带有多个光学元的高亮度led封装的制作方法

文档序号:6868773阅读:137来源:国知局
专利名称:带有多个光学元的高亮度led封装的制作方法
技术领域
本发明涉及固态光源,特别适用于封装的发光二极管(LED)领域。
背景技术
LED是光源的理想选择,部分是由于它们的相对较小的尺寸、低的功率/电流要求、高的速度、长的寿命、结实的封装、各种可用的输出波长以及与现代电路板的兼容性。这些特性可以帮助解释在过去的几十年中LED在多种不同终端应用中的广泛使用。在效率、亮度和输出波长等方面继续对LED进行改进,从而进一步扩大了其潜在的终端应用的领域。
LED通常以封装的形式出售,其中包括安装在金属管座(header)上的LED管芯或芯片。该管座具有LED管芯安装在其中的反射杯和连接到LED管芯的电引线。所述封装还包括密封LED管芯的模制透明树脂。该密封树脂通常具有名义上半球形的前表面,以使从LED管芯发出的光部分准直。

发明内容
本申请公开一种封装的固态光源,该光源利用LED管芯。提供了多个光学元件,每个光学元件具有输入表面,光学元件的尺寸和布置方式使得输入表面相互间隔开,并且与LED管芯的发光表面的不同部分光学接触。
在一些实施例中,光学元件可分别具有比各自的输入表面大的输出表面,以及至少一个连接输入表面和输出表面的反射侧表面。在一些实施例中,光学元件可由光学材料中的一个或多个凹槽限定。在一些实施例中,光学元件可在其间限定间隙。在这种情况下,可在一个或多个这种间隙内布置功能件,例如电触点或散热流体。光学元件可具有接近LED管芯的折射率的高折射率,和/或高导热率。
从下面的详细描述中可以看出本发明的这些和其它方面。但是,不应把上面的综述理解成对所要求保护的主题的限制,该主题仅由所附的权利要求书限定,而权利要求书在申请过程中是可以修改的。


在整个说明书中参考附图,在附图中,相同的附图标记表示相同的元件,其中图1和图2是具有增亮层的LED封装的示意剖视图;图3和图4是具有增亮层的更多的LED封装和锥形光学元件的示意剖视图;图5示出了LED管芯的模拟的亮度和光强输出与锥形元件在LED管芯的前发光表面上的覆盖区的大小的函数关系;图6、图7和图8是示出使用复合锥形元件的LED封装的示意剖视图,其中图8还示出与LED管芯耦合的多个锥形元件;以及图9是具有增亮层和多个光学元件的另一LED封装的示意剖视图。
具体实施例方式
在上文的背景技术中描述的常规LED封装的一个缺点是,将在LED管芯内产生的光传输到外部环境(通常,是指空气)的效率低。这种低效率的主要原因是LED管芯的半导体层的折射率高,以及密封树脂与(限定发光表面的)LED管芯的外部之间的折射率失配大。这种失配促使大量的光在LED管芯内发生全内反射(TIR),从而导致所述光被捕获并最终被吸收。
典型LED封装的另一个缺点涉及LED管芯的较差的热控制能力,其过度地限制可流过LED二极管结的电流量。这又限制LED封装可实现的亮度和光强输出。较差的热控制能力是指从LED管芯排热的性能非最佳,由于使得LED管芯在给定电流下比所需的情况运行得更热,所以它也可能会损害LED的寿命。在上述的已知的LED封装中,将LED管芯结合到金属管座上,提供了从LED管芯的背面中合理的排热。但是,LED管芯的前发光表面与密封树脂接触,所述密封树脂具有低导热率,从而从LED管芯中排出极少的热。
对于很多终端应用来说,人们希望改进LED封装以便将在LED管芯内产生的更多的光耦合到外部环境,从而提高装置的光强输出。人们还希望改进LED封装以便增强LED管芯的亮度(在给定驱动电流下)。人们还希望改进LED封装以便加强对LED管芯的热控制,从而提供更低的LED管芯工作温度和/或更高的可实现的LED驱动电流。
在下文中,在对可能仅使用单个光学元件的相关实施例的讨论中,公开了使用多个光学元件的高亮度LED封装及其相关的优点。
在图1中,LED封装10包括安装在管座或其它底座14上的LED管芯12。为了简单起见,大致示出管芯和底座,但是读者应该理解,它们可以包括本领域中所知的常规设计特征。例如,LED管芯12可以包括不同的p掺杂半导体层和n掺杂半导体层、基底层、缓冲层和覆盖层。在图中,LED管芯的主发光表面12a、底表面12b和侧表面12c为简单的矩形布置形式,但是,也可以是其它已知的构造,例如,形成截顶的倒棱锥LED管芯形状的倾斜侧表面。为了简单起见,也没有示出与LED管芯连接的电触点,但是,如现有技术中已知的那样,可以在管芯的任何表面上设置电触点。在示例性实施例中,管芯具有两个触点,这两个触点都设置在管芯的底表面12b上,和“倒装芯片”LED管芯设计的情况一样。而且,底座14可以充当支撑基底、电触点、散热装置和/或反射杯。
