光电转换元件阵列及其集成装置、安装结构和光处理装置的制作方法

文档序号:6867136阅读:134来源:国知局
专利名称:光电转换元件阵列及其集成装置、安装结构和光处理装置的制作方法
技术领域
本发明涉及一种光电转换元件阵列及其集成装置、安装结构和光信息处理装置。
背景技术
现在,LSI(大规模集成电路)等的半导体芯片之间的信号传输全是通过经由基板配线的电信号进行的。但是,伴随着最近MPU的高性能化,在芯片之间需要的数据接受量显著增大,结果就出现各种各样的高频率问题。作为这些的代表,列举有RC信号延迟、阻抗未匹配、EMC/EMI、交调失真等。
为了解决上述问题,迄今为止以制造业界为中心,运用配线配置的最优化或新材料开发等的各种各样的手法,来解决该问题。
但是,近年上述的配线配置的最优化或新材料的开发等的效果被物理界限继续阻止,为了今后实现系统的更高性能化,产生需要重新认识以单纯的半导体芯片的安装为前提的印刷配线板的结构的问题。近年,提案有用于解决这些诸多问题的根本对策,下面叙述其有代表性的提案。
通过多芯片模块(MCM)化进行微细配线结合把高性能的芯片安装在瓷、硅等的精密安装基板上,在母板(多层印刷基板)上实现不可能形成的微细配线结合。由此,配线的窄间距化成为可能,通过扩展总线幅度使数据接受量飞跃地增大。
通过各种半导体芯片的封固、一体化进行电气配线结合使用聚酰亚胺等对各种半导体芯片二次进行封固、一体化,在该一体化的基板上进行微细配线结合。由此,配线的窄间距化成为可能,通过扩展总线幅度使数据接受量飞跃地增大。
半导体芯片的三维结合在各种半导体芯片上设置贯通电极,并且通过把各自芯片粘合而形成层叠结构。由此,不同的半导体芯片间的接线在物理上短路化,作为结果避免信号延迟等的问题,但是,另一方面,由于层叠化产生发热量增加、半导体芯片之间的热应力等的问题。
而且,如上所述为了实现信号接受的高速化及大容量化,通过光配线开发有光传输结合技术(例如,后述的经电子学,“与光配线的遭遇”2001年12月3日的122页、123页、124页、125页、图4、图5、图6、图7及NTT R&D,vol.48,no.3,pp.271-280(1999)参照)。光配线可以适用在电子机器之间、电子机器内的插板之间或插板内的芯片之间等各种场所。
例如,如图10A至图10C所示,在印刷配线基板50上形成光波导51,通过发光元件(例如面发光激光源)52使信号调制的光(例如激光)向光波导51入射,入射的光在光波导51中导波,从光波导51输出的光通过感光元件(例如光电二极管)53感光。这样,可以构筑把光波导51作为信号调制的激光等的传输路的光传输、通信系统。
光波导51由包层60、61及被它们夹持的芯层57组成,在相对于包层60上的光入射出射部的位置设置有透镜部件58。另外,如图10B所示,芯层57多个并列设置。其中,在图10B中,包层61省略图示。
而且,发光元件52及感光元件53各自在基体56a及56b上相对多个的芯层57的各光入射、射出部设置而构成发光元件阵列62及感光元件阵列63。另外,在各发光元件52及感光元件53上设置有光学部品59,由此,有效地进行光的射出及入射。而且,发光元件阵列62及感光元件53安装在具有驱动回路元件55等的安装基板(例如内插基板)54上。
另外,如图10C所示,发光元件52连接外部连接端子64,这些发光元件52相对多个的芯层57的各光入射、射出部在基体56a上并列设置,构成发光元件阵列62。这点对于感光元件阵列63也相同。
但是,在所述的现有例的光波导51中,芯层57的高密度化(例如间距为100μm以下)在技术上是困难的。下面说明其理由。
如图10A所示,现有例的光波导51,光入射、射出部形成45°反射镜面,其是由圆板砂轮锯等的机械加工而形成。由此,如图所示,多个的芯层57的光入射、出射部相对光的导波(传输)方向在垂直方向呈直线排列。另外,也在讨论利用相同方向蚀刻等反射镜部的选择形成法,但精度、稳定性等方面不充分,现阶段被认为量产化是不可能的。
