半导体紫外探测传感器及其制备方法

文档序号:6954162阅读:200来源:国知局
专利名称:半导体紫外探测传感器及其制备方法
技术领域
本发明公开一种用于紫外探测的半导体传感器及这种传感器的制备方法,本发明 属于紫外光探测技术范畴。本发明的半导体紫外探测传感器是一种使用氧化锌纳米线阵列 集成化的紫外光探测器。
背景技术
紫外探测作为一种有广阔应用前景的军民两用技术,20世纪80年代后期就已经 开始了大量的研究和应用。在军事方面,1991年在海湾战争中投入使用的美海军C-130S直 升机和P-3S运输机上就有世界上第一台紫外线告警器AAR-47,并且美国还在持续投入人 力物力大力研发紫外传感器技术。近期,仅白玉兰光学技术公司就获得了 125万美元的经 费用于这方面的研究,参见柯边,《航天电子对抗》(2),47,2001。在民用方面,紫外传感技术 在医学和生物学领域有广泛的应用,尤其是在医学的皮肤病检测方面,利用紫外探测技术 可直接看到病变细节,也可用它来检测癌细胞、微生物、血色素、红血球、白血球、细胞核等, 这种检测不但迅速、准确,而且直观、清楚。参见陈鹏,蒋献,Int J Dermatol Venereol, January 2007,Vol 33,No. 1 ;徐弋青,王颖,Shanghai Nursing, Jul. 2009,Vol. 9,No. 4 ;张 锐利,董岩,高金莲,J Clin Dermatol, October 2006,Vol. 35,NO. 10 ;张洪明毕志刚,国外 医学皮肤性病学分册2003年第四卷第3期。目前广泛研究的紫外探测技术,主要是基于紫外光对半导体载流子浓度的影响而 开发的。当紫外光照射半导体时,价带电子被激发到导带,使得载流子浓度上升,半导体电 阻下降,从而测量到电流的变化,以此实现对紫外光探测的一种技术。作为光子探测技术范畴的紫外传感器,目前主要的困难有三大方面。首先,因为 紫外光所产生的光响应电流非常小,需要使用价格昂贵的微小信号探测系统来实现光响应 电流的探测,导致他在大规模应用上的局限性。其次,紫外光照射到样品表面以后,探测器 的响应和回复时间较长,使得在探测灵敏度上存在困难。再者,纳米线相对于传统材料具 有大的比表面积,当纳米线长时间暴露在空气中的时候,空气中的水汽和二氧化碳会使氧 化锌的表面状态逐渐改变,从而导致紫外光探测器对紫外光响应能力的退化,使得器件的 寿命存在问题。再者,如果器件由单根纳米线组成,一旦纳米线损坏则会导致整个器件的完 全破坏,因此其在可靠性方面存在问题。对于第一个困难,目前解决的方法主要有两类,第 一类方法是对单根纳米线的表面进行处理,使其具有更高的响应。比如,S. Aga. Jr等人用 CdTe量子点修饰氧化锌纳米线表面,使得光响应曲线大致提高了接近5nA,虽然光响应电 流有所上升,但是探测nA级别的电流需要非常昂贵的仪器,参见R. S. Aga, Jr et. al,Appl. Phys. Lett. 91,232108(2007)。J. H. He等人将氧化锌纳米带表面进行了功能化,并且使得 电信号强度大幅度提高到基线的100倍,但是由于基线几乎为零,所以实际光子照射后的 电信号还是非常微弱,而且功能化的流程繁琐,不利于大规模应用,参见J. H. He, J. Appl. Phys. 102,084303 0007)。第二类方法是对纳米线进行集成,Yanbo Li等人利用插指型电极 直接生长氧化锌纳米线以及氧化锌纳米线之间的相互桥接实现了光响应电流的提高,参见Yanbo Li et. al,Nanotechnology 20 (2009) 045501 对于第二个困难,在使用了肖特基接 触的紫外光子探测器以后,可以有显著的改善,但是同样无法避免第一个困难的同时存在。中国发明专利申请201010190839. 8公开了一种用于紫外探测的传感器及其制备 方法。本发明的半导体传感器由两个电极和位于两个电极之间的并联集成的氧化锌纳米线 组成。本发明的这种半导体传感器的制备方法是首先在第一基片上生长出一层垂直于基 片表面的氧化锌纳米线阵列,然后将氧化锌纳米线阵列转移到第二基片的表面,再将掩膜 板上电极图形置于涂胶表面垂直于有取向的纳米线的两端且可盖住纳米线端部部分的位 置进行曝光、显影、光刻,然后通过物理方法在光刻形成的电极区域内沉积至少一种导电金 属制成电极,再将电极与纳米线从第二基片上剥离,在电极上连接导线,得到所需的器件。 经测试表明该专利申请所公开的器件其光响应电流△ I可达到数微安。从该专利申请文件 中可见,从理论上讲延长电极的长度,在电极上更多的集成氧化锌纳米线可能进一步提高 光响应电流值,但实际上这种做法是行不通的,因为受器件尺寸的限制无法无限制的延长 电极长度使电极间集成更多的氧化锌纳米线。另一方面该技术同样存在氧化锌纳米线长时 间暴露在空气中的不足。

