亲水性聚合物及其在电化学电池中的应用的制作方法

文档序号:7237308阅读:100来源:国知局

专利名称::亲水性聚合物及其在电化学电池中的应用的制作方法
技术领域
:本发明涉及导电的亲水性聚合物及其在电解池和电化学电池例如燃料电池中的应用。
背景技术
:电解池中,输入电能产生净化学转换。常规电解池的共同特征在于需要输入大量电能从而以足够的速率驱动电解反应。此电能的支出使电池的效能降低。电化学电池特别是燃料电池可以是膜电极组件(MEA)形式的。固体聚合物电解质燃料电池MEAs典型地有多层结构,包括(i)质子交换膜(PEM)、(ii)集电电极、和(iii)每侧的电-催化剂层。PEM依靠包含包埋阳离子部位从而允许阴离子传输而进行工作。同样地,固体聚合物电解质可包含固定的阴离子部位,其能优先传输阳离子。因此,以下提及PEM不是排他性的。上述结构由离散元件组装而成,通过加热和加压粘合成MEA,装配在气体歧管间之前,使整个结构密封防止漏气(和交叉)以形成单电池。该方法很复杂,PEM和常用作(ii)和(iii)项的涂有催化剂的碳素纸的固有成本是燃料电池的主要生产成本。PEM燃料电池的性能限制是水的管理,以在使用中保持PEM膜充分水合。氢气和氧气转化成电得到产物水,其出现在氧电极处。要使该膜保持工作状态,所述膜必须有足够的透水性以使产物水再分布并防止该膜局部变干。变干导致过热和灾害性破坏(甚至可能导致氢气/氧气交叉而有可能发生爆炸)。PEM装置仅依靠制成薄膜的性质工作。用作电解池时,加水和电产生氧气和氲气;用作燃料电池时,用氢气和氧气(或空气)产生电。成,所述聚合物有包含离子活性部位(通常为S0》的侧链。所述S03部位提供亲水性。必须保持这些材料与附加的水(由7jC合燃料气提供)7JC合,以进行操作。它们可以薄片(10-30nm厚)形式获得,用于组装成电池(电压IV),从而组装成电池组(典型地100个单元)。可由单个MEAs生产电池组(stack)。由于必须分开地生产每个MEA然后串联叠合成堆,所以生产电池組4艮费力。能有高水含量的亲水聚合物是已知的。水含量决定其性质。其电性能由水合溶液的性质决定。例如,某些亲水性材料如HEMA(甲基丙烯酸2-羟乙酯)和MMA-VP(甲基丙烯酸曱酯-乙烯基吡咯烷酮)在生物医学领域中作为隐形眼镜材料是公知的,但它们不具有固有电性能。因此,如果在去离子-蒸馏(DD)水中水合,所得聚合物是良好的电阻器,但如果在酸或碱性溶液中水合,该材料则是良导体直至洗去电活性溶液时所述7jC合聚合物才恢复不导电体系。US-A-4036788公开了通过杂环N-乙烯基单体、含磺酸的单体和交联剂共聚得到的阴离子型水凝胶。可在所述单体可溶于其中的水溶性溶剂存在下进行聚合;以有机凝胶形式获得所述聚合物,通过蒸馏、蒸发或水洗从中除去非水溶剂。浸泡在水中导致溶胀,得到可用于从水介质中回收碱性或阳离子材料或用于该材料的控制释放的柔软挽性材料。WO-A-01/49824公开了通过不含磺酸基的单体、含磺酸基的单体和非必需的交联剂聚合得到的聚合物。该聚合物适用于细胞的连接和生长、并适用于生物医学装置和假肢。它们有4艮高的膨胀率。本说明书的元素已在其优先权之前公开。参见例如DelegateManualoftheFifthGroveFuelCellSymposium,22-25September1997。这些元素未提供足以使普通技术人员能实现下述发明的信息。发明概述本发明至少部分是基于以下发现可基于亲水性聚合物(即固有地能在其整个分子结构内吸收和传输水的聚合物)生产离子交换膜(IBM)材料特别是PEM材料(但包括阳离材料,如前面所述)。被改性而包含磺酸或其它强离子部分的此材料可通过辐射或热聚合由起始单体或预聚物体系的本体聚合制备。应在水或其它液体存在下进行聚合以使体系均匀。根据本发明的第一方面,一种能进一步与水水合的部分预填充(pre-extended)的亲水性聚合物可通过单体和溶剂例如极性液体共聚获得,所述单体包括含强离子基的单体。优选使所得聚合物交联。未与水水合的本发明聚合物或IEM材料可在使用中例如在产生水的燃料电池中被7JC合(对于本说明书而言包括任何程度的水合,包括最大P艮度的水合)。本发明还涉及一种亲水性IEM材料,包括亲水性聚合物基体和保留在基体内的包括强离子基的分子。离子活性分子可通过位阻和/或化学键合保留在基体内。可使所述聚合物交联。控制地引入电活性部位产生在纯水中自7jC合而且导电的材料。