半导体,选择ZnSe。将掺杂成n型的GaAs(100)单晶晶片(载流子密度为1×1018/cm3)浸渍在所谓的Piranha溶液(H2O2、H2SO4的混合水溶液)中,除去表面的氧化物层。迅速地将其作为成膜用衬底导入到分子束外延(MBE)成膜用真空装置(EIKO Engineering公司制,真空度可达5×10-10Torr)内并固定。然后,将衬底升温到500℃,观察反射高速电子束衍射像(RHEED),确认露出了洁净且平坦的表面。进而使衬底温度降低到400℃,使Zn晶胞(cell)和Se晶胞发射各成分的分子束,并照射GaAs(100)衬底,形成厚度为2μmt的ZnSe薄膜。
接着,用飞行时间测量装置测量薄膜内的载流子迁移率。在图6中示出了测量装置的框图。在薄膜表面和衬底背面形成金属膜,并将其作为阻塞(blocking)电极51,然后,将薄膜试样固定在XYZθ台52上。由功率放大器54将由脉冲发生器53产生的矩形电压放大并在薄膜试样的两电极之间施加最大200V的电压。另外,将两电极与示波器55连接,测量在两电极间流过的过渡响应电流。另一方面,将来自脉冲发生器53的触发脉冲输入到YAG激光振荡器57,与矩形电压同步地产生激光,由非线性光学元件变换为266nm的激光波长,并照射到薄膜试样表面。激光的半值宽度为10nsec。根据电流的过渡响应曲线,求出电子的迁移率为70cm2/Vs、空穴的迁移率为10cm2/Vs。
另外,用二次离子质量分析装置测量薄膜试样内的杂质浓度。除了Zn和Se以外,没有检测到密度超过1019/cm3的杂质离子,由此可以判断杂质离子浓度小于或等于0.1%。进而,在薄膜试样表面形成电极,并用惠普公司制造的增益相位分析器4194A测量电容电压特性。由此,判断出薄膜内的载流子密度小于或等于1014/cm3。根据电子迁移率和空穴迁移率的平均值小于或等于40cm2/Vs,以及载流子密度小于或等于1×1014/cm3,求出电阻率大于或等于2×105Ωcm。用交流法求出的电阻率为1×109Ωcm。
(实施例2)与实施例1一样,将n-GaAs(100)单晶晶片浸渍在Piranha溶液中,再将其导入并固定在MBE成膜用真空装置内,升温到500℃,观察反射高速电子束衍射像(RHEED),确认露出了洁净且平坦的表面。接着,使衬底温度降到400℃,使Zn晶胞、Se晶胞和Al晶胞发射各成分的分子束,并照射到n-GaAs(100)衬底,形成厚度为2μmt的掺杂了Al的n型ZnSe薄膜。这样就形成了具有n-GaAs/n-ZnSe结构的n电极。然后,在该层之上层叠厚度为200nmt的ZnSe层,作为发光层。进而,用Oxford Applied Research公司制造的离子源将原子团状态的N原子的分子束与Zn和Se的分子束一起照射到衬底,形成厚度为2μmt的掺杂了N的p-ZnSe膜。这时,根据RHEED确认形成了以Zn为终端的ZnSe晶体膜。在最上层用溅射法形成厚度为50nmt的Pd膜后,形成厚度为200nmt的Au膜。这样就形成了具有p-ZnSe/Pd/Au结构的p电极。这种结构对应于图1所示结构的发光二极管。
图7中示出了在发光二极管的n-GaAs衬底和Au电极之间施加了电压时的电压电流曲线。得到了良好的非线性曲线。上升电压在3V左右,与作为双极性无机半导体材料的ZnSe的禁带宽度相对应。另外,图8是施加了5V电压时得到的发光光谱。a是本实施例的发光二极管的发光光谱,在波长460nm处得到了半值宽度狭窄的光谱。波长460nm,如果换算成光能,则为2.7eV,与作为双极性无机半导体材料的ZnSe的禁带宽度一致。发光部位,可以认为处在从p电极/发光层界面到发光层/n电极截面之间。
另外,在除了将发光层ZnSe的膜厚变更为500nm以外,其它按照与本实施例相同的方法制作的发光二极管中,也可以确认其发光与发光层ZnSe的膜厚为200nm时相同。进而,通过增加发光层的膜厚,可以确认绝缘耐性提高、动作时的电流稳定。