LED封装10还包括密封或包围管芯12的透明光学元件16。所述光学元件16的折射率介于LED管芯(更准确地说是LED管芯的靠近发光表面12a的外部)的折射率和周围介质(通常为空气)的折射率之间。在许多实施例中,理想的是,为元件16选择其折射率尽可能高但不大大超过LED管芯的折射率的材料,因为LED管芯和元件16之间的折射率差越小,管芯中捕获和丢失的光就越少。所示的光学元件16具有弯曲的输出表面,其可以帮助确保光从LED封装中传输到周围介质中,而且也可以用来使由LED管芯发出的光至少部分地聚焦或准直。也可以用具有其它形状的光学元件使光准直,包括下文进一步讨论的锥形形状。
LED封装10在光学元件16和管芯之间还设置有图案化的低折射率层18,该低折射率层具有这样的作用,即选择性地保存一些光滞留在LED管芯中,以便增强在发光表面12a的局部孔径或者区域20中的亮度。图案化的低折射率层18与侧表面12c和发光表面12a的除孔径20之外的部分基本上光学接触,而光学元件16与发光表面12a的在孔径20区域之上的部分光学接触(在这点上,“光学接触”是指表面或者介质间隔足够近地靠在一起,包括但不限于直接的物理接触,使得例如低折射率层或者透明元件的折射率性质控制或者相当大地影响在LED管芯内传播的至少一些光的全内反射)。图案化的低折射率层18的折射率远远低于LED管芯的折射率和透明元件16的折射率。层18在期望促进捕获光的那些位置上也是光学厚的。“光学厚的”的意思是指,其厚度大到足以避免受抑全内反射;或者,在该层的一侧上的介质(例如光学元件16)的折射率性质不会控制或者相当大地影响在该层的另一侧上的介质(例如LED 12)中传播的至少一些光的全内反射。图案化的低折射率层的厚度优选大于所感兴趣的光能在真空中的波长的约十分之一,较优选地大于所感兴趣的光能在真空中的波长的一半,更优选地大于所感兴趣的光能在真空中的波长。层18的“图案化”还意味着包括这样的实施例,其中,层18在LED发光表面上是连续的,但是在孔径20和光学厚的其它位置上极薄(从而对保持全内反射是无效的)。有益的是,层18是透明的介电材料,或者在LED管芯的表面上至少包括一层这样的材料。这些材料优于通过仅仅向LED施加一层金属而制得的反射涂层,例如,因为介电材料对于在LED管芯中的大量光可以提供100%的反射(通过TIR),而单一的金属涂层具有远远小于100%的反射率,尤其在高的入射角时。
图案化的低折射率层18以降低LED的其它部分(例如,除孔径20以外的发光表面12a的部分)的亮度为代价来增强LED的某些部分(例如,在孔径20中)的亮度。这种效应依赖在工作期间具有足够低的内部损耗,以支持发射光在LED管芯内的多次反射的LED管芯。随着改进LED管芯制造和设计,可以期望降低表面或者体吸收造成的损耗,提高内部量子效率,并且可以期望本文所述的增亮效应能提供越来越大的好处。通过改进基底和外延沉积方法,可以减少体吸收。通过改善的背反射体,例如,通过将外延层结合到高反射性金属反射镜上或者通过在LED结构中结合单向反射镜,可以减少表面吸收。当与成形LED管芯的背面结合时,这种设计可以更有效地增加通过顶表面的光输出。在示例性实施例中,底表面12b的大部分是高反射性的材料,例如金属或者介电堆。在LED发射波长处,反射体的反射率优选大于90%,较优选地大于95%,更优选地大于99%。
再次参考图1,任意的发光点光源22例如发射光线24。LED管芯12和透明元件16的折射率使得在LED/光学元件界面上与发光表面12a第一次相遇的光线透射入元件16中,并被元件16折射。然而,图案化层18将该位置处的界面改变成全内反射光线24。如图1所示,该光线传播通过LED管芯的厚度,被背表面12b反射,然后再次遇到发光表面12a,由于没有层18,所以光线这次透射进入透明元件16中。因此,以发光表面12a的被低折射率层18覆盖的部分为代价,在发光表面12a的孔径20处的部分变得更亮(每单位面积且每单位立体角的光通量更多)。