该材料可作为电化学膜,还具有使之适用于生物传感器和电光装置的性质。通过现场聚合生产IEM材料的能力允许一步生产电池组。还能生产聚合物-电极复合系统,其中聚合物隔板贯通并扩大电极或电极催化剂体系的活性表面积。根据本发明的第二方面,用于电化学反应的MEA包括电极和IEM例如PEM,其中所述组件包含用于将液态或气态反应组分传输给电极和/或由电极传出的限定通道。所述组件可还包括所述反应的催化剂,其优选与所述通道接触。如果两或多种反应物均为液体或气体,可提供更多的通道。所有通道都可全部或部分地在薄膜内;例如可由薄膜和周围的基体或支撑材料限定。附图简述图1A和lB示出制备复合MEAs的已知方法和新方法的步骤。图2A-2D分别示出有可控系统参数的本发明产品。图3-5示出本发明第二方面的示意性实施方案。图6为电导率和IEC作为聚合物组成函数的曲线图。图7为IEC和吸水率作为交联密度函数的曲线图。图8为体现本发明的产品的横截面。图9和10为体现本发明的产品的电池电压对电流的曲线图。图11示出体现本发明和起燃料电池作用的cMEA的极化行为。图12为在10mA的恒定电流下体现本发明和起燃料电池作用的cMEA的电压对运转时间的曲线图。优选实施方案的描述亲水性共聚物可通过单体混合物的溶液聚合形成,所迷单体混合物典型地包括(a)疏水性/结构共聚单体如醒A、AN(丙烯腈)、聚酰胺或TRIS,和(b)亲水性但非必需电活性的共聚单体如VP、HEMA等。既存在亲水性单体又存在疏水性单体可允许独立于水力学性质来控制电性能,因为可适合膜和膜/催化剂/电极界面的不同要求。这些单体的相对量可控制溶胀性,而且使所述产品是刚性或坚固而且有弹性的。可利用Y-辐射或热辐射形成交联材料。例如,可利用电离辐射,如来自钴60源的90MeVy-辐射,在此情况下不必加交联剂。不过,也可通过添加以下物质控制最终材料的性质(c)化学交联剂如甲基丙烯酸烯丙酯或乙二醇二甲基丙烯酸酯,和(d)化学引发剂如AIBN(偶氮二异丁腈)或偶氮二环己烷甲腈。如果要使所述材料热引发和交联,则以上组分(c)和(d)为所述方法所必需。离子或阴离子的)(e)保留在所述亲水性聚合物基体内的电活性分子;或(f)电活性共聚单体。所述电活性组分可基于酸例如磺酸(S03)、磷酸或膦酸,或碱例如提供OH离子的化合物如KOH、NaOH或氢氧化铝,或氯化乙烯基节基三甲基铵。优选的单体是2-丙烯酰氨基-2-甲基-l-丙磺酸(AMPS)、苯乙烯磺酸(SA)、乙烯基磺酸(VA)或SOMA。也可使组分(a)或(b)改性以致其还起组分(f)的作用。可通过位阻代替化学键合或通过位阻和化学键合使电活性分子(e)保留在基体内。在亲水性聚合物中加入溶胀液(例如乙醇)可产生比使用水时更大的溶胀。通过扩散将溶于溶胀液的离子活性分子交换成水,所述聚合物将收缩从而将所述分子截留在基体内。50:50固VA-VP共聚物和离子分子溶于乙醇时观察到此效应。可用此方法将一或多种离子活性分子引入基体内。随后通过Y-辐射使所述材料活化可导致引入的分子之间发生反应从而生成比通过位阻截留的分子更大的分子和/或导致引入的分子与聚合物基体粘结反应。任何形式的PEM系统中所用固体聚合物电解质中,离子导电(Ci)应比电子导电(Ce)高得多。为成功运行要求Ce/Ci比小于0.1。本发明产品可通过所述单体与水或组分(f)可溶于其中而且其它组分可与之溶混的其它液体的聚合生产。水所涉及的情况尚未充分了解,但在酸或碱性溶液的状态下,其显然起共聚单体的作用而调解所述交联聚合物结构中酸或碱部分的引入。聚合后,可除去一些或全部水,但再水合未必产生干燥之前所得产品。关于所述材料所应考虑的事项包括其亲水性(为独立于电性能控制水和气体渗透性)及其交联(为稳定性);磺酸、磷酸等的使用;用于碱性燃料电池的碱性侧链的使用;和用水或醇使所述聚合物带有电活性部分,所述极性溶液作为(意外地)共聚单体。作为所迷聚合物,AN-VP加AMPS是优选的,但其它适合的单体组合包括醒A-VP;MMA-HEMA;与AMPS<VSA<SSA<TSA的组合等。为生产均匀、一致而且各向同性的聚合物,所述各组分应相互溶解或相互溶混。例如,含磺酸的部分一般不溶于其它优选的共聚单体。已发现使最终单体混合物中带有磺酸组分的一种有效途径是使所述酸溶于水(或醇或其它适合的极性液体)和将所述溶液掺入单体混合物中。最终的S03含量(因而电性能)尤其取决于磺酸部分在水中的溶解度、其它共聚单体与给定体积分数的酸溶液溶混的能力、及所得混合物的稳定性及其聚合能力。