另外,在本实施例中,由于不形成发光层ZnSe,因此可以制作pn结型发光二极管。图8的b是这样制成的pn结型发光二极管的发光光谱。是具有600nm左右波长的半值宽度的发光。可以认为是来自存在于p-ZnSe中的N掺杂物的发光、或来自存在于n-ZnSe中的Al掺杂物的发光。
用S蒸镀源替代Se蒸镀源、用n-GaP单晶体衬底(考虑ZnS发光层的晶格常数)替代n-GaAs衬底、并用具有黄铜矿结构的CuFeS2层替代掺杂N的p-ZnSe层,在GaP单晶体衬底上形成ZnS发光层,制作出图1所示的发光二极管。在发光二极管的p电极和n电极之间施加了10V电压后,得到了具有335nm波长的紫外线的发光。
另外,在n-GaP单晶体衬底上,依次形成掺杂I的n-ZnS层、ZnS无机发光层(200nm)、掺杂N的p-ZnS层、Pd层、Au层,制作出图1所示的发光二极管后,能得到同样的发光特性。
另外,在n-GaP单晶体衬底上,依次形成掺杂I的n-ZnS层、ZnS无机发光层(200nm)、具有黄铜矿结构的CuFeS2层、Pd层、Au层,制作出图1所示的发光二极管后,能得到同样的发光特性。
用Te蒸镀源替代Se蒸镀源、用n-GaSb单晶体衬底(考虑ZnTe发光层的晶格常数)替代n-GaAs衬底、并用具有黄铜矿结构的CuFeSe2层替代掺杂N的p-ZnSe层,在n-GaSb单晶体衬底上形成ZnTe发光层,制作出图1所示的发光二极管。在发光二极管的p电极和n电极之间施加了10V电压后,得到了具有520nm波长的绿色的发光。
另外,在n-GaSb单晶体衬底上,依次形成掺杂Cl的n-ZnTe层、ZnTe无机发光层(200nm)、掺杂N的p-ZnTe层、Pd层、Au层,制作出图1所示的发光二极管后,能得到同样的发光特性。
另外,在n-GaSb单晶体衬底上,依次形成掺杂Cl的n-ZnTe层、ZnTe无机发光层(200nm)、具有黄铜矿结构的CuFeSe2层、Pd层、Au层,制作出图1所示的发光二极管后,能得到同样的发光特性。
另外,本实施例的发光二极管中的发光层,都是在n电极之上进行外延生长而形成的。
(实施例3)象下面这样在实施例2中变更层叠顺序。用图10对实施例3进行说明。即,在无掺杂的GaAs(100)衬底131上形成2μm的掺杂了N的p-ZnSe膜136。然后,用掩模覆盖p-ZnSe膜136的一部分,在其余部分上层叠200nm的ZnSe层135,作为发光层。进而,在其上淀积Mg膜132后,用Au膜134覆盖,将Mg/Au的层叠膜作为n电极133。接着,将覆盖p-ZnSe膜136的掩模除去,在该表面上蒸镀Pd膜138,进而淀积Au膜139,制作出p-ZnSe/Pd/Au结构,作为p电极137。在两电极之间施加了10V电压后,得到了与图8的a相同的发光光谱。
另外,当采用了掺杂Cl的n-ZnSe/Mg/Au结构作为n电极时,也能得到同样的发光特性。当采用了CuFeSe2/Pd/Au结构作为p电极时,也能得到同样的发光特性。
(实施例4)在蓝宝石衬底上,用CVD法形成GaN薄膜(500nm)作为发光层,制作出图1所示的发光二极管。这里,p电极材料使用p-GaN:Mg(意思是掺杂Mg的p型GaN。以下相同),并且,对n电极材料使用n-GaN:Si。在发光二极管的p电极和n电极之间施加了10V电压后,得到了具有大约400nm波长的紫色的发光。
作为发光层,无论是用CVD法形成InN薄膜(500nm)、还是用CVD法形成AlN薄膜(500nm),都同样地得到了良好的电流注入发光。
另外,当使用CuFeS2替代p电极p-GaN:Mg时,也证实了能得到良好的电流注入发光。
此外,本实施例的发光二极管中的发光层,都是在n电极之上通进行外延生长而形成的。