在图1的实施例中,如果入射在低折射率层18上的LED内的一些光相对于发光表面12a的法向矢量的入射角足够小,以致于它只是通过低折射率层18,则这些光仍可以透射进入元件16中。因此,入射在LED管芯的被低折射率层涂布的部分上的光具有非零的透射角,但是透射角的范围比入射在LED管芯的未涂布的部分上的光的透射角的范围小。在另一可选的实施例中,低折射率层18可以被良好的垂直入射反射体(例如反射金属或者干涉反射体)覆盖,以在不损失低折射率层18提供的TIR好处的情况下,增加对LED中的光的重复利用,并且进一步增强孔径20处的亮度。可任选地,干涉反射体可以设置在管芯的外表面和低折射率层18之间。
合适的低折射率层18包括氟化镁、氟化钙、二氧化硅、溶胶凝胶、碳氟化合物和硅的涂层。气凝胶材料也是合适的,因为它们可以实现极低的有效折射率,即,约1.2或者更小,或者甚至约1.1或更小。气凝胶是通过在高温和压力临界点干燥由填充有溶剂的胶状二氧化硅结构单元组成的凝胶而制成的。所得到的材料是欠密的微孔介质。低折射率层18的示例性厚度为约50nm至100,000nm,优选为约200nm至2000nm,这取决于材料的折射率。层18折射率低于光学元件16的折射率,并且低于LED管芯或者该管芯的接近(一个或多个)发光表面的那一部分的折射率,其中,光学元件16可以是模塑树脂或者其它密封材料。层18的折射率优选小于约1.5,更优选小于1.4。低折射率层18可以是介电材料的实心层,或者可以是在LED管芯和透明元件16之间的真空间隙或者填有气体的间隙。
LED管芯的外表面可以是光学光滑的,即,具有小于约20nm的表面光洁度RA。LED的外表面的一些、全部或者部分也可以是光学粗糙的,即,具有大于约20nm的表面光洁度RA。侧面的多个部分或者顶表面相对于LED光学的底面也可以是非正交的角度。这些角度的范围可以相对正交状态偏离0度至45度。此外,LED管芯的主表面或者次表面不必一定是平坦的。例如,LED管芯的发光表面的(一个或多个)凸起部分可以接触光学元件的大致平坦的底表面,以至少限定图1至图3中的孔径20、20a和34。
由基本没有低折射率层18的部分形成的孔径20的形状可以是圆形、矩形、正方形或者更复杂的形状,无论是多边形还是非多边形,规则的还是非规则的。如下面更详细的描述所示,也可以有多个孔径。通常根据期望应用的功能来选择(一种或多种)孔径形状,并且可以调整孔径形状以优化整体系统性能。还可以用连续的或者非连续的低折射率涂布区域图案或网格使孔径的表面图案化,或者,提供具有厚度梯度或者折射率梯度或者二者的低折射率层,以改变在整个孔径表面上的光输出的分布。孔径还可以覆盖整个顶发光表面12a,其中,侧表面12c的至少一部分被低折射率层覆盖。
转到图2,这里示出与LED封装10相似的LED封装10a,但是,其中,低折射率层18已经被改变成在中心孔径中包括网格状的低折射率涂布区域。因此,改变的低折射率层标记为18a,改变的中心孔径标记为20a。其它元件保持图1中所用的附图标记。如图所示,网格状的低折射率区域可以布置成图案,图案在孔径边缘附近相对比较密,使得该区域中的透射率相对比较低。在对于系统设计需要特定的空间均匀性或者输出分布的高亮度LED中,能够调节通过孔径的透射率是有用的。这种在孔径内布置低折射率介质的方案同样可以适用于其它公开的实施例,包括但不限于图3、图4和图6至图8的实施例。
可以用低折射率材料涂布孔径,该低折射率材料的厚度或者折射率或者二者与限定孔径的低折射率材料(为了方便起见,称为“周围的低折射率材料”)不同。这种设计灵活性可以用来改变由封装的LED发射的光的角度分布。例如,用其折射率位于光学元件16的折射率和周围的低折射率材料的折射率之间的材料涂布孔径20或20a,将限制由孔径发射的光的角度范围,这导致本来通常以大角度发射的光在LED管芯内被循环使用,并且增加在可以更有效地被相关的光学系统使用的角度范围内的光输出。例如,用于电子投影系统中的集光装置不会有效地使用在常用的F/2至F/2.5的接受设计角度之外的光。