已发现AN-VP体系可与大量体积分数的含水酸溶混。可有效地用最多占最终单体混合物50%的水溶液作为共聚单体。受到厂辐射时,所述单体混合物可变粘,然后形成坚固但有弹性的交联物质,例如在O.1-3.OMrad的总剂量下。代替使所述单体直接聚合成所要聚合物,可先形成预聚物,例如(i)通过用较低的总剂量(典型地<0.05Mrad,剂量率~0.01Mrad/hr)广辐射,或(ii)通过在适合UV引发剂例如2,2-二甲氧基-2-苯基乙酰苯存在下UV辐射。然后用(iv)附加的Y-辐射(例如1.0-3.OMrad的总剂量)或(v)在适合引发剂例如AIBN或偶氮二环己烷曱腈存在下热聚合使所述预聚物(相对易于操作)转化成最终的固体交联形式。所述最终材料典型地已经部分预水合,包含作为起始共聚单体的大量水,因此膨胀至充分水合不产生常与IEM材料有关的附加膨胀度。这^吏水合应力明显减小,因而使常与Nafion基MEAs有关的IEM和催化剂/电极结构之间的分层明显减少。关于聚合方法所应考虑的事项包括(a)温度对聚合的影响,例如用化学引发剂避免起泡和/或使单体冷冻可控制流变性和任何相邻材料的溶解性时利用Y-辐射的聚合;(b)采用一步(用热、UV或广辐射)还是两步(通过预聚物,用热/热、Y-辐射/广辐射、热/广辐射、y-辐射/热或UV等;和(c)所述单体混合物或预聚物性能的流变学控制以增强所述填充过程和控制催化剂或电极纸(使用时)的润湿/渗透。关于膜/MEA/电池组的转化/生产所应考虑的事项包括(a)由单体一步生产中利用广辐射;(b)由单体一步生产中利用热引发剂以避免气泡;(c)采用两步,通过预聚物,为流变控制或特殊的界面性能。可采用"失蜡铸造法"(包括使用冰),例如避免歧管溢流,所述歧管或MEA可使用形状复原聚合物。可在电极网上设置剥离涂层以限定所述"薄膜"。希望本发明所用聚合物在任何给定的吸收率下都表现出最大的电导率和IEC值。平衡吸收率决定7JC合时的体积膨胀,从而决定机械性能和所得复合MEA将因水合或水合变化时分层而损坏的可能性。所述聚合物的另一理想性能是吸收率,可独立地控制电性能和机械/水力学性质。优选材料允许可控制地改变IEC和导电率值,例如2倍,同时在3(30%至85%湿重量分数)的范围内控制吸水率。选择主要单体的适合方法之一例包括以两种磺酸浓度用(AN或醒A或PA)+VP+(AMPS、VS、SA和SOMA之每一)配制试样。用甲基丙烯酸烯丙酯作交联剂制备这些试样,和通过y-辐射使之聚合。针对其在DD水中的电导率、才/U械性能、和吸水率进行筛选。通过此方法将最初的各种可能配方(共24种)缩小成基于AN+VP+AMPS的最优选体系,以下使用该体系只是为了举例说明。选择AN+VP+AMPS的主要原因首先在于该体系显示出比其它任何单体组合都高的电导率值,可能是因为所述单体和水基磺酸溶液的溶混性极限很好,其次在于机械性能。所有情况下,机械性能性提高而抗拉强度减小),但发现使用Al^提供随水含量而k的最大抗拉和撕裂强度。不出所料,已发现在DD水中水合时的电性能直接与聚合物中S03部位的浓度有关。实际上,所述磺酸部分不溶于任何主单体,通过使所述材料溶于水并加入AN+VP混合物中引入该体系。因而,S03浓度的最高限度由发生组分分离或沉淀之前水+S03+单体的溶混极限确定。使用AN时获得令人满意的限度。已发现平衡吸水率(在DD水中)取决于三个参数(a)主要亲水体VP的浓度;(b)辅助VP起亲7jc体作用和作为添加剂的S(h的浓度;和(c)交联剂甲基丙烯酸烯丙酯(AMA)的浓度。平衡吸水率随着VP浓度增加、S03浓度增加、和交联剂浓度降低而增加。为改进电极/催化剂/膜界面而应考虑的事项包括(a)聚合过程中包含催化剂(整体催化剂);(b)聚合过程中包含碳纤维(整体电极);(c)薄膜内包含复^fll化剂/电极;(d)利用扩JL^面,允许在燃料电池或电解池的每侧不同地优化催化剂/电极/离聚物表面。如前面所述,本发明可通过一步法生产复合结构(包括电极-催化剂-薄膜"^化剂-电极)。这意味着明显背离任何现有生产方法。如果使用现有的碳素纸电极-催化剂,所述单体或预聚物体系可渗入其中而使气体向催化剂层的传输减少;为减小任何副作用,所述纸基材料应尽可能薄,例如包含0.35mg/ci^拍的ETEKTPGH-030碳素纸。