(实施例5)在Si衬底上用LP-CVD法形成3C-SiC单晶体薄膜(500nm),制作出图1所示的发光二极管。这里,p电极和n电极是这样形成的通过用离子注入法向3C-SiC单晶体薄膜内注入N或P,形成p-3C-SiC层和n-3C-SiC层,并使它们分别接触金属电极。在发光二极管的p电极和n电极之间施加了10V电压后,得到了具有大约520nm波长的绿色的发光。
本实施例的发光二极管中的发光层,是在n电极之上进行外延生长而形成的。
另外,当使用CuFeS2替代p-3C-SiC作为p电极时,也证实了能得到良好的电流注入发光。
(实施例6)作为衬底,准备表面为边长2mm的正方形、厚度为0.2mm的板状的高压高温合成的Ib型金刚石单晶体。金刚石衬底表面是通过对金刚石晶体的{100}面晶面进行机械平面研磨而形成的。其取向位错(miss-orientation)角为0.5°。使用异丙醇和丙酮对该金刚石衬底进行超声波清洗,然后,在浸渍于铬酸溶液中的同时施加超声波,进而,进行所谓的RCA清洗工序,将吸附物质除去。
接着,在金刚石衬底上,用微波等离子体化学气相生长(以下称MW-PCVD)法形成无掺杂的同质外延(homoepitaxial)金刚石膜。将清洗完的金刚石衬底在MW-PCVD装置的成膜室内安装在已接地的带加热装置的衬底座上,并进行超高真空排气(背景压力为5×10-6/pa)。用电阻加热式加热器将衬底座加热到一定温度,在使安装在衬底座上的金刚石衬底与衬底加热器的设定温度达到热平衡的条件下,向成膜室内导入频率为2.5GHz的微波,生成材料气等离子体,并在衬底上形成同质外延的无掺杂金刚石晶体膜。
材料气为以高纯度氢(H2)稀释高纯度甲烷(CH4)后的混合气,甲烷的浓度为3分子%(试样#1)、1分子%(试样#2)和0.2分子%(试样#3),材料气的总流量为100sccm,成膜室内的材料气压力为30Torr,另外,使微波功率为1kW,衬底温度为900℃。所形成的金刚石晶体膜以{100}面为其生长面表面,膜厚为10μm。
在衬底上,作为p电极的一部分,形成p-金刚石接触层,在其上层叠作为发光层的无掺杂金刚石层,然后,作为n电极的一部分,形成n-金刚石接触层,进而,与两接触层接触地形成金属电极。这里,由于使p-接触层与金属电极接触,因此,当进行发光层和n-接触层的层叠时,采用将p-接触层的一部分作为掩模,使p-接触层在表面上露出来的结构。即,本实施例的发光二极管具有图11所示的结构,在衬底161上,具有由p-金刚石接触层166/金属168构成的p电极(167)、作为发光层的无掺杂金刚石层165、由n-金刚石接触层162/金属164构成的n电极(163)。
最后,将导线和电源分别与该n电极和p电极连接,并施加电压。使n电极电位为基准电位,即0V,并使p电极电位为正值。作为电压在施加了50V后,在5.2eV(波长约为238nm)可以看到发光。此外,本实施例的发光二极管中的发光层是在p电极上进行外延生长而形成的。
另外,作为本实施例的变形例,也可以是在发光层之上形成CuFeS2作为p电极的结构。即,当在金刚石单晶体衬底上形成了n-金刚石接触层并在其上形成了作为发光层的金刚石层、作为p电极的CuFeS2层时,也可以证实同样的发光。
(实施例7)将在玻璃衬底(Corning公司制,产品序号为7059)上形成了ITO膜的衬底导入并固定在MBE成膜用真空装置内,升温到300℃。使Zn晶胞、Se晶胞和Cl晶胞发射各成分的分子束,形成1μm的含有1×1019/cm3的Cl离子的n型ZnSe层。
接着,使Cl晶胞停止发射,而使Zn晶胞、Se晶胞发射各成分的分子束,淀积500nm的无掺杂的ZnSe层,形成发光层。
然后,按0.245∶0.245∶0.51(mol比)称量Cu、Fe、S的各粉末原料并混合,使得总量为2.0g,在大约10-3Torr下真空封入到石英玻璃管中,并实施450℃10小时、975℃24小时的热处理。升温速度和降温速度都为2℃/分钟。用油压式压力机(压力500kgf/cm2)将所得到的材料加压成型为直径12mm、厚1.5mm的圆片。
