在有机树脂材料中形成开口的改进方法

文档序号:6845215阅读:299来源:国知局
专利名称:在有机树脂材料中形成开口的改进方法
技术领域
本发明一般性涉及用于半导体器件制造领域,具体而言,本发明提供一种用于在薄膜半导体器件中形成金属接触和其它结构的方法中的改进加工步骤。还提供一种用于薄膜光电器件的新型器件结构。
背景技术
薄膜光电(PV)模块相比于传统晶片基模块的主要优点在于低成本生产的潜力。然而,实际上难以实现节省成本,因为成本的主要部分是制造工序所涉及的加工步骤的数量和复杂程度,并且这方面的成本可快速超过所节省的材料成本。具体来说,需要精确校准的步骤数量或用来执行步骤的装置速度可与成本具有很强的关系,工艺稳定性也是如此,在某些情况下这导致需要额外的补救步骤或由于材料劣化导致成品性能下降。因此,降低校准要求、减少步骤数量、减少对设备的损伤或允许步骤更快执行的工艺改进提供明显的优点。

发明内容
本发明提供一种以预定图案在有机树脂薄膜材料中形成开口从而形成蚀刻掩模的方法,该方法包括a)将腐蚀性蚀刻剂液滴涂布在有机树脂材料薄膜表面上将要打开所述树脂膜的位置处;b)在蚀刻剂已经蚀刻穿过有机树脂而暴露出下方表面之后,将蚀刻剂从有机树脂膜和开口中洗去。
在本发明的优选实施方案中,将蚀刻剂涂布在有机树脂材料薄膜表面上的步骤包括a)将支撑表面的结构置于工作台上;b)将喷墨打印装置定位在所述表面上方并与所述表面贴近,喷墨装置和工作台相互之间可相对移动;c)将蚀刻剂装入所述喷墨装置中;d)在控制装置的控制下,使所述表面和所述喷墨装置相互之间相对移动;和e)当所述表面和所述喷墨装置相互之间相对移动时,控制所述喷墨装置以将预定量的蚀刻剂以预定图案沉积在所述表面上。
优选工作台是X-Y平台并且所述喷墨装置是固定的,从而通过移动所述喷墨装置下的工作台而实现所述表面与打印头的相对移动。
在本发明的一个实施方案中,所述表面是形成在支撑结构或衬底上方的有机树脂薄层(例如0.1-10μm),并且蚀刻剂是腐蚀性溶液。所述有机树脂优选是线型酚醛树脂或类似树脂,如常用的光刻胶。腐蚀性溶液优选例如氢氧化钾(KOH)或氢氧化钠(NaOH)溶液。在根据本发明的优选方法中,所述溶液是15%的氢氧化钾溶液。还优选在所述溶液中加入适量甘油,以提供适合于喷墨装置正确粘度,同时加入添加剂以便调整表面张力和蒸发速率。
所述喷墨装置例如可以是Ink Jet Technologies Inc.制造的128ID、64ID2或64-30型号的喷墨打印头。所述打印头要求5-20厘泊的溶液粘度。


现在将参照附图(未按比例绘制)通过实施例说明本发明的实施方案,其中图1是在玻璃衬底上涂布抗反射涂层和在抗反射涂层上沉积掺杂的半导体膜的初始步骤之后的半导体器件的截面图;图2是图1器件在完成刻线步骤以形成分隔各单元区域的单元隔离槽和在半导体层上涂布绝缘层之后的截面图;图3是采用喷墨技术、具有适合于直接涂布绝缘蚀刻剂的喷墨打印头的X-Y平台的示意图;图4是蚀刻剂图案已经直接沉积在绝缘层上之后的图2器件的截面图(略微向左偏移),目的是打开绝缘层的需要接触半导体层的下层n+型区的区域;图5是绝缘层已经打开之后图4器件的截面图,其中打开的区域需要接触半导体层的下层n+型区域;图6是进一步的蚀刻步骤完成之后的图5器件的截面图,所述蚀刻步骤的目的是在需要接触半导体层的下层n+型区的区域中除去一些掺杂的半导体膜;图7是回流步骤之后的图6器件的截面图,所述回流步骤是在通过移除需要接触半导体层下层n+型区的区域中一些掺杂半导体膜而形成的孔中流入一些绝缘层,已经将腐蚀性溶液的图案直接沉积在绝缘层上以打开需要接触半导体层上层p+型区的区域中的绝缘层;图