单一复合燃料电池单元的生产优选包括将所迷涂有催化剂的两电极组件制成"模型",为所述薄膜留出间隙,以聚合物/预聚物形式引入所述"薄膜",然后用单辐射法完成所述生产过程。这示于图1B中,其依次示出作为壁12的催化剂-电极之间的空腔ll;用亲水性单体液体13填充所述空腔及其辐射;和所得聚合的"薄膜"14,一步形成整体电池。这应与图1A中所示常规方法对比,其依次包括分开地获得催化剂-电极15和PEM材料16;将所述材料装配并对齐;及密封、加热和压缩以使催化剂-电极接触。由于所述材料是由溶液(或预聚物)聚合的,所以它们提供许多可供选择的生产途径。对于成品薄膜而言,包括(a)利用纤维增强(1D或2D),以控制最终7JC合时的1D或2D膨胀;(b)未增强但双轴预加应力,以控制膨胀和防止与催化剂/电极结构接触时分层;(c)在表层内掺入催化剂和/或碳纤维,以形成化学活性和导电气体界面,有效地形成最终的MEA但不依赖于常规催化剂/电极结构;和(d)在"网紋"表面上浇注聚合物表面,产生表面积扩大从而性能可能增强的聚合物/催化剂反应物表面。参见图2:图M示出本发明的简单聚合物21;图2B和2C示出单侧和双侧分布有催化剂22的聚合物;图2D附加地示出电极23。所述电极可全部或部分地被亲水性材料浸渍。对于使用常规催化剂电极纸的成品MEA,方法包括(a)利用Y-辐射由单体开始的一步法,如图1中所示;(b)利用热引发剂由单体开始的一步法;和(c)用于流变控制或特殊界面性能的预聚物阶段。对于在催化剂和电极元件之间的空间内现场形成所述薄膜(从而与之接触)的复合MEA,—步法包括(a)使液态单体或预聚物聚合;(b)使溶液中的单体或预聚物在适合的载体内聚合;(c)溶液聚合法;(d)以溶液形式浇注液态聚合物,抽提溶剂以使聚合物沉积;(e)以粉末形式加入适合的聚合物,将所述粉末压缩或烧结;和(f)以熔融状态加入适合的聚合物,所述MEA恢复正常操作温度时所述材料固化。这些生产MEA的方法不限于平行平面体系。可用提供或改善离子迁移和/或水力学性质的材料浸渍通过方法(e)形成的复合膜材料。所述浸渍剂可在加入时或在其与膜材料一起聚合、交联或胶凝之后生效。还可通过在所述薄膜的厚度内组合两个单面"半"电池制造复合MEA。这可用其它聚合方法实现。成品多电池组的生产方法包括用于复合MEA的生产方法(a)至(g)中的任一种,还包括(a)利用Y-辐射由单体开始的一步法,如图l中所示;(b)利用热引发剂由单体开始的一步法;和(c)通过用于流变控制或特殊界面性能的预聚物的两步法。所述方法也不限于平行平面体系。在制备多电池组中,可能希望防止单体溢流出气体歧管结构(这将防碍电池组工作)。代替使用常规阻塞材料,可用预加应力的亲水材料阻塞歧管通道,该材料将恢复可去除的形状(烧结粉末或形状变化)。也可用"智能的(smart)"回收材料金属或塑料构造歧管本身。制作电池并填充单体,聚合形成薄膜,使所述歧管材料活化而恢复气体通道。MEA装置的薄膜可包括非电活性的亲水性聚合物基体,但包含保留在基体内的强离子物质;这使所述膜材料总体具有电活性。为举例说明,可在两个光滑的PTFE板之间形成复合MEA,用对所用单体惰性的纺织或非纺织形式的多孔聚酯夹层使电极之间保持分离。然后在所述间隙内(在氮气氛下)引入单体混合物,填充分隔器材料,将电池压缩以限定所述结构的厚度。将模具放在过量单体中并辐射,例如通过两步法(低剂量/剂量率,然后高剂量率,到完成)。在填充和聚合期间,所述聚酯层保持使所述两纸电极分离。此外,因为在水合时一般的亲水性材料各向同性地扩展,所以这一增强材料的引入对控制水合时亲水性聚合物薄膜的面积扩展是相当有效的。因此,虽然所述材料扩展,但作用是增加了所述增强薄膜的厚度而不是它的面积。在夹持和箝固在燃料电池测试装置的板间之前,这能有效防止所述复合体系在水合过程中分层。该生产方法提供与膜材料互相贯穿的电极-膜-电极复合结构,所述膜材料延伸超过电极区域时,在被夹持在燃料电池测试装置的歧管之间时形成有效的气封。所述复合材料内(通常在聚酯增强材料内)可形成气泡。可在填充后对模具进行超声处理和采用起减小聚合期间温升作用的两级聚合法使此问题最小化。可在装入燃料电池之前使MEA,s充分7JC合和测试,用氮气确保不可能发生气体交叉。本发明的第二方面中,所述组件内存在传输通道^^应组分可更有效地与电极和任何催化剂接触。可通过"失蜡"或"智能材料"插入铸造在所述膜内而产生通道,优选横截面是圆形的。所述组件可还包括限定其物理限制的离散歧管结构,通道可包埋在膜和组件的物理限制之内。