而且,由于发光元件52及感光元件53相对芯层57的光入射、出射部而配置,这些排列也为直线排列。
但是,发光元件52及感光元件53为了避免由于与邻接的元件的光干涉(光由于具有10°左右的宽度而前进、对邻接回路进行信号干涉)、元件发热而引起的交调失真(由于发光发热使邻接的元件特性发生变化。)等的不良影响,高密度阵列化是不可能的。因此,芯层57也还需要一定的间距,高密度阵列化是不可能的。
根据以上的理由,在作为使光波导51调制的激光等的传输路的现有例的光传输、通信系统中,把光配线高密度集成为100μm间距以下是困难的。另外这是因为使光传输通道保留在几十通道的水平。

发明内容
本发明是为了解决上述问题而提出的,其目的是提供一种能高密度集成光配线、而且可以通过光电转换元件降低光干涉或交调失真等、可以有效地进行光的传输的光电转换元件阵列、其集成装置及它们的安装结构和光信息处理装置。
即,本发明是涉及一种光电转换元件阵列,由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置。
另外,涉及一种光电转换元件阵列集成装置,由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置的多个光电转换元件阵列被并列设置,在邻接的光电转换元件阵列之间,各光电转换元件在阵列方向配置在不同的位置。
另外,涉及一种的光电转换元件阵列或光电转换元件阵列集成装置的安装结构,在本发明的光电转换阵列或光电转换元件阵列集成装置中的发光元件阵列与感光元件阵列相对内插基板而配置,这些阵列经由所述外部连接端子安装在所述内插基板上。
而且,涉及一种光信息处理装置,其具有光电转换元件阵列或光电转换元件阵列集成装置及相对所述光电转换元件阵列的各个元件的光波导。
对于上述的高密度集成化本发明者进行了锐意的研究,在特愿2002-364841号(有时称在先的申请发明)中,提案一种光波导的芯层多个并列配置、在邻接的芯层间光入射部的位置在光的导波方向偏移而形成的光波导,初次了解到这样的结构使利用放射光印刷工艺成为可能。由此,相对芯层的光入射、出射部配置的所述的光电转换元件(发光元件及感光元件)也可以在所述导波方向偏移而配置。此结果,即使在高密度集成化的情况下,与上述的现有例相比,由于可以使相互邻接的发光元件(或感光元件)之间的距离变大,所以与现有例相比可以降低与邻接的光电转换元件的光干涉、元件发热等引起的交调失真等的不良影响。
但是,本发明者为了进一步实现提高特性而进行锐意研究,即使是利用以前的申请发明的结构,相互邻接的发光元件(或感光元件)之间的距离不充分,就会有产生光干涉或交调失真等。
对此,本发明的光电转换元件阵列,由配置成阵列状的多个光电转换元件(发光元件或感光元件)组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置,所以即使集成密度高,邻接的所述光电转换元件之间的距离可以取得十分大。因此,可以降低安装的难易度,可以有效地防止所述光电转换元件的光学及电气的干涉或交调失真等,可以进一步追求系统的高传输容量化、低成本化。


图1A至图1C是本发明的第一实施方式的基于本发明的光信息处理装置及光电转换元件阵列(或光电转换元件阵列集成装置)的示意图;图2A及图2B是表示本发明的第一实施方式的比较通过基于本发明的光电转换元件阵列集成装置的配置列的模式图;图3是表示本发明的第二实施方式的通过基于本发明的光电转换元件阵列集成装置的其他的配置列的模式图;图4A及图4B是本发明的第三实施方式的插口的立体示意图;图5A及图5B是本发明的第三实施方式的基于采用插口的本发明的光信息处理装置的立体示意图;图6A及图6B是本发明的第三实施方式的内插基板的立体示意图;图7A至图7E是表示本发明的第三实施方式的基于采用插口的本发明的光信息处理装置的制造方法的一实施例的工序的立体示意图;图8A至图8C是表示本发明的第三实施方式的基于采用插口的本发明的光信息处理装置的一部分制造工序的平面示意图;