现在转到图3,LED封装30包括透明光学元件32,该透明光学元件与LED管芯12部分光学接触,并且与LED管芯部分分隔开,以在它们之间形成相当大的空气间隙34。透明元件32具有输入表面32a和输出表面32b,输入表面32a小于输出表面32b;小于LED管芯的发光表面12a;并且与发光表面的一部分光学接触,以限定孔径34。在这点上,输入表面小于输出表面,因为它具有较小的表面面积,因此,输出表面大于输入表面,因为它具有较大的表面面积。光学元件32和发光表面12a之间的形状差别形成空气间隙36,空气间隙36在接触区域(孔径34)周围形成图案化的低折射率层。因此,在LED管芯所产生的光可以在孔径34处被透明元件32有效地提取,从而产生高亮度。本文所述的光学元件32和其它光学元件可以在触点上通过任何合适的方式与LED管芯粘结,或者,它可以保持在合适的位置上但不与LED管芯的发光表面粘结。此外,关于在LED封装中的非粘结的光学元件的讨论可以在2004年10月29日提交的标题为“LED Package WithNon-Bonded Optical Element”的美国专利申请No.10/977249(代理机构编号为No.60216US002)中找到。如上所述,通过插入其折射率位于LED管芯12和透明元件32的折射率之间的一层材料,可以减少由LED发光表面12a发射的进入位于孔径34上方的光学元件32中的光的角度范围。
如图4所示,用于减少收集的光的角度范围—或者用于使收集的光准直(至少部分准直)—的另一方法是使用具有一个或多个锥形侧壁的透明元件。在该图中,LED封装40与LED封装30相似,但是,光学元件42代替了光学元件32。元件42具有输入表面42a和输出表面42b,输入表面42a小于输出表面42b;小于LED管芯的发光表面12a;并且与发光表面的一部分光学接触,以限定孔径44。光学元件42和发光表面12a之间的形状差别形成空气间隙46,空气间隙46在接触区域(孔径44)周围形成图案化的低折射率层。此外,光学元件42包括锥形的侧表面42c,42d,所述侧表面是反射性的,以使从LED管芯进入输入表面42a的高角度倾斜的光中的一些光准直。通过支持TIR的低折射率介质,或者通过施加反射性材料(例如金属层或者干涉反射体)或者这两种方案的组合,可以使侧表面42c,42d具有反射性。
光学元件42可以通过流体、热结合的无机玻璃、塑料无机玻璃或者通过如下方式与LED管芯的发光表面光学接触使这些表面具有光学光滑的光洁度(表面粗糙度RA小于约50nm,优选小于约20nm),然后使这些表面相互紧密靠近。此外,光学元件42的结构可以是复合的,其中,包括表面42a,42c,42d的锥形的下部与包括表面42b的透镜状的上部分开制造,并且将这两个部分通过常规的方式粘附或者用其它方法连接在一起。虚线用来更清楚地示出这两个部分。下面进一步讨论复合的光学元件、设计事项和相关的好处。
使用模型确定封装的LED的潜在的亮度增加,该封装的LED使用图案化的低折射率层和与输出孔径耦合的锥形光学元件。为了表示典型LED的光学行为,用具有发光区域、吸收区域和倾斜的边缘小面的碳化硅(折射率为1.55)的材料性质建立LED模型。倒置截顶棱锥形的锥形光学元件与LED的前小面或者发光表面光学耦合。光学元件的材料性质是碳化硅的材料性质。从正面观看,LED具有正方形的形状,光学元件的输入表面和输出表面也是正方形的形状。该模型还将光学元件的输出表面与具有BK7玻璃的材料性质的半球形透镜耦合,其中,透镜的直径是正方形LED发光表面的宽度的十倍,并且,透镜的曲率半径是LED发光表面的五倍。光学元件的输入表面的尺寸从LED发光区域的100%递减地变为4%,与此同时,保持光学元件的高度与光学元件的输出表面的宽度的纵横比为2.2,并且,保持输出表面的宽度是输入表面的宽度的2倍。当光学元件的尺寸变为小于LED发光表面的尺寸时,假设折射率为1的介质覆盖LED发光表面的位于光学元件的输入表面之外的那一部分,从而形成低折射率的图案化层,该图案化层以与光学元件的输入表面互补的方式覆盖LED发光表面。计算由光学元件发射的部分功率(代表LED封装的相对的光强输出)和由光学元件的输出表面发射的相对的照度(流明/(cm2sr))(代表LED封装的相对的亮度)。图5以总体的方式示出观察到的趋势。曲线50是发射的相对的部分功率;曲线52是相对的照度。结果证实,随着孔径尺寸下降,从封装中获得的总光强输出更少,但是(在更小孔径中的)亮度可以惊人地升高。
所公开的实施例的图案化的低折射率层可以包括间隙或者施加在LED管芯上的低折射率材料的涂层。用液态的低折射率材料—或者用形成干涉反射体的各个层—用液体涂布LED管芯的合适的方法包括将涂料旋涂、喷涂、浸涂和散布在管芯上。液体涂料可以由随后固化的单体、溶剂、聚合物、无机玻璃形成材料、溶胶凝胶和气凝胶构成。涂布气态的低折射率材料的合适方法包括化学气相沉积或将蒸气凝聚在管芯上。也可以通过溅射法、气相沉积法或者其它常规的物理气相沉积法用低折射率材料涂布该管芯。