电极和任何催化剂材料可在通道形成后涂于反应物通道内或在"失蜡"或"智能材料"法过程中铸入通道表面。可用柔性材料例如塑性材料限定MEA的边缘并提供电和/或气体分隔。可用碳纤维织物作电极,所述织物可浸渍一层催化剂。在反应物为氬气或氧气的燃料电池中,所述催化剂典型地为柏。类似地,用于水电解的电解池一般包括铂电极。当电极为自撑或由"失蜡"结构支撑时,则可铸造多个电池,因为膜本身形成在其内形成电池的结构。所述膜材料优选包括含有强离子基的聚合物,如前面所述。图3至5中示出包含通道的本发明实施方案。这些实施方案的共同特征是电极32(典型地为浸渍一层催化剂的碳纤维织物)和流延离子交换膜36。图3示出一组件,其中用软质塑料31(例如聚乙烯)限定组件边缘,通过一边的突起34插入对边的相应凹进处35限定所述间隔。反应物通过通道33a和33b分开地输送;一种反应物通过通道33a供入,另一种反应物通过通道33b供入。此对通道33a和33b的交错导致电极表面积比常规扁平电极组件增大。图4示出一组件,其中在中气氛41中反应物是氧气。在此情况下,图3所示束縛元件之一被替换成透气材料42以加强向反应界面输送氧气。另一反应物通过通道43输送。图5示出由"失蜡"结构支撑的电极32。如图3中所示通过通道33a和33b供入反应物。此实施例中,四个独立的电池铸入薄膜内,各电池之间的薄膜区域限定另外三个电池。如果所述组件为燃料电池,则来自电池连线51的输出电流等于七个独立电池的输出电流。以下实施例说明本发明。本文所用缩写和材料如下疏水性单体甲基丙烯酸甲酯(丽A)丙烯腈(AN)甲基丙烯酰氧丙基三(三甲基甲硅烷氧基)硅烷(TRIS)甲基丙烯酸2,2,2-三氟乙酯(TRIF)亲水性单体甲基丙烯酸(MA)甲基丙烯酸2-羟乙酯(服MA)丙烯酸乙酯(EA)l-乙烯基-2-吡咯烷酮(VP)丙烯酸2-甲酯(PAM)邻苯二甲酸单甲基丙烯酰氧乙酯(EMP)硫酸乙基曱基丙烯酸铵(SEM)-S03H部分曱^t酸(TSA)1-甲基-1-苯并咪唑-2-磺酸羟乙磺酸,钠盐1-己磺酸,钠盐羟甲基磺酸用于共聚的包含磺酸部位的单体2-丙烯酰氨基-2-甲基-l-丙磺酸(AMPSA)乙烯基磺酸(VSA)苯乙烯磺酸(SSA)曱基丙烯酸2-磺乙酯(SOMA)3-磺丙基甲基丙烯酸,钠盐(SPM)实施例1原料丙烯腈-乙烯基吡咯烷酮(AN-VP;1:1)混合单体是购买的,原样使用。甲基丙烯酸曱酯(MA)(99%A1drich)在使用前蒸馏。1-乙烯基-2-吡咯烷酮(VP)(99。Mldrich)被冷冻,解冻后使用。所用交联剂是甲基丙烯酸烯丙酯(AMA)(98%Acros)。2-丙烯酰^-2-曱基-l-丙磺酸(AM)(99%)、乙烯基磺酸(钠盐,25wt^水溶液)(VSA)和4-苯乙烯磺酸(SSA)钠盐水合物均购自Aldrich。磺丙基甲基丙烯酸钠按US-A-1299155合成。配方配制不同组成的AM、AMA和AN-VP在去离子水(DDW)中的八种不同溶液,如表1中所示。表l<table>complextableseeoriginaldocumentpage16</column></row><table>用于辐射聚合的单体的制备使各种磺酸溶于蒸馏水,然后加入到AN-VP(1:l)中。再向混合物中加入AMA,搅拌。将所述溶液分配至衬有PTFE的铝电池内并密封或分配至有塑料板的容器中。将所述单体加入有平表面底板的电池内,从上面填充直至单体达到顶部。然后将顶M在填充的底板上,用G型夹具将两块板固定在一起。然后将所述板垂直放入超声波浴中以除去系统中的气泡30分钟,然后以此垂直位置暴露至T辐射。通过辐射之前在两板之间的两电极之间放置一片被单体饱和的非纺织材料来现场制造MEA。辐射详情一步辐射以0.125Mrad/hr的剂量率进行20小时,总剂量为2.50Mrad。也采用两步辐射。所述配方为OR时,初始辐射以0.01Mrad/hr进行29小时(=0.29Mrad),然后以0.03Mrad/hr二次辐射80小时(-2.40Mrad)。所述配方为1.5OR时,第一剂量是以0.01Mrad/hr进行20小时(-0.25Mrad),第二剂量是以0.03Mrad/hr进行6.83小时(=1.7075Mrad)。此辐射过程中,由于试样与辐射源很近,大约在半途将容器旋转180°。此辐射比以前试样的稍低,约为2.5Mrad。吸水率在室温下将所述薄膜的片段在去离子水中浸泡24小时,用吸水纸千燥除去表面水,称重。