将该加压成型圆片作为原料,在发光层上,以150℃衬底温度进行加压蒸镀成膜,形成由Cu0.246、Fe0.242、S0.512构成的CuFeS2层。该CuFeS2层,具有黄铜矿结构。然后,在最上层淀积300nm的Au膜。
即,形成了作为n电极的n-ZnSe/ITO、作为p电极的CuFeS2/Au。
接着,将电源的负极与n电极的ITO膜连接,将正极与p电极的Au膜连接,在施加了5V的直流电压后,可以得到发光。分光光谱,在480nm处具有细的波峰,在600nm处具有宽的波峰。
(实施例8)在实施例7中,采用ITO膜替代p电极中的Au膜制作透明型的二极管。其结果是,可以得到与实施例7的发光二极管相同的发光特性。
(实施例9)在实施例7中,形成Cu0.3、Fe0.2、S0.5层替代p电极中的CuFeS2制作发光二极管。其结果是,本实施例的发光二极管,与实施例7的发光二极管相比,在相同条件下得到的发光强度约增大了10倍。
(实施例10)在玻璃衬底(Corning公司制,#7059)上,用溅射法形成掺杂Ga的ZnO的透明膜。与实施例7一样,将该衬底设置在MBE装置内,依次层叠1μm的掺杂Cl的ZnSe膜、500nm的无掺杂ZnSe膜、200nm的CuFeSe2层,并在最上层层叠300nm的Au膜,制作二极管。即,形成了作为n电极的n-ZnSe/掺杂Ga的ZnO、作为p电极的CuFeSe2/Au。其结果是,在与实施例7相同的条件下,可以得到可见光区域的发光。
(实施例11)本实施例,相当于图9中示出的发光二极管的结构。在2mm的方形玻璃衬底(Corning公司制,#7059)上,与实施例7一样,用MBE装置淀积1μm的无掺杂ZnSe膜。在其上使用金属掩模层叠厚度为300nm的具有1mm×0.5mm大小的掺杂Cl的ZnSe膜。接着,隔着与掺杂Cl的ZnSe膜0.3mm的间隔,以300nm的厚度在无掺杂ZnSe膜上层叠具有1mm×0.5mm大小的CuFeSe2膜,使其为罗马数字的II形。进而,在已形成的掺杂Cl的ZnSe膜和CuFeSe2膜上层叠300nm的Au膜,制作出二极管。即,形成了作为n电极的n-ZnSe/Au、作为p电极的CuFeSe2/Au。
接着,将电源的负极连接在n电极的Au膜上,将正极连接在p电极的Au膜上,在施加了5V的直流电压后,可以得到可见光的发光。
权利要求书(按照条约第19条的修改)1.一种发光二极管,其特征在于,包括作为电子注入用电极的n电极;作为空穴注入用电极的p电极;以及在上述n电极和上述p电极之间配置成与两电极无势垒接合地接触、且由双极性无机半导体材料形成的无机发光层;上述双极性无机半导体材料含有II-VI族化合物、或Zn和从S、Se、Te中选择的至少一种元素。
2.根据权利要求1所述的发光二极管,其特征在于上述双极性无机半导体材料,其掺杂物浓度小于或等于0.1%。
3.根据权利要求1或2所述的发光二极管,其特征在于上述无机发光层的膜厚大于或等于10nm并小于或等于10μm。
4.根据权利要求1~3的任意一项所述的发光二极管,其特征在于上述n型电极,包含使用在上述双极性无机半导体材料中扩散了n型掺杂物的n型无机半导体材料形成的层。
5.根据权利要求1~3的任意一项所述的发光二极管,其特征在于上述p型电极,包含使用在上述双极性无机半导体材料中扩散了p型掺杂物的p型无机半导体材料形成的层。
6.根据权利要求1~3的任意一项所述的发光二极管,其特征在于上述n型电极,包含使用在上述双极性无机半导体材料中扩散了n型掺杂物的n型无机半导体材料形成的层,而且,上述p型电极,包含使用在上述双极性无机半导体材料中扩散了p型掺杂物的p型无机半导体材料形成的层。
7.根据权利要求1~3的任意一项所述的发光二极管,其特征在于
上述n型电极、上述p型电极的至少一个电极的与上述发光层接触的部分的材料,是使用与上述发光层材料实质上不同的材料形成的。