图9A及图9B是利用本发明的第三实施方式的基于采用插口的本发明的光信息处理装置的一实施例的模式图;图10A至图10C是现有例的采用光波导的系统的示意图。
具体实施例方式
在本发明中,所述多个光电转换元件连接各自外部连接端子,优选的是,该光电转换元件与外部连接端子的组在所述阵列方向形成反转的图形。另外,优选的是,邻接的所述组在与阵列方向正交的方向相互偏移而配置。由此,邻接的所述光电转换元件间及外部连接端子间的距离可以增大,不产生光干涉或交调失真等,可以进一步提高所述光电转换元件的集成密度,容易地配置邻接的外部连接端子,其结果,可以简单且确实地实现后述的光波导的芯层的高集成密度化。
而且,优选的是,本发明的光电转换元件阵列作为发光元件阵列或感光元件阵列而构成,优选的是,该发光元件阵列或感光元件阵列经由所述外部连接端子安装在配置有驱动回路元件的内插基板上。
下面,参照附图对本发明的优选的实施方式进行说明。
第一实施方式图1A至图1C是基于本发明的光电转换元件阵列集成装置及光信息处理装置的示意图。如图1A所示,基于本发明的光信息处理装置1在印刷配线基板2上形成光波导3,通过作为所述光电转换元件的发光元件(例如面发光激光器)4使信号调制的光(例如激光)向光波导3入射,入射的光在光波导3中进行波导,从光波导3射出的光通过作为所述光电转换元件的感光元件(例如光电二极管)5被感光。这样,可以构筑把光波导3作为信号调制的激光等的传输路的光传输、通信系统。
另外,如图1A及图1B所示,本发明的基于光电转换元件阵列集成装置6由配置成阵列状的多个发光元件4(或感光元件5)组成,这些光电转换元件4(或5)在阵列方向每隔一个配置在位于同一直线上相互不同的位置的多个光电转换元件阵列被并列设置在基板8上,在相互邻接的光电转换元件阵列之间,各光电转换元件4(或5)配置在阵列方向不同的位置。
另外,所述多个光电转换元件4(5)连接各自外部连接端子(阳极)7,优选该光电转换元件4(5)与外部连接端子7的组在所述阵列方向形成反转的图形。而且,优选邻接的所述组在与阵列方向正交的方向相互偏移而配置。由此,邻接的所述光电转换元件之间4(5)的距离可以增大,不产生光干涉或交调失真等,可以进一步提高所述光电转换元件4(5)的集成密度,其结果,可以简单且确实地实现后述的光波导的芯层的高集成密度化。另外,对应光电转换元件4(5)形成有接地极(阴极)12。
这样,基于本发明的光电转换元件阵列作为发光元件阵列或感光元件阵列而构成。
而且,所述发光元件阵列与所述感光元件阵列在内插基板9上相对而配置,这些阵列经由外部连接端子7及焊料凸起10安装在内插基板9上。另外,在内插基板9上配置有连接光电转换元件4(5)的配线(未图示)及驱动回路元件11。
另外,优选相对发光元件4及感光元件5而配置透镜部件13。由此,可以进一步有效地进行光的入射或射出。其中,在图1B中透镜部件13省略图示。
而且,如图1A及图1C所示,光波导3由密封层14及15与被其夹持的芯层16组成,在相当于密封层14上的光入射、射出部的位置设置有透镜部件17。另外,芯层16多个并列而配置,在45°镜面上形成有光入射部及光射出部。另外,相互邻接的芯层的光入射部及光射出部,对应发光元件4及感光元件5形成在光的导波(传输)方向的偏移位置。另外,在图1C中,密封层14省略图示。具有这样结构的光波导使例如利用放射光印刷工艺成为可能。