然后将所述薄膜在真空烘箱中于601C干燥至恒重。可用[(Mh-Md)/Mh]x100%确定吸水率,其中Mh和Md分别为水合和干燥薄膜的质量。离子交换能力的测量使薄膜试样在环境温度下的HC1(0.1M)(50ml)溶液中水合24小时。然后用薄纸吸干试样,放入NaOH(O.1M)(50ml)中,交换24小时。然后用HCl(0.1M)滴定此NaOH溶液的三个等分试样(10ml)。用酚酞作指示剂。再将试样用纸吸干,重新放入HC1(0.1M)(50ml)中过夜,然后将试样放入真空烘箱于1101C干燥8小时,在干燥器中冷却。如下计算IEC:交换后NaOH的摩尔浓度=[(HC1的摩尔浓度)x平均滴定度]+10摩尔浓度变化(X)=(交换前NaOH的摩尔浓度)-(交换后NaOH的摩尔浓度)100ml包含(X)molNa+50ml包含(X/1000)x50molNa+=YYmolNa+离子与Zg干膜交换Y/Z-molNa7g-Y/(ZxlOOO)毫克当量/克干膜不同条件和电导率下电阻的测量在室温下用PhillipsModelPM6303RCL电阻表测量水合膜的电阻。将试样用薄纸吸干,然后涂一薄层电极凝胶,置于也涂有一薄层电极凝胶的千电极之间。然后由其厚度和面积(lcmxlcm)计算其电导率。还用SolartonSI1260阻抗分析仪测量水合试样(1.8cm直径的圆片;2.54cm2)的电阻。测试本发明材料的以下特性(a)通过重量分析和测量已知干尺寸试样的线性膨胀率来测量平衡吸水率;(b)用设计用于生物医学薄膜的同轴氧探针(ISO9913Partl)测量透气性。虽然常规亲水材料的公认方法难以精确测量含磺酸的材料。但鉴于测量困难,在吸水率相当的常规亲水材料的透气度值的15%以内的透气度值已被确认并认为是合理的。(c)导热率,用G.Mole在ERAReport5231(1969)中描述的快速瞬态导热率测量装置在充分水合状态测量。发现导热率值是吸水率的函数,从55%吸水率材料的0.45W/m.K(等于水导热率的78%)增至85%吸水率材料的0.58W/m.K(等于纯水导热率的95%);(d)离子交换能力,对以下试样进行(i)制成块并与膜材料平行辐射的材料试样,和(ii)取自超过MEA本体(proper)的"剩余"材料的膜材料试样(见后面)。使所述材料试样在HC1(0.1M)溶液中7JC合24小时。然后将试样置于NaOH(0.1M)中交换24小时,所得NaOH溶液用HC1滴定。(e)热稳定性,用热重分析法(TGA)并在水合时洗净。发现所述材料在加热时明显比Nafion更稳定AN-VP-AMPS共聚物在150*€下仅失去其质量的4%(与Nafion相当),甚至在8001C下仍保留42%(在500n以上的温度下Nafion的剩余量为0)。为评价导电率和IEC值,生产MEA期间将MEA所用单体混合物的另一试样辐射。测得所述AN-VP-AMPS材料的IEC值在2-3的范围内,取决于确切生产方法,相当于当量在300-400范围内。这与Nafion(其IEC为0.91,当量为1100)相比非常有利。使MEA,s在DD水中充分水合,用膜边缘本身作压力密封安装在电池内。因此,所述MEA,s的安装非常简单,在施加工作气体的30秒内可获得稳定的开路电压(0CV)。测试方法涉及设定电流(通过电子载荷),和测量所得电池电压。在各试验程序结束时再测量OCV以确保MEA在试验期间没有分层或降解的严重问题。总之,用乙烯基-SA、苯乙烯-SA、最重要的是2-丙烯酰氨基-2-甲基-l-丙烷-SA配制材料,发现其导电率与Nafion相当或更好,如图6中所示。此外,使用交联剂可独立于电性能控制最终吸水率,如图7中所示。由于膨胀率及机械和水力学性质都与水合时的吸水率4M目关,上述参数的控制证明可有效地确定并可再现地控制所得材料的性能。这示于图7中,其中绘制出基于AN+VP+AMPS的各种聚合物配方的IEC值随平衡水含量和AMA用量的变化。如果任何特定应用需要,显然可在宽吸水率(因而宽膨胀率、机械性能和透水性)范围内提供给定IEC值的材料。图8是干状态下复合MEA的整个边,截面的SEM照片,其示出加强件81、两个电极纸82、催化剂83和延伸超过电极区域以提供整体气封的膜材料84。图9(使用非纺织隔板)和图IO(使用纺织隔板)中所示结果清楚地证明,通过一步生产法制备的复合MEA,s有效地起PEM系统的作用。