8.根据权利要求1~7的任意一项所述的发光二极管,其特征在于在结晶性衬底或玻璃衬底上,形成有双极性无机半导体材料,在该双极性无机半导体材料之上彼此非接触地形成有上述n电极和上述p电极。
9.根据权利要求1~7的任意一项所述的发光二极管,其特征在于在结晶性衬底或玻璃衬底上,形成有上述n电极或上述p电极,在该n电极或该p电极上层叠有双极性无机半导体材料,在该双极性无机半导体材料之上层叠有上述p电极或上述n电极。
权利要求
1.一种发光二极管,其特征在于,包括作为电子注入用电极的n电极;作为空穴注入用电极的p电极;以及在上述n电极和p电极之间与两电极接触地配置、且由双极性无机半导体材料形成的无机发光层。
2.根据权利要求1所述的发光二极管,其特征在于上述双极性无机半导体材料,其电子和空穴的迁移率之比在1/100~100的范围。
3.根据权利要求1所述的发光二极管,其特征在于上述双极性无机半导体材料,其空穴和电子在室温下的迁移率都大于或等于10-1cm2/Vs。
4.根据权利要求1所述的发光二极管,其特征在于上述双极性无机半导体材料,其掺杂物浓度小于或等于0.1%。
5.根据权利要求1所述的发光二极管,其特征在于上述无机发光层的膜厚大于或等于10nm并小于或等于10μm。
6.根据权利要求1~5的任意一项所述的发光二极管,其特征在于上述双极性无机半导体材料含有II-VI族化合物、或Zn和从S、Se、Te中选择的至少一种元素。
7.根据权利要求1~5的任意一项所述的发光二极管,其特征在于上述双极性无机半导体材料含有III-V族化合物、或N和从Al、Ga、In中选择的至少一种元素。
8.根据权利要求1~5的任意一项所述的发光二极管,其特征在于上述双极性无机半导体材料的主要成分为形成有sp3杂化轨道的碳。
9.根据权利要求1~8的任意一项所述的发光二极管,其特征在于上述n型电极,包含使用在上述双极性无机半导体材料中扩散了n型掺杂物的n型无机半导体材料形成的层。
10.根据权利要求1~8的任意一项所述的发光二极管,其特征在于上述p型电极,包含使用在上述双极性无机半导体材料中扩散了p型掺杂物的p型无机半导体材料形成的层。
11.根据权利要求1~8的任意一项所述的发光二极管,其特征在于上述n型电极,包含使用在上述双极性无机半导体材料中扩散了n型掺杂物的n型无机半导体材料形成的层,而且,上述p型电极,包含使用在上述双极性无机半导体材料中扩散了p型掺杂物的p型无机半导体材料形成的层。
12.根据权利要求1~8的任意一项所述的发光二极管,其特征在于上述n型电极、上述p型电极的至少一个电极的与上述发光层接触的部分的材料,是使用与上述发光层材料实质上不同的材料形成的。
13.根据权利要求1~12的任意一项所述的发光二极管,其特征在于在结晶性衬底或玻璃衬底上形成有双极性无机半导体材料,在该双极性无机半导体材料之上彼此非接触地形成有上述n电极和上述p电极。
14.根据权利要求1~12的任意一项所述的发光二极管,其特征在于在结晶性衬底或玻璃衬底上形成有上述n电极或上述p电极,在该n电极或该p电极之上层叠有双极性无机半导体材料,在该双极性无机半导体材料之上层叠有上述p电极或上述n电极。
全文摘要
本发明提供一种发光二极管,不产生由掺杂物引起的晶体的畸变、缺陷,发光效率高、没有不必要的波长的发光,并能大范围地选择发光波长。将不添加掺杂物的双极性半导体作为发光层,并使作为电子注入用电极的n电极和作为空穴注入用电极的p电极与其接合而制作发光二极管。
文档编号H01S5/00GK1791986SQ20048001328
公开日2006年6月21日 申请日期2004年4月23日 优先权日2003年4月23日
发明者川副博司, 折田政宽, 柳田裕昭, 小林哲 申请人:Hoya株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1