基于本发明的光信息处理装置1的机械,通过发光元件4信号被调制的光(例如激光)在透镜部件13被准直。该信号光进一步由在光波导3的光入射部形成的透镜部件17被聚光,有效地向光波导3的芯层16入射。入射光在光波导3中进行波导,通过在光波导3的光射出部形成的透镜部件17被准直,从光波导3被射出。而且,射出光由透镜部件13聚光,被感光元件5有效地感光。这样,可以构筑把光波导3作为信号调制的激光等的传输路的光传输、通信系统。
根据本实施方式,基于本发明的光电转换元件阵列由配置成阵列状的多个光电转换元件4、5组成,由于这些光电转换元件4、5在阵列方向每隔一个位于同一直线上配置在相互不同的位置,所以,即使芯层16的集成密度变高,也可以使邻接的光电转换元件4、5之间的距离变得十分大。因此,就可以降低安装的难易度,可以有效地防止光电转换元件4、5的光及电气的干涉或交调失真。可以进一步追求系统的高传输容量化、低成本化。
另外,由于可以获取透镜部件13的占有面积,可以谋求提高结合效率,其结果是提高系统的可靠性、抑制消耗电力等成为可能。
而且,由于也可以使邻接的外部连接端子7(及焊料凸起10)之间的距离变大,因此,可以实现提高可靠性、量产性。
图2A是表示以前发明的配置例的模式图,图2B是表示本实施方式的配置例的模式图。
一般地,在邻接的元件4、5中,一侧的元件的热量传递到另一侧的元件,由此降低高频特性,因此,只要确保邻接元件的间隔大约为100μm就没有问题。如图2A所示,在以前的发明的配置例中,邻接的元件的间隔可以形成200μm。对此,如图2B所示,在本实施方式的配置例中,所述的光电转换元件阵列之间的元件间隔A可以为256μm,另外,相同的所述的光电转换元件阵列之间的元件间隔B可以为223μm,与以前发明的配置例相比,间隔可以形成更大。
另外,焊料凸起10的凸起尺寸的微小化在发展,当考虑可靠性、量产性时,优选其尺寸为φ50μm以上。另外,优选该凸起间距为尺寸的约两倍的100μm以上。当为100μm以下时,邻接的焊料凸起10溶解时结合可能会产生短路不良。如图2A所示,在以前的发明的配置例中,邻接的焊料凸起10的间隔可以形成200μm。对此,如图2B所示,在本实施方式的配置例中,焊料凸起的间隔可以为223μm,与以前发明的配置例相比,间隔可以形成更大。
而且,对应元件4、5而配置的透镜部件13的透镜直径成为邻接元件间的距离以下的大小。另外,通过透镜部件13的光的光束考虑由于安装而产生的偏差为减去安装容许误差的值(这是因为光信号泄漏到相邻的信号系统。)。但是,为了提高透镜部件13的结合效率需要所述光束尽量变大。在图2A中省略图示,在以前的发明的配置例中,透镜部件的最大直径可以形成为φ200μm。对此,如图2B所示,在本实施方式的配置例中,透镜部件13的最大直径可以为φ223μm,与以前发明的配置里相比可以形成更大。
另外,多个光电转换元件4、5与被多个光电转换元件4、5各自连接的焊料凸起10之间的距离一般为100μm。
由以上可以明确,根据本实施方式,基于本发明的光电转换元件阵列由配置成阵列状的多个光电转换元件4、5组成,由于这些光电转换元件4、5在阵列方向每隔一个位于同一直线上配置在相互的位置,所以,即使芯层16的集成密度变高,也可以使邻接的光电转换元件4、5之间和外部连接端7之间的距离变得十分大。因此,就可以降低安装的难易度,可以有效地防止光电转换元件4、5的光及电气的干涉或交调失真。可以进一步追究系统的高传输容量化、低成本化。
另外,由于可以获取透镜部件13的占有面积,可以谋求提高结合效率,其结果是提高系统的可靠性、抑制消耗电力等成为可能。
而且,由于也可以使邻接的外部连接端子7(及焊料凸起10)之间的距离变大,因此,可以实现提高可靠性、量产性。