所有情况下虛线都表示常规构造但使用AN-VP-AMPS膜的MEA的结果,即简单地将平面膜压在电极紙之间。实线是以整体MEA形式构造的相同膜材料的测量特性。性能改进表明PEM材料与催化剂之间接触很好。发现所述0CV在反复循环(同时充分水合)之后恢复其原值,表明所述方法成功地防止聚合物与催化剂层和炭纸电极材料分层。伴随着干燥观察到膜电阻增大,但再水合时这是可逆的。实施例2材料丙烯腈(蒸馏的)75g(35.38%)乙烯基吡咯烷酮75g(35.38%)2-丙烯酰氨基-2-甲基-1-丙磺酸30g(14.15%)水(HPLC级)30g(14.15%)甲基丙烯酸烯丙酯2g(0.94%)混合1.将丙烯腈和乙烯基吡咯烷酮混合在一起,并储存在密封容器内。2.将所述酸緩慢加入水中。不断搅拌所述混合物以确保所述酸完全溶解。此过程可能需20分钟。3.将步骤2所得混合物緩慢加至步骤1所得混合物中。重要的是在此过程中在冷水浴中使所述丙烯腈-乙烯基吡咯烷酮混合物冷却,因为开始加酸-水混合物时可能产生一些热量。在此过程中连续地搅拌所述混合物以避免突然放热也是重要的。4.将所述曱基丙烯酸烯丙酯加至步骤3所得混合物中并充分搅拌。最终的混合物可在冷冻装置内储存最多三周而对其聚合能力无明显影响。组装对于每个cMEA,将两片适当尺寸的炭纸电极放在非纺织聚酯薄片的两边。所述炭纸片必须完全重叠而且在朝向聚酯片的一面有镀铂表面。所述聚酯片有双重作用。第一,防止炭纸电极相互接触而短路;第二,控制所得cMEA水合时的溶胀行为。两侧用聚乙烯薄片作为隔板,使得可一次制造多个cMEA,s。单或多个cMEA,s放在可密封的聚乙烯袋内。由与薄聚乙烯管相连的注射器将单体混合物注入袋内,所述聚乙烯管的末端位于袋的底部。填充之前,将整个组件抽空,充满氮气以从系统中除去大气氧。所迷单体混合物直接注入袋底有助于除去气泡。去掉加料管,使袋静置5分钟,以使所述单体混合物能渗入隔离材料中。最后轻轻挤压所述袋,而从液体中扫除任何气泡。此时将袋密封。通过两块紧紧地固定在一起的硬聚乙烯板给袋施加外压。这将组件挤压在一起,从而确保炭纸电极保持在适当位置并使所得cMEA,s尽可能薄而且厚度均匀。从cMEA,s中压出的过量单体混合物在正压下的袋顶部形成储蓄层。聚合使组件经表2所示两级y-辐射处理。表2<table>tableseeoriginaldocumentpage20</column></row><table>将组件水平放置,包含过量单体的袋"顶"距辐射源最远。组件中心距y-源的距离由剂量率决定。剂量率提高时,组件移至离辐射源更近但取向不变。聚合是放热过程,导致体积减小约4%。初始的低剂量率被优化以使单体混合物緩慢聚合而不过热。二次较高剂量确保完全聚合。所述cMEA,s最接近y-源的部分将经受比过量单体更高的剂量率。目的是要在一端以此方式引发聚合从而所述过量的单体混合物可起补充储蓄层的作用以补偿与此过程相伴的体积减小。相信该方法减小聚合过程中cMEA,s内形成空隙的可能性。也可通过热引发聚合。这需要在单体混合物中加入适合的引发剂(如AIBN)。引发剂的需要量典型地为AN-VP混合物的2%重量(即对于以上所列量为3g)。该混合物在室温下将聚合很多天。体系温度升高可缩短聚合时间。在组件中心引发聚合可减小因聚合时体积收缩导致关键区域内产生空隙的可能性。这可通过在组件顶部中心施加点热源实现。cMEA,s的分离和7jc合将所述聚乙烯袋切开,取出cMEA,s组件。所述cMEA,s可很容易从聚乙烯隔板上剥离。但单体混合物可能在隔板边缘周围渗出并聚合,使之粘合在一起。在此情况下,从边缘切掉此区域更易于分离。移动时必须注意不使cMEA,s弯曲,因为炭纸电极相当脆。分离后,可将cMEA,s放入另一可密封的有一些去离子水的聚乙烯袋内。所述袋必须足够大以允许cMEA,s在水合过程中膨胀。所述聚酯隔离材料限制cMEA在水合过程中横向膨胀,从而导致所述体积增加多数为厚度增加。这有减小炭纸-膜界面应力的益处,使分层的可能性减小。cMEA作为燃料电池的试验可在适用于单MEA的系统中作为燃料电池评价cMEA。在此情况下所用系统的基本组成部分是1.两个石墨歧管,其面积比所述cMEA大。两个歧管的一侧都加工有气体通道,其覆盖面积与cMEA上炭纸的面积相等。MEA夹持在歧管之间,该组件称为燃料电池。2.适合使可控压力的氢气和氧气与各歧管的气体通ii4目连的管道。3.与燃料电池并联的电压表。4.能引导出用户规定电流的与燃料电池并联的电子栽荷。