8是腐蚀剂已经打开需要接触半导体层上层p+型区的区域中的绝缘层之后的图7器件的截面图;图9是已经进行进一步蚀刻步骤之后的图8器件的截面图,所述蚀刻步骤的目的是清洗需要接触半导体层上层p+型区的区域中所破坏的材料的掺杂半导体膜表面;图10是已经涂覆金属层以接触半导体层的p+和n+型区并且互连相邻单元之后的图9器件的截面图;图11是已经断开金属层从而在每一单元内隔离与p+和n+型区接触之后的图10器件的截面图;图12是图11的部分器件的背视图(硅侧);和图13是部分已完成的器件的图,说明相邻单元之间的互连。
具体实施例方式
参考附图,图1示出部分半导体结构11,它是下述光电器件制造方法的前体。半导体结构11形成为涂布在玻璃板形式的衬底22上的半导体薄膜,衬底上已涂有氮化硅抗反射薄涂层71。抗反射涂层71厚度为80nm。为了优化性能,该半导体薄膜包含总厚度为1-2μm、优选1.6μm的多晶硅膜12。多晶硅膜12具有60nm厚的上p+型区13和40nm厚的下n+型区以及隔离p+和n+型区的1.5μm厚的本生或轻微掺杂的p型掺杂区14。p+型和n+型层内的薄膜电阻优选为400-2500Ω/□,具有总共不超过2×1014cm-2个硼。对于n+型材料典型值为约750Ω/□,对于p+型材料的典型值为1500Ω/□。p+型和n+型层的典型厚度为20-100nm。所述玻璃表面优选具有纹理结构以促进光捕获,为了简洁,附图中未示出上述纹理结构。
划分单元如图2所示,硅膜12被所划的隔离槽16分隔成多个单元。这是通过在需要隔离槽16来限定各光电单元边界的衬底区域上扫描激光而实现的。为了划刻出槽16,将结构11转移至位于激光器下方的X-Y平台(未示出)上,该激光器在1064nm处工作并产生聚焦激光束73从而在硅中切割隔离槽。聚焦激光束以使上述槽的宽度最小,该区域为无效区域。通常,需要0.11mJ的脉冲能量以完全消融硅膜并形成宽度为50μm的隔离槽。为了确保所述槽连续,连续脉冲之间交迭50%。最优单元宽度为5-8mm,典型单元宽度为6mm。
如图2所示,优选在硅表面上使用两层绝缘层并在上述激光划刻步骤之后增加上述绝缘层。第一绝缘层是任意薄但坚固的盖氮化物(cap nitride)72。该层沿激光划刻后的单元限定槽16边缘保护暴露的硅并使硅表面钝化。盖氮化物72优选在几分钟内被完全蚀刻,以允许进入n型和p型接触位置的硅,并且其通常包含通过300-320℃温度下的PECVD沉积的60nm氮化硅。
在施加盖层72之前,将结构11转移至含5%氢氟酸溶液的容器中持续一分钟。这是为了除去残留的碎屑和可能形成的任何表面氧化物。将所述结构在去离子水中清洗并干燥。
第二绝缘层17是有机树脂薄层。绝缘树脂耐氢氟酸(HF)和高锰酸钾(KMnO4)的稀溶液,并且优选在10-6mbar的真空中稳定。最常用的绝缘材料是类似于用于光刻胶(但不含任何光活性化合物)中的线型酚醛树脂(AZ P150)。该线型酚醛树脂优选负载20-30%的白色二氧化钛颜料,用以改善遮盖性并赋予其白色,这改善其光学反射性从而有助于在硅中捕获光。树脂层17用作下述蚀刻步骤的蚀刻掩模,而且覆盖沿单元限定槽16的边缘形成的粗糙表面,该区域易于在盖氮化物层72中形成针孔。有机树脂层17还使金属层和硅之间热绝缘和光学绝缘,从而有利于在下述形成接触的加工步骤中形成金属层激光图案。