第二实施方式为了使邻接的光电转换元件4、5的距离进一步变大,如图3所示,在基于本发明的光电转换元件阵列中,也可以把光电转换元件在阵列方向每隔一个在芯层的光波导方向移动(例如26μm)。由此,所述光电转换元件阵列之间的元件间隔A(及邻接的焊料凸起10之间的距离)可以为236μm,另外,相同的所述光电转换元件阵列内的元件间隔B可以为236μm,与图2B所示的第一实施方式的配置例相比可以形成更大。而且,透镜部件13的最大直径可以为φ236μm,与图2B所示的第一实施方式的配置例相比可以形成更大。由此,可以进一步提高光的结合效率。
第三实施方式基于本发明的光信息处理装置,如上所述,具有基于本发明的光电转换元件阵列、相对该光电转换元件阵列的光波导,其结构在没有脱离本发明的内容的范围内可以适宜选择,例如,可以适用于具有插口与所述插口内设置的光波导的结构。
图4A及图4B是所述插口的立体示意图。图4A从设置所述插口的所述光波导的一面侧观察到的立体示意图,图4B是从图4A的相反的一面侧观察到的立体示意图。
如图4A及图4B所示,在插口20上设置有用于定位所述光波导并进行固定的由凹凸机构组成的定位装置。具体地,所述凹凸结构具有嵌入所述光波导用于其宽度方向定位的凹部21与用于所述光波导方向的长度方向定位的突起部22。另外,凹部21的深度比所述光波导的厚度大。
另外,在插口20的所述凹凸结构的凸面23上,设置有导通插口20的表面及背面的导通装置例如端销24。而且,在该凹凸结构的凸面23上,如下所述,基于本发明的光电转换元件阵列或光电转换元件阵列集成装置被固定。
作为插口20的材质只要是绝缘性树脂,可以适用现有公知的材料,例如列举有含有玻璃的PES(聚硫化乙烯)树脂、含有玻璃的PET(聚对苯二甲酸乙二醇酯)树脂等。这些插口20的材料,其种类、绝缘性、可靠性等的数据已经存在很多,另外,处理的制造厂家也涉及多方面。因此,在功能、成本、可靠性等全部是容易得到的构造物,也容易实现与现有的印刷配线基板安装工序的融合。
插口20的制造方法没有特别限定,但例如可以使用具有所述凹凸结构的模具通过成形容易地制作。
图5A及图5B是使用上述的插口20的基于本发明的光信息处理装置1的剖面示意图。
如图5A及图5B所示,使用插口20的基于本发明的光信息处理装置1具有一对的插口20与在该插口20上设置的光波导3,在该一对插口20之间架设有光波导3。另外,光波导3省略图示,在其内部具有并列配置的多个的芯层。这时,由于光波导3与后述的印刷配线基板是非接触,利用在使用时产生的热量可以有效地防止光波导3被破坏。
另外,在插口20的所述凹凸结构的凸面23上具有基于本发明的光电转换元件阵列(或光电转换元件阵列集成装置)的内插基板9被固定。在内插基板9的一侧的面上安装有基于本发明的光电转换元件阵列(或光电转换元件阵列集成装置)6,在另一侧的面上安装有驱动回路元件11a、11b。
如图6A及图6B所示,内插基板9在一侧的面上安装有驱动回路元件11a、11b,在另一侧的面上安装有基于本发明的作为光电转换元件阵列(或光电转换元件阵列集成装置)的发光元件阵列6a、感光元件阵列6b。另外,在内插基板9的周边部设置有其他的信号配线用电极27。
而且,在凹部21上固定设置光波导3而组成的一对的插口20和内插基板9时,使内插基板9的安装光电转换元件阵列6a、6b的一侧面与插口20的凸面23相接而构成,另外,使插口20的端销24与内插基板9的其他的信号配线用电极(未图示)电连接而固定。
另外,由于插口20的凹部21的深度比光波导3的厚度(例如1mm)大而形成(例如所述深度为2mm),如图5A及图5B所示,可以在光波导3的一侧的面26与内插基板9之间形成空间25。
如上所述,由于在插口20上经由内插基板9安装驱动回路元件11a、11b、及在光波导3的一侧的面26与内插基板9之间形成空间25,即使在光信息处理装置1的使用时驱动回路元件11a、11b发热,也可以有效地防止由于该热量使光波导3被破坏。