重要的是使cMEA适当地置于歧管之间以致两歧管上的气体通道与炭紙重叠。通过各角的螺栓将歧管固定在一起。延伸超过炭纸的薄膜与歧管形成气封,因为cMEA厚度均匀(不象常规MEA,s需要外加密封机构)。向cMEA的两边供应氩气和氧气时,观察到电压。开动所述电子栽荷,可从燃料电池导出增加的电流,相对于电池电压作图以确定cMEA的极化特性。结果示于图ll中。图12示出进一步的结果。cMEA作为电解池的试验与作为燃料电池的试验相同,将cMEA固定在两个歧管之间,用氮气冲洗气体通道以除去任何残留的氢气和氧气。使毛细管与两歧管上的气体进出口相连,加水充满气体通道。在歧管两端施加电压主(2.5V)时,看见从两歧管的气体通道中通过毛细管冒出气泡。观察到与电源负极相连的歧管中产生更多气体。由于化学计量这与负极放出氢气而正极放出氧气一致。用注射器收集负极产生的气体试样,通过设计用于鉴定氬气的Drager管。结果是正性的,证明cMEA可作为电解池,在受到电压时产生氢气和氧气。然后使cMEAR返回燃料电池试验装置,再运行15小时。评价结果表明,作为电解池,进行预处理可增强cMEA作为燃料电池的运转。实施例3重复以上列举的方法,但用氯化乙烯基千基三曱基铵(BV)代替AMPSA,从而引入阳离子部位。测试该材料,发现在相同试验装置中在相同条件下测量时有比Nafion明显更高的电导率(提高30°y0。材料组分示于表3中。表3<table>tableseeoriginaldocumentpage22</column></row><table>权利要求1.一种薄膜电极组件,包括电极和离子交换膜,所述离子交换膜包括含强离子基的亲水性聚合物。2.—种用于电化学反应的薄膜电极组件,包括电极和离子交换膜,所述组件包含用于将液态或气态反应组分传输给至少一个电极和/或由至少一个电极传出的至少一个限定通道。3.权利要求2的组件,其中所述离子交换材料包括含强离子基的聚合物。4.权利要求1或3的组件,其中含有所述离子基的分子被物理地截留在所述聚合物内。5.前述任何权利要求的组件,包括催化剂。6.权利要求5的组件,包含至少一个权利要求2中所定义的通道,其中所述至少一个通道允许将所述反应组分传输给所述催化剂。7.—种亲水性交联聚合物,可通过聚合时产生交联的亲水性聚合物的疏水和亲水性单体、包含强离子基的单体、和水共聚获得。8.权利要求7的聚合物,有阳离子部位。9.权利要求7的聚合物,有阴离子部位。10.权利要求7至9之任一项的聚合物,有不大于85%的吸水率。11.权利要求7至IO之任一项的聚合物,其中所述疏水性单体为丙烯腈。12.权利要求7至11之任一项的聚合物,其中所述亲水性单体为乙烯基吡咯烷酮。13.权利要求7至12之任一项的聚合物,是交联的。14.权利要求13的聚合物,其中所述单体包括单独的交联剂。15.权利要求7至14之任一项的聚合物,其中所述聚合包衛-辐射或热引发。16.权利要求1至6之任一项的组件,其中所述聚合物有权利要求7至15的任何特征。17.权利要求1至6和16之任一项的组件,是燃料电池形式的。18.权利要求l至6和16之任一项的组件,是电解池形式的。19.权利要求1至6和16至18之任一项的组件,是电池组形式的。20.—种包括电极和离子交换膜的薄膜电极组件的生产方法,包括在电极之间注入可形成所述薄膜的材料,和现场形成所述薄膜。21.权利要求20的方法,其中所述薄膜为聚合物,形成所述薄膜包括组成单体或预聚物现场聚合。22.权利要求21的方法,其中所述薄膜组件是权利要求1至6和16之任一项的。23.权利要求20至22之任一项的方法,其中所述薄膜组件是权利要求17至19之任一项的。全文摘要可通过聚合时产生交联的亲水性聚合物的疏水和亲水性单体、含强离子基的单体、和水共聚获得的亲水性交联聚合物适合在可用于电解池或燃料电池的组件中作为薄膜。更一般地,一种薄膜电极组件,包括电极和离子交换膜,所述离子交换膜包括含强离子基的亲水性聚合物。一种包括电极和离子交换膜的薄膜电极组件的生产方法,包括在电极之间注入形成所述薄膜的材料,和现场形成所述薄膜。文档编号H01M8/02GK101174701SQ20071018608公开日2008年5月7日申请日期2002年9月9日优先权日2001年9月7日发明者D·J·海伊盖特申请人:Itm动力(研究)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1