可以在晶片级别时(在切割之前),或者在晶片被切割之后但在安装之前,在将管芯安装在管座或其它支撑体上之后,以及在对管芯进行电连接之后,将涂料施加到大量LED上。可以在施加低折射率涂料之前或者之后,形成孔径。是否选择在施加涂料后进行图案化的方法,可能取决于所选的具体低折射率材料(一种或多种)和其与半导体处理的兼容性。例如,晶片可以用光致抗蚀剂覆盖并图案化,以在需要孔径的地方形成开孔,沉积合适的低折射率涂料,然后使用合适溶剂进行剥离。或者,可以首先在整个晶片和管芯上沉积低折射率材料,可以施加图案化的光致抗蚀剂作为蚀刻掩模,并且,使用合适的技术(例如反应离子蚀刻)除去低折射率材料。可任选地,可以使用合适的溶剂剥离光致抗蚀剂层。用于图案化低折射率材料的其它技术包括激光烧蚀和掩模遮盖沉积(蒸镀),这对于可溶在典型的光刻剥离和显影溶剂中的材料尤其有用。用于从低粘附力区域剥掉不需要的涂层的合适方法包括首先施加粘结材料,然后除去粘结材料,其中,粘结材料能够从孔径区域上除去涂层,但可以使周围的涂层保持原封不动。低折射率涂层也可以被图案化,以形成在其上可以制作与管芯连接的电连接的区域。例如,参见美国专利公开US 2003/0111667 A1(Schubert)。
金属反射层可以通过常规的方法来施加,并且根据需要被图案化,以提供孔径和适当的电隔离。
现在转到图6,LED封装60利用锥形的光学元件62将光从LED管芯12中耦合出来。如结合图4的光学元件42所讨论的,光学元件62也具有复合结构,即,它包括连接在一起的至少两个部分64,66。如图所示,所述两个部分具有输入表面64a,66a、输出表面64b,66b和反射侧表面64c,64d,66c,66d。元件62的锥形侧表面以非成像的方式使来自紧邻的LED发光表面12a的光改向或者准直(至少部分地准直)。在本文所公开的锥形元件62和其它锥形元件中,侧表面不必一定是平面的。它们可以是圆锥形的、曲面的(包括抛物面的)或者任何合适的组合,这取决于期望的应用和设计约束。所公开的锥形元件可以具有在本领域中称为CPC(“复合”抛物面聚光器)的元件的形状。
在很多情况中,希望用高折射率材料形成锥形光学元件,以减少在由输入表面64a限定的孔径之上的LED发光表面12a处的反射,使得光更有效地从LED管芯12中耦合出或者提取出。在很多情况中,还希望使用具有高导热率和高热稳定性的材料制造光学元件。这样,光学元件不仅可以执行光学功能,而且也可以执行热控制功能。此外,通过将这种光学元件热耦合到散热装置,可以获得热控制的好处,这在2004年10月29日提交的名称为“LED Package With Front SurfaceHeat Extractor”的美国专利申请No.10/977241(代理机构编号为60296US002)中有更加详细的描述。
不幸地,在LED发射波长处具有足够高的折射率(例如大于约1.8、2.0或者甚至2.5)并且/或者具有大于约0.2 W/cm/K的导热率的透明材料往往价格昂贵,并且/或者难以制造。既具有高折射率又具有高导热率的比较少的几种材料中的一些包括金刚石、碳化硅(SiC)和蓝宝石(AI2O3)。这些无机材料的价格昂贵,质地非常硬,并且难以成形和抛光成光学级的光洁度。特别是,碳化硅还表现出一种称为微管的缺陷,这会导致光散射。碳化硅还是导电的,本身可以提供电触点或者电路功能。如果散射被限制在元件的输入端附近的位置,则在锥形的光学元件中的散射可能是可接受的。然而,制造具有足够长度的锥形元件以从LED管芯中有效地耦合光是昂贵的、费时的。制造单件锥形元件的额外困难是,材料的产量可能会比较低,并且,形状因素可以迫使LED管芯与锥形元件单独地组装。由于这些原因,将锥形元件分成至少两个部分可以有益于减少制造成本,其中,所述部分由不同的光学材料制成。
第一部分希望与LED管芯光学接触,并且由具有高折射率(在发光表面上,优选约等于LED管芯的折射率)、高导热率和/或高热稳定性的第一光学材料制成。在这点上,高热稳定性是指材料的分解温度为约600℃或者更高。
第二部分连接第一部分,并且由第二光学材料制成,第二光学材料可以具有较低的材料成本,并且比第一光学材料更容易制造。第二光学材料相对于第一光学材料可以具有较低的折射率、较低的导热率或者二者。例如,第二光学材料可以包括玻璃、聚合物、陶瓷、填有陶瓷纳米颗粒的聚合物和其它光学透明的材料。合适的玻璃包括那些由铅、锆、钛、钡的氧化物构成的玻璃。玻璃可以由包括钛酸盐、锆酸盐和锡酸盐的化合物制成。合适的陶瓷纳米颗粒包括氧化锆、氧化钛、氧化锌和硫化锌。