该动作的机械,把从一侧的驱动回路元件11a发送的电信号转换成光信号,从发光元件通过激光器作为光信号被射出。被射出的光信号入射到光波导3的对应的一个芯层的光入射部,在光波导延伸的导波方向被导波,从另一侧的芯层的光射出部射出。而且,从光波导被射出的光信号在对应的感光元件被感光并转换成电信号,作为电信号被传送到另一侧的驱动回路元件11b上。
本实施方式的光信息处理装置1可以构成把光波导3作为光配线使用的光配线系统。即,以电连接印刷配线基板的状态固定该光信息处理装置1。
根据本实施方式,基于本发明的光电转换元件阵列由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置,所以即使集成密度高,邻接的所述光电转换元件之间的距离可以取得十分大。因此,可以降低安装的难易度,可以有效地防止所述光电转换元件的光学及电气的干涉或交调失真等,可以进一步追究系统的高传输容量化、低成本化。
另外,由于可以获取透镜部件的占有面积,可以谋求提高结合效率,其结果是提高系统的可靠性、抑制消耗电力等成为可能。
而且,由于也可以使邻接的外部连接端子(及焊料凸起)之间的距离变大,因此,可以实现提高可靠性、量产性。
另外,可以使驱动回路元件11a、11b与所述光电转换元件间的信号线变短且等长。因此,电信号的干扰对策、交调失真对策也变得容易,使光调制速度提高成为可能。
另外,由于光波导3设置在插口20的凹部21的状态下可以电连接在所述印刷配线基板上,现有的所述印刷配线基板的安装结构保持原样就变成可以利用的结构。因此,只要在所述印刷基板上设有可以设置插口20的区域,其他的一般的电气配线利用现有的工艺就能形成。
另外,即使光波导3对高温处理弱,例如,在所述印刷配线基板上固定插口20,包括回流焊、下填充树脂密封等的高温工艺,完成整个的安装工艺后,由于在插口20的凹部21上可以设置光波导3,所以,光波导3不会由于高温导致损害而可以进行其安装。
另外,与所述印刷配线基板相比较可以利用刚性高的树脂制作插口20,在该插口20上,由于可以进行所述发光元件或感光元件及光波导3之间的光耦合,所以,可以容易地确保光耦合需要的安装精度。例如,利用现有的模制技术,可以确保几μm级的组装精度。因此,光总线的高密度化成为可能。
另外,在现有例的电气配线结构中,由于在印刷配线基板上直接设置光波导,当伴随着驱动回路元件11a、11b的高功能化从驱动回路元件11a、11b引出的针或配线增大时,根据光波导就阻碍印刷配线基板的设计的自由度。由此,印刷配线基板的高功能化变得困难,结果变成依赖于全部功能集中在单芯片上的SOC(系统在芯片上)的状况。对此,根据基于发明的光信息处理装置1,由于在光波导3在设置于插口20的凹部21的状态下可以电连接所述印刷配线基板,在确保所述印刷配线基板的高密度配线与其设计的自由度的同时可以在所述印刷配线基板上以廉价且高的自由度展开光配线系统,可以期待在所述印刷配线基板上的高速分散处理、电子设备整体的高功能化及开发的短TAT(周期turn around time)化等。
接着,对于基于本发明的光信息处理装置1的制造方法的一例参照图7A至图7E~图9A及图9B进行说明。
首先,如图7A及图7B所示,在印刷配线基板2上,安装一对的插口20。这时,印刷配线基板2上的电极(未图示)与插口20的端销24进行对位,使所述电极与插口20电连接而进行安装。
另外,虽图示省略,但预先在印刷配线基板2上进行其他电子部件等的安装及形成电气配线。
接着,如图7C所示,在插口20的凹部21上设置光波导3,在该一对的插口20之间架设光波导3。这时,利用在插口20设置的所述凹凸结构的突起部22,可以在光波导3的长度方向简单地进行定位,另外,利用凹部21可以在光波导3的宽度方向简单地进行定位。另外,由于在插口20的凹部21上设置光波导3,所以,光波导3与印刷配线基板2为非接触的状态。