采用喷涂器在每个模块上涂布4-5μm厚的线型酚醛树脂。涂布结构11之后,使其经加热灯加热至90℃而固化。如图2所示,绝缘层17涂布在盖层72上方并扩展至单元隔离槽16中。打开掩模和蚀刻n型接触开口为了使埋入的n+型层和上p+型层与将随后形成的金属层之间形成电接触,必须穿过线型酚醛树脂层17和盖氮化物层72,在需要n型“微坑(crater)”接触和p型“凹点(dimple)”接触的位置处形成孔。首先,对于接触埋入的n+型硅层的“微坑”以及打开线型酚醛树脂层17和盖氮化物层72而言,必须从之后将成为n型金属垫的区域中移除大多数的硅膜12以形成n型接触开口32。参考图3、4和5,在线型酚醛树脂树脂层17中的微坑位置上利用喷墨技术开孔。为此,将结构11装载在装配有喷墨头91的X-Y平台上,喷墨头91具有喷嘴间距为0.5mm的多喷嘴并由控制器92控制。将玻璃用真空夹盘夹持并初始扫描以确保台上各点的变形不超过1mm。之后,将玻璃置于所述喷头91下方以一般台速400mm/s进行扫描。将稀(15%)氢氧化钾(KOH)液滴76(见图4)分布在用来形成n型“微坑”接触的位置处。奇数喷嘴喷射至奇数单元,偶数喷嘴喷射至偶数单元,使得在给定单元中,液滴线的间距为1mm。每条线内的液滴间距为400μm,因此在台速400mm/s下,液滴的释放速度为1kHz。调节液滴尺寸使得在树脂层中蚀刻出直径为约100μm的圆形开口。KOH溶液在几分钟之后即移除液滴76区域内的树脂绝缘体17,以形成图5所示的孔32。
开口32是相互间隔的孔,因而接触形成之后,其在半导体层中保持侧向连续。喷墨打印方法是将腐蚀性溶液液滴以可控方式涂布,从而仅移除将形成n型接触的区域的绝缘体。所述腐蚀性溶液优选含有氢氧化钾(KOH),还可以含有氢氧化钠(NaOH)并包含用于粘度控制的甘油。用于该目的的打印头为Ink Jet TechnologiesInc.制造的128ID、64ID2或64-30型号,并且所要打印的物质的粘度为5-20厘泊。通过打印头沉积的液滴尺寸为20-240皮升,对应的沉积液滴直径为50-150μm。在优选实施方案中,所打印的液滴直径为100μm。应该注意线型酚醛树脂是非常接近于光刻胶材料用树脂的有机树脂,并且上述蚀刻剂打印方法同样适用于使其他材料形成图案。
为了如图6所示将开口32扩展至硅层12中,将结构11在水中清洗以除去来自喷墨打印过程中的残留KOH,随后将其浸入含5%氢氟酸溶液的容器中持续1分钟,以从n型接触开口32中除去氮化硅。随后,将上述板直接转移至含4%氢氟酸(HF)和0.1%高锰酸钾(KMnO4)的容器中持续4分钟。这段时间足够去除所有的p+型层并沿晶粒边界向下蚀刻,从而暴露出适合于上述硅厚度的一些n+型层,然而,对于不同的硅层厚度、硅晶体质量和表面纹理化程度应该调整时间。随后将结构11用去离子水清洗并干燥。
硅12中所得到的开口32具有粗糙底表面82,其中某些点可被蚀刻贯通到达抗反射层71,而某些隆起83延伸进入轻微掺杂的p型区14,如图6所示。然而,一旦某些n+型区暴露出来,就可形成对n+型区的良好接触。因为p型区在n+型区附近区域轻度掺杂,因此在孔32底部还留有部分p型材料时,存在侧向电导不足,导致短路。
掩模回流因为孔32的侧壁穿过p+型区和轻度掺杂区14,因此所述侧壁需要绝缘以防止p-n结短路。这通过使绝缘层17回流来实现,使得开口32边缘附近的部分绝缘层78流入孔内形成覆盖侧壁的覆盖物79,如图7所示。为此,将上述板穿过含合适溶剂的蒸气区域。这使得绝缘层的线型酚醛树脂绝缘层17发生回流,以收缩微坑开口32的尺寸。当样品离开该区域时,将其在加热灯下加热至90℃温度以驱走残留的溶剂。
回流速度随所用溶剂的侵蚀性、浓度和温度而变化。有多种适于溶解有机树脂如线型酚醛树脂的挥发性溶剂,例如丙酮。丙酮是适用于本方法的合适溶剂,但其侵蚀性非常强,仅需几秒钟就使孔32的侧壁被树脂覆盖,且难以精确控制该过程。优选溶剂是丙二醇单甲基醚乙酸酯(PGMEA),并且将器件于室温(21℃)下置于含饱和PGMEA蒸气的气氛中持续4分钟,直至观察到绝缘层中的孔轻微收缩。