由第三光学材料构成的第三部分可以连接第二部分,以进一步帮助将LED光与外部环境耦合。在一个实施例中,这三个部分的折射率布置成这样,即,n1>n2>n3,以使与锥形元件相关的总菲涅耳表面反射最少。
超大的透镜元件,例如,图4所示的光学元件42的上部,可以有利地放置或者形成在所公开的简单的或者复合的锥形元件的输出端上。抗反射涂层也可以设置在这种透镜元件的一个或多个表面上和/或在所公开的光学元件(包括锥形元件或其它的准直元件)的输入表面和输出表面上。
在示例性布置中,LED管芯12在0.4mm厚的SiC板上可以包括1mm×1mm的GaN结区。锥形元件62的第一部分64可以由SiC构成。第二部分66可以由LASF35构成,LASF35是n=2.0的、非吸收非散射的高折射率玻璃。在第一部分和第二部分之间的结区的宽度尺寸和第二部分的输出尺寸可以按照需要选择,以使进入折射率为1.0的周围环境中的总光输出最优化。0.4mm厚的SiC板的边缘可做成12度负斜率的锥形,以完全阻止在LED管芯的侧表面上的TIR模式的光反射。因为与标准的密封LED相比,在LED结区和SiC板内的吸收和散射改变了整体的模式结构,所以可以按照需要调节该斜率。例如,为了将光模式导向远离吸收结区的方向,可能希望使用正的斜率(其中,LED结区的宽度小于SiC板的宽度)。照这样,SiC板可以被视为锥形元件的一部分。
如前所述,第一部分64可以与散热装置耦合。第二部分66可以使用常规的粘结技术与第一部分64粘结。如果使用粘结材料,则粘结材料的折射率可以在被连接的两个光学材料的折射率之间,以减少菲涅耳反射。其它可用的粘结技术包括在半导体晶片粘结领域中所知的晶片粘结技术。可用的半导体粘结技术包括在由Q.-Y.Tong和U.G sele编著的课本“Semiconductor Wafer Bonding”(John Wiley&Sons,New York,1999)中的第4章和第10章中所述的那些技术。还可以使用在美国专利No.5,915,193(Tong等人)和No.6,563,133(Tong)中所述的晶片粘结方法。
图7所示的LED封装70使用复合的锥形元件72,其中,第一部分74密封在第二部分76中,第一部分74具有通过锥形反射侧表面连接到较大的输出表面74b的输入表面74a,第二部分76也具有输入表面76a(与输出表面74b共同延伸)和更大的输出表面76b。输出表面76b是曲面,以为复合元件72提供可用于进一步准直或聚焦的光强度。所示第一部分74的锥形侧表面带有低折射率材料的涂层78,以促进在这种表面上的TIR。该材料的折射率优选低于第一部分74、第二部分76和LED管芯12的折射率。这种涂层也可以施加到发光表面12a的不与第一部分74接触的部分上,和/或LED管芯12的侧表面12c(参见图1)上。在构建LED封装70的过程中,第一部分74可以与发光表面12a的所需的孔径区粘结(或者仅仅放置在其上),并且,可以计量出足够量的前体液态密封材料,以密封LED管芯和第一部分,然后固化前体材料以形成成品的第二部分76。为此目的,合适的材料包括常规的密封制剂,例如,硅或者环氧树脂材料。该封装也可以包括散热装置,该散热装置通过涂层78与第一部分74的侧面耦合。即使没有这种散热装置,使用锥形元件的高导热性的第一部分也可以向LED管芯增加明显的热质量,从而至少为使用调制驱动电流的脉冲工作提供某些好处。
本文所公开的简单的锥形元件和复杂的锥形元件二者都可以通过常规的方式制造,例如,通过单独地制造锥形部件,将第一部分与LED管芯粘结,然后添加相继的部分。或者,简单的锥形元件和复杂的锥形元件可以使用在同时于2004年10月29日提交的标题为“Process ForManufacturing Optical And Semiconductor Elements”的美国专利申请No.10/977239(代理机构编号为No.60203US002)和标题为“Process ForManufacturing A Light Emitting Array”的美国专利申请No.10/977240(代理机构编号为60204US002)中所公开的精密研磨技术制造。简单地说,制备包括一层或多层所需的光学材料的工件。该工作可以是大尺寸工件,例如晶片或者纤维片段。然后将精确图案化的磨料与工件接触,以在工件中研磨沟道。当研磨完成时,沟道限定多个凸起,这些凸起可以是简单或者复合锥形元件形式。锥形元件可以从工件上单独取下,并且一次一个地粘结到分开LED管芯上,或者锥形元件的阵列可以方便地粘结到LED管芯的阵列上。