作为把光波导3向插口2的粘接固定手段,并没有特别限定,例如可以利用粘接性树脂进行。具体地,首先,如图8A所示,在插口20的凹部21的底面上以任意的形状形成槽28。这时,槽28的端部位于直到插口20的突起部22的周边部而形成。接着,如图8B所示,在插口20的凹部21上,设置由多个芯层16并列配置而组成的光波导3。如上所述,光波导3的长度方向及宽度方向的定位利用设置在插口20上的突起部22及凹部21可以容易地进行。在这里,由于槽28位于直到插口20的突起部22的周边部而形成。所以,槽28的一部分成为被光波导3覆盖的状态。接着,如图8C所示,通过从没有被光波导3覆盖的槽28的一部分使用分配器29等注入粘接性树脂并固定,可以把光波导3粘接固定在插口20的凹部21上。
如上所述把光波导3设置在插口20上之后,如图7D所示,在插口20的凹面23上固定内插基板9。另外,在内插基板9的一侧的面上安装作为所述驱动回路元件的例如MPU(微处理单元)11a或DRAM(动态随机存取存储器)11b,在另一面侧安装光电转换元件阵列6a、6b。这时,使内插基板9安装光电转换元件阵列6a、6b的一面与插口20的凸面23相接而构成,另外,使在插口20的凸面23上露出的尾销(未图示)与内插基板9的其他的信号配线用的电极27进行电连接而固定。
接着,如图7E所示,在MPU11a、DRAM11b上各自设置铝的翼片30。
如上所述,使用基于本发明的光信息处理装置1,可以构成把光波导3作为光配线使用的光配线系统。
在这里,图9A及图9B是表示在印刷配线基板2上展开基于本发明的光处理装置1的实施例的模式图。例如,通过把光波导模块规格化,可以在四个方向自由自在地展开。
根据本实施方式,基于本发明的光电转换元件阵列由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置,所以即使集成密度高,邻接的所述光电转换元件之间的距离可以取得十分大。因此,可以降低安装的难易度,可以有效地防止所述光电转换元件的光学及电气的干涉或交调失真等,可以进一步追究系统的高传输容量化、低成本化。
另外,由于可以获取透镜部件的占有面积,可以谋求提高结合效率,其结果是提高系统的可靠性、抑制消耗电力等成为可能。
而且,由于也可以使邻接的外部连接端子(及焊料凸起)之间的距离变大,因此,可以实现提高可靠性、量产性。
另外,可以使驱动回路元件11a、11b与所述光电转换元件间的信号线变短且等长。因此,电信号的干扰对策、交调失真对策也变得容易,使光调制速度提高成为可能。
另外,由于光波导3设置在插口20的凹部21的状态下可以电连接在印刷配线基板2上,现有的印刷配线基板2的安装结构保持原样就变成可以利用的结构。因此,只要在印刷基板2上设计可以设置插口20的区域,则其他的一般的电气配线利用现有的工艺就能形成。
另外,即使光波导3对高温工艺弱,例如,在印刷配线基板2上固定插口20,包括焊料逆流、下填充树脂等的高温工艺,完成整个的安装工艺后,由于在插口20的凹部21上可以设置光波导3,所以,光波导不会由于高温受到损害而可以进行其安装。
另外,与印刷配线基板2相比较可以利用刚性高的树脂制作插口20,在该插口20上,由于可以进行所述发光元件或感光元件及光波导3之间的光耦合,所以,可以容易地确保光耦合需要的安装精度。例如,利用现有的模制技术,可以确保几个μm级的组装精度。因此,光总线的高密度化成为可能。
另外,由于在光波导3设置在插口20的凹部21的状态下可以电连接在印刷配线基板2上,在确保印刷配线基板2的高密度配线与其设计的自由度的同时可以在所述印刷配线基板上以廉价且高的自由度展开光配线系统,可以期待在所述印刷配线基板上的高速分散处理、总电子设备的高功能化及开发的短TAT(turn around time)化等。
而且,由于经由内插基板9把驱动回路元件11a、11b安装在插口20上、及光波导3的一侧的面26与内插基板9之间形成空间25,即使在使用光信息处理装置1时驱动回路元件11a、11b发热,也可以有效地防止由于该热量导致光波导3被破坏。