打开掩模和清洗p型接触开口随后,再次利用图3、4中所述的打印和蚀刻方法,在绝缘层17中形成另一组孔19(见图8)。通过将腐蚀性溶液的液滴81打印在需要p型“凹点”接触的位置处的绝缘体上从而形成这些开口。在利用腐蚀性溶液移除绝缘层17而形成开口19(见图8)之后,用水清洗掉所有残留的腐蚀性溶液,并且利用5%的氢氟酸(HF)蚀刻1分钟来移除开口19中的盖层72(注意可能需要10秒-10分钟的时间来移除氮化物层,这取决于其化学计量)。任选地,随后利用1%氢氟酸(HF)和0.1%高锰酸钾(KMnO4)蚀刻10秒钟,之后用去离子水清洗以提供轻微凹陷的接触“凹点”85,从而移除p+型区13表面上的任何所损坏的硅材料,以允许形成良好接触,如图9所示。该蚀刻长度足够长以除去表面的等离子体损伤而不一直经由p+型层13蚀刻。该长度也足够短,以使对n型接触的影响可以忽略。
形成金属接触器件制造的最终阶段包括沉积金属层和切片,使其形成多个独立的电连接,每个单元从p型凹点接触的一条线上集电并将电输送至相邻单元的n型微坑接触线。这样,就得到单元的单片电路互连。
施加金属层之前,将结构11浸入含0.2%氢氟酸溶液的容器中持续20秒钟。该氢氟酸从微坑和凹点接触上除去表面氧化物。蚀刻强度和持续时间的范围很宽。随后,将该结构用去离子水清洗并干燥。
参考图10,用于n型和p型接触的接触金属同时施加,这是通过在绝缘层17上沉积薄金属层28并延伸至孔32和19,从而使n+型区15和p+型区13的表面82和85接触而进行的。金属层优选是纯铝薄层,其与n+型和p+型硅形成良好接触,提供良好的侧向电导,并且具有高光学反射性。铝的厚度一般为100nm。
隔离n和p型接触通过利用激光器86(见图10)熔融和/或蒸发金属层28,由此形成如图11所示的隔离槽31,从而实现n型和p型接触的隔离。当激光器脉冲工作时,少量金属直接在光束下消融而得到孔31。
利用在1064nm处工作的激光器加工结构11,从而在金属层28中划刻隔离槽28。调节激光器,使其经由金属层28进行划刻,而不损坏硅12。这些刻痕31在每个单元中使n型接触与p型接触隔开,同时保持每个单元与其相邻单元之间的串联连接。优选激光器条件为脉冲能量0.12mJ,且光束聚焦直径为约100μm。脉冲交迭50%,且刻线间距为0.5mm。此外,沿每个单元的限定槽16存在不连续的刻痕34(见图12)。
图12示出通过上述方法制得的部分器件的背视图,从中可见器件11的每一单元包含细长的光电元件35a、35b、35c、35d,上述元件沿其长轴被多个横向金属刻痕31所分隔,其分别隔离交替组的孔19和孔32,提供与单元的p+型和n+型区的接触。横向刻痕31被制成基本笔直的长刻痕,延伸跨越器件长度,使得每条刻痕穿过每个细长的单元。
形成第一组刻痕31之后,在相邻单元11之间的单元分隔刻痕16上方形成另一组隔离刻痕34,以隔离每个第二单元对。延伸至任一细长的横向刻痕31的任一侧的金属隔离刻痕34相对于同一横向刻痕31的另一侧的金属隔离刻痕34偏移一个单元,以使单元通过交替偏置的连接矩阵36而形成串联连接,将一个单元35的一组p型接触19连接至相邻单元35的一组n型接触32,如图12所示。
金属隔离线31包含横穿单元35的第一组长刻痕,宽50-200μm,优选宽约100μm。该刻痕通常距离中心0.2-2.0mm、优选约0.5mm,以形成约0.2-1.9mm、优选约0.4mm宽的导电条。隔离线34包含平行于单元35的长度方向的第二组中断的刻痕,且基本与硅中的单元隔离槽16一致。隔离线34也形成为50-200μm宽,优选约100μm宽。在形成横向隔离线31之前也可以形成隔离线34。所述刻痕区域以断面线示于图13中。