当使用其输入表面小于LED管芯的发光表面的光学耦合元件时,可以考虑将多个这种元件与同一发光表面的不同部分耦合。
有利的是,通过仅仅用多个较小的元件替代单个锥形光学元件,可以用这种方法来减少将给定量的光从LED管芯中耦合出来所需的光学材料的量。当涉及昂贵的且难以加工的材料例如金刚石、SiC和蓝宝石处理时,材料使用的差别可能尤其重要。例如,用2×2阵列的较小锥形光学元件替代单个锥形光学元件,可以将高折射率(第一)光学材料的所需厚度降低2倍以上,并且,用3×3阵列的较小锥形光学元件替代单个锥形光学元件,可以将高折射率(第一)光学材料的所需厚度降低3倍以上。令人吃惊的是,即使光可能不会在光学元件的输入表面之间的位置从LED有效地发出,但是模拟表明,该方法仍具有非常高的净提取效率。
使用多个光学耦合元件(例如锥形元件)的另一优点是,在元件之间形成间隙或者空间,这些间隙或者空间可用于各种目的。例如,间隙或者空间可以填充高折射率流体、金属导热体、导电体、热传输流体及其组合。
对LED封装进行模拟,其中,LED管芯由SiC和吸收层构成,调节吸收层,使得当浸入在折射率为1.52的介质中时,在LED管芯中产生的光中有30%的光从LED发出。这代表典型的LED装置。如图8的LED封装80所示,该模型使用3×3阵列的锥形管芯元件,所述元件与LED发光表面耦合。这里所示的LED管芯12’具有倾斜的侧表面12c’和前发光表面12a’,三个锥形光学元件82、84、86示出分别在其输入表面82a、84a、86a处与前发光表面12a’耦合。注意,在较小的光学元件之间形成空间或间隙83、85。输出表面82b、84b、86b与较大的锥形光学元件88的输入表面88a耦合,较大的锥形光学元件88具有输出表面88b。该模型还使用半球形透镜(未图示),相对于锥形元件88,该半球形透镜是超大的,其平坦的表面与输出表面88b连接,该透镜由BK7玻璃(n=1.52)制成。锥形元件88模拟为由LASF35(n=约2)构成。然后,该模型评估较小锥形元件的不同光学材料和包围LED管芯的环境空间(包括间隙83、85)的不同材料。
下面是根据小的锥形元件的光学材料(在表中表示为“A”)和环境材料(在表中表示为“B”),计算所得的模拟LED封装的输出功率(例如,以瓦特表示)。

如果把这些值正规化成使用单个SiC锥形元件替代3×3阵列的较小的元件的系统的功率输出时,得到下面的结果

这些表表明,锥形光学元件不必一定在LED发光表面的整个区域上光学耦合,以便有效地提取光。这些表还表明,在小的锥形元件之间的环境体积可以具有低的折射率,而不会导致提取效率的明显降低。
环境体积可以填充材料,以提高提取效率。填料材料可以是流体、有机聚合物或者无机聚合物、填充无机颗粒的聚合物、盐或者玻璃。合适的无机颗粒包括氧化锆、氧化钛和硫化锌。合适的有机流体包括在LED工作温度下稳定且对由LED产生的光稳定的任何流体。在一些情况下,流体还应当具有低的导电率和离子浓度。合适的流体包括水、卤代烃和芳香烃及杂环烃。填料材料也可以起到将锥形光学元件与LED管芯粘结的作用。
光学元件之间的空间的至少一部分可以具有用于分配电流给LED管芯或者从LED管芯除热或者二者的金属。因为金属具有可测量的吸光率,所以可以希望使吸收损耗最少化。这通过如下方式实现使金属与管芯的接触区域最小化,并且通过在金属与管芯表面之间、金属与光学元件之间或者金属与二者之间引入低折射率材料来减少与金属的光学耦合。例如,可以用被低折射率材料包围的金属触点阵列将接触区域图案化,这些金属触点与上面的金属层电连通。例如,参见上面引用的Schubert的美国专利公开US 2003/0111667 A1。合适的低折射率材料包括气体或者真空、碳氟化合物(例如可得自位于美国明尼苏达州St.Paul市3M公司的Fluorinert)、水和烃。金属可以延伸入包围光学元件的介质中,可以从该介质中除去热。