以上,对本发明的实施方式进行了说明,上述的例子可以基于本发明的技术思想进行各种变更。
例如,本发明适用于在激光上传输信号的上述光配线系统,但除此之外,也可以根据光源等的选择适用于显示等。
工业实用性本发明适用于在光波导上有效地被聚光成所定的光束并射出、或有效地入射到光波导之后使射出的光入射到下级回路的感光元件(光配线或光电检测器)而构成的光配线等的光信息处理装置。
权利要求
1.一种光电转换元件阵列,其特征在于,由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置。
2.如权利要求1所述的光电转换元件阵列,其特征在于,所述多个的光电转换元件连接各个外部连接端子,该光电转换元件与外部连接端子的组在所述阵列方向形成反转的图形。
3.如权利要求2所述的光电转换元件阵列,其特征在于,邻接的所述组在与阵列方向正交的方向相互偏移而配置。
4.如权利要求1所述的光电转换元件阵列,其特征在于,其作为发光元件阵列或感光元件阵列而构成。
5.如权利要求2所述的光电转换元件阵列,其特征在于,驱动回路元件经由所述外部连接端子安装在配置的内插基板上。
6.一种光电转换元件阵列集成装置,其特征在于,由配置成阵列状的多个光电转换元件组成,这些光电转换元件在阵列方向每隔一个配置在位于同一直线上相互不同的位置,多个光电转换元件阵列并列设置,在相互邻接的光电转换元件阵列之间,各光电转换元件在阵列方向配置在不同的位置。
7.如权利要求6所述的光电转换元件阵列集成装置,其特征在于,所述多个的光电转换元件连接各个外部连接端子,该光电转换元件与外部连接端子的组在所述阵列方向形成反转的图形。
8.如权利要求7所述的光电转换元件阵列集成装置,其特征在于,邻接的所述组在与阵列方向正交的方向相互偏移而配置。
9.如权利要求6所述的光电转换元件阵列集成装置,其特征在于,所述光电转换元件阵列作为发光元件阵列或感光元件阵列而构成。
10.一种光电转换元件阵列或光电转换元件阵列集成装置的安装结构,其特征在于,权利要求4或权利要求6记载的发光元件阵列与感光元件阵列相对内插基板而配置,这些阵列经由所述外部连接端子安装在所述内插基板上。
11.如权利要求10所述的光电转换元件阵列或光电转换元件阵列集成装置的安装结构,其特征在于,所述多个的光电转换元件连接各个外部连接端子,该光电转换元件与外部连接端子的组在所述阵列方向形成反转的图形。
12.如权利要求11所述的光电转换元件阵列或光电转换元件阵列集成装置的安装结构,其特征在于,邻接的所述组在与阵列方向正交的方向相互偏移而配置。
13.一种光信息处理装置,其特征在于,具有权利要求1~9的任意一项所述的光电转换元件阵列或光电转换元件阵列集成装置和相对所述光电转换元件阵列的各个元件的光波导。
全文摘要
一种光电转换元件阵列及其集成装置、安装结构和光信息处理装置,光电转换元件阵列由配置成阵列状的多个光电转换元件(发光元件(4)、感光元件(5))组成,这些光电转换元件(4)、(5)在阵列方向每隔一个配置在位于同一直线上相互不同的位置。光电转换元件阵列的安装结构如下,本发明的光电转换元件阵列中的发光元件阵列与感光元件阵列相对内插基板(9)而配置,这些阵列经由外部连接端子(7)安装在内插基板(9)上。光信息处理装置(1)具有本发明的光电转换元件阵列、相对所述光电转换元件阵列的各个元件的光波导(3)。由此,可以高密度地集成光配线,且利用光电转换元件可以降低光干涉或交调失真,有效地传输光。
文档编号H01S5/00GK1998092SQ20058002339
公开日2007年7月11日 申请日期2005年3月3日 优先权日2004年5月28日
发明者大鸟居英 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1