图13示出部分已完成的结构,其示出连接一个单元的n型接触与相邻单元的p型接触以提供单元的串联连接。实际上,可以有多个n型接触成为一组,多个p型接触成为一组,然而为了清楚起见,在每一单元中仅示出一个接触。示于图13的排列也是硅中隔离槽16的示意图,并且实际上金属中的隔离槽31相互垂直,如图12所示。
本领域技术人员将理解,可以对如特定的实施方案所示的本发明进行各种变化和/或更改,而不偏离所广泛描述的本发明的精神和范围。因此,本发明实施方案在各方面均应认为是说明性的而非限制性的。
权利要求
1.一种以预定图案在有机树脂材料薄膜中形成开口从而形成蚀刻掩模的方法,该方法包括a)将腐蚀性蚀刻剂液滴图案涂布在有机树脂材料薄膜表面上将要打开所述树脂膜的位置处;b)在蚀刻剂已经蚀刻穿过有机树脂而暴露出下方表面之后,将蚀刻剂从有机树脂膜和开口中洗去。
2.权利要求1的方法,其中所述有机树脂材料是形成在支撑结构或衬底上方的有机树脂薄层(例如0.1-10μm)。
3.权利要求1或2的方法,其中所述有机树脂材料是线型酚醛树脂。
4.权利要求1、2或3的方法,其中利用氢氧化钾(KOH)或氢氧化钠(NaOH)溶液形成掩模中的所述开口。
5.权利要求1、2、3或4的方法,其中将稀(15%)氢氧化钾液滴分布在希望打开掩模的位置处。
6.权利要求1、2、3、4或5的方法,其中将蚀刻剂涂布在有机树脂材料薄膜表面上的方法包括a)将支撑表面的结构置于工作台上;b)将喷墨打印装置定位在所述表面上方并与所述表面贴近,所述喷墨装置和工作台相互之间可相对移动;c)将蚀刻剂装入喷墨装置中;d)在控制装置的控制下,使所述表面和所述喷墨装置相互之间相对移动;和e)当所述表面和所述喷墨装置相互之间相对移动时,控制所述喷墨装置以将预定量的蚀刻剂以预定图案沉积在所述表面上。
7.权利要求6的方法,其中在蚀刻剂中加入甘油,以将反应物质的粘度调节至喷墨装置所需的粘度。
8.权利要求6或7的方法,其中在蚀刻剂中混入添加剂,以调节表面张力和蒸发速率。
9.权利要求6、7或8的方法,其中所述喷墨装置是Ink Jet Technologies Inc.制造的128ID、64ID2或64-30型号的喷墨打印头。
10.权利要求9的方法,其中反应物质的粘度调节至5-20厘泊。
11.权利要求6、7、8、9或10的方法,其中所述工作台是X-Y平台并且所述喷墨装置是固定的,使得通过在喷墨装置下移动所述工作台来实现光电器件和打印头之间的相对移动。
全文摘要
将有机树脂材料如线型酚醛树脂薄膜(17)用作蚀刻掩模,并且以预定图案在掩模中形成开口(32)以允许在由所述开口限定的选择区域中进行加工。通过将腐蚀性蚀刻剂的液滴(76)图案涂布在将要形成开口的区域中而形成开口(32),蚀刻剂例如是氢氧化钠(NaOH)或氢氧化钾(KOH)。使用喷墨打印机(90)涂布液滴(76),该喷墨打印机(90)扫描整个有机树脂表面反复涂布所述液滴。液滴(76)的尺寸限定开口(32)的大小并且允许完全移除液滴(76)下方的有机树脂(17)。在蚀刻剂已经蚀刻贯穿有机树脂而暴露出下方表面(12)之后,将蚀刻剂从有机树脂和开口(32)中洗去。
文档编号H01L27/142GK1853257SQ200480025936
公开日2006年10月25日 申请日期2004年9月9日 优先权日2003年9月9日
发明者特雷沃·林赛·扬, 帕特里克·拉斯韦尔 申请人:Csg索拉尔有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1