也可以在锥形元件之间设置流体,以除去额外的热。锥形光学元件的阵列可以是正方形阵列(例如,2×2、3×3等)、矩形阵列(例如,2×3、2×4等)或者六边形阵列。单个锥形光学元件在其输入表面和输出表面上的横截面可以是正方形、矩形、三角形、圆形或者其它所需的形状。该阵列可以延伸在LED的整个发光表面上、或者延伸到该发光表面之外,或者仅延伸在该发光表面的一部分上。锥形元件可以用低软化温度焊接玻璃、软的无机涂料(例如硫化锌)、高折射率流体、聚合物、填充陶瓷的聚合物来连接在LED发光表面上,或者通过如下方式连接在LED发光表面上使光学元件和LED具非常光滑且平坦的表面,然后通过机械的方式将该管芯保持靠在光学元件的输入表面上。
图9示出具有多个光学元件92、94和图案化的低折射率层96的另一LED封装90。图案化的低折射率层96包括如图所示的两个孔径,在这些孔径之上,光学元件92、94设置成与LED管芯的发光表面12a光学接触。层96还与LED管芯的发光表面12a和LED管芯的侧表面12c光学接触。LED封装90还包括位于低折射率层96的一部分上面的金属触点98。尽管在图9中没有示出,但是在金属触点98附近,图案化层96也被图案化,并且,金属触点98优选延伸通过层96中的孔,以提供与LED管芯12的电接触。第二电触点可以设置在LED管芯的另一位置上,这取决于芯片的设计。
所选术语的词汇表“亮度”每单位面积每单位立体角(球面度)的发光体或其一部分的光强输出。
“发光二极管”或者“LED”发射光(不管是可见光、紫外光还是红外光)的二极管。本文所用的术语包括作为“LED”销售的非相干的(且通常不贵的)被环氧树脂密封的半导体器件,无论是常规类的还是超发光类的。
“LED管芯”以其最基本形式存在的LED,即,以由半导体晶片加工工艺制造的单个部件或者芯片的形式存在的LED。该部件或者芯片可以包括适用于施加功率以为装置供应能量的电触点。该部件或者芯片的单个层或者其它功能元件通常以晶片级别形成,最后,将成品的晶片切割成单片的零件,以产生多个LED管芯。
对于本领域的技术人员来说,在不脱离本发明的实质和范围的情况下,对本发明的各种修改和替换将显而易见。应该理解,本发明不局限于本文所述的示例性实施例。
权利要求
1.一种光源,包括LED管芯,其具有发光表面;以及多个光学元件,每个光学元件具有输入表面;其中,光学元件的尺寸做成使得所述输入表面相互间隔开,并与所述发光表面的不同部分光学接触。
2.根据权利要求1中所述的光源,其中,所述光学元件使入射在其输入表面上的光准直。
3.根据权利要求1中所述的光源,其中,所述光学元件由单块材料中的一个或多个凹槽限定。
4.根据权利要求1中所述的光源,其中,所述光学元件在其各自的输入表面处结合到所述发光表面上。
5.根据权利要求1中所述的光源,其中,每个光学元件还具有输出表面。
6.根据权利要求5中所述的光源,其中,对于至少一个光学元件,输入表面小于输出表面。
7.根据权利要求5中所述的光源,其中,每个光学元件包括位于各自的输入表面和输出表面之间的至少一个反射侧表面。
8.根据权利要求5中所述的光源,其中,所述至少一个光学元件的输出表面是弯曲的。
9.根据权利要求1中所述的光源,其中,所述光学元件包括折射率为至少1.8的材料。
10.根据权利要求1中所述的光源,其中,所述光学元件包括导热率为至少0.2W/cm/K的材料。
11.根据权利要求1中所述的光源,其中,所述光学元件包括选自下述群组的材料,该群组包括蓝宝石,金刚石和碳化硅。
12.根据权利要求1中所述的光源,其中,所述光学元件在其间限定有间隙。
13.根据权利要求12中所述的光源,其中,LED管芯的至少一个电连接穿过所述间隙中的至少一个间隙。
14.根据权利要求12中所述的光源,还包括布置在所述间隙内的流体。
15.根据权利要求1中所述的光源,其中,所述多个光学元件包括2×2的光学元件阵列。
16.根据权利要求1中所述的光源,其中,所述多个光学元件包括3×3的光学元件阵列。
全文摘要
本发明公开一种光源,该光源包括带有发光表面的LED管芯和多个光学元件,所述光学元件具有与所述发光表面的不同部分光学接触的输入表面。光学元件可包括锥形体或聚光器,所述锥形体或聚光器具有反射侧表面和比各自的输入表面大的输出表面。光学元件既可从LED管芯的发光表面耦合出光,也可从LED管芯的发光表面耦合出热。
文档编号H01L33/00GK101088173SQ200580044763
公开日2007年12月12日 申请日期2005年9月27日 优先权日2004年10月29日
发明者安德鲁·J·欧德科克, 凯瑟琳·A·莱瑟达尔 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1