发明内容
本发明提供一种可克服现有技术不足,能更大幅度地提高光响应电流值,例如在 现有技术的基础上提高一个甚至数个数量级的,并可彻底克服现有器件存在的氧化锌纳米 线长时间暴露在空气中的不足的半导体紫外探测传感器及其制备方法。本发明的半导体紫外探测传感器由基板、负载于基板上的电极和位于电极之间的 并联集成的氧化锌纳米线构成,其中的电极为两个各呈梳齿状且相向布置的电极,其中一 个电极的梳齿插入另一个电极的两个梳齿之间,形成齿插状,在相邻的两个梳齿之间均并 联集成着氧化锌纳米线。在本发明的半导体紫外探测传感器中,在电极与氧化锌纳米线的上面和下面分别 设有基板与封装片材,且基板与封装片材中至少有一个为可紫外光的材料,基板与封装片 材的边缘用绝缘胶封闭。本发明的半导体紫外探测传感器由于采用了各呈梳齿状且相向布置的两电极,其 中一个电极的每个梳齿相应插入另一个电极的两个梳齿之间,形成齿插状,在相邻的两个 梳齿间并联集成有氧化锌纳米线,这一技术方案有效地解决了现有技术中无法延长电极长 度,在电极间集成更多纳米线的不足,而且采用这一结构可以大大提高探测时的光响应电 流值。另一方面,本发明的半导体紫外探测传感器在电极与氧化锌纳米线的上面和下面各 设有基板和封装片材,并且两层的边缘用绝缘胶封闭,使氧化锌纳米线被封闭在内,这就完 全避免了外界环境对线纳米的影响,大大处长器件的使用寿命。半导体紫外探测传感器的制备方法是在基片上生长出一层垂直于基片表面的氧 化锌纳米线阵列,然后将基片上的氧化锌纳米线阵列转移一个作为基板的片材的表面,并 使纳米线平行于基板片材的表面,在这一基板片材上或者事先制备有梳齿相插的梳齿形电 极,或者在将氧化锌纳米线转移到基板片材上后再在其上制备出梳齿相插的梳齿形电极, 分别在两个电极上连接导线,然后在所述的基板片材上覆盖一封装片材,再将基板片材与 封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片材与封装片材中至少有一个是可透过紫外光的材料。本发明的具体做法如下将洗净干燥的基板片材表面旋涂上一层柔性聚合物,再烘烤至凝固;在基片上生 长出一层垂直于基片表面的氧化锌纳米线阵列;将基片长有氧化锌纳米线的一面覆盖于基 板片材上带有柔性聚合物的一面,在基片与基板片材面上施加大于IOOPa的正压力,同时 沿同一方向使基片滑过涂覆在基板片材上的柔性聚合物表面,使氧化锌纳米线转移到涂覆 有柔性聚合物的基板片材上;取一个封装片材洗净并干燥处理,在其一个表面旋涂一层光 刻胶,光刻胶干燥后用光刻机对光刻胶进行曝光,得到两个各呈梳齿形的且梳齿相插的电 极图形,然后通过物理或化学方法在电极图形上形成金属电极,经剥离光刻胶后在电极上 分别连接导线,然后在基板片材上负载有氧化锌纳米线的面上覆盖封装片材,并使封装片 材上的金属电极与氧化锌纳米线相接触,在基板片材与封装片材上施加一个正压力,使基 板片材与封装片材间贴紧,再将基板片材与封装片材的边缘用绝缘胶封闭固化,得到所需 的器件,所用的基板片材与封装片材中至少有一个是可透过紫外光的材料;或者是,将基板片材洗净吹干,在其一个表面上旋涂一层光刻胶,光刻胶干燥后用 光刻机对光刻胶进行曝光,得到两个各呈梳齿形的且梳齿相插的电极图形,然后通过物理 或化学方法在电极图形上形成金属电极,剥离光刻胶后,得到一个其上负载有两条电极的 基板片材,在电极上分别连接导线;在基片上生长出一层垂直于基片表面的氧化锌纳米线 阵列;将所得到的其上生长有一层垂直于表面的氧化锌纳米线阵列的基片正对基板片材负 载有插指型电极的一面,再在基片与基板片材上施加大于IOOPa的正压力,同时沿同一方 向使第一基片滑过基板片材表面,使氧化锌纳米线被转移到基板片材上,并使氧化锌纳米 线的两端位于指插电极的齿上;取一片封装片材洗净吹干后,再在其表面旋涂上一层柔性 聚合物并烘烤至凝固,然后将涂覆有柔性聚合物的一面置于基板片材上负载有氧化锌纳米 线的面上,在基板片材与封装片材上施加一个正压力,使基板片材与封装片材间贴紧,再将 基板片材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片材与封装 片材中至少有一个是可透过紫外光的材料;或者是,在基片上生长出一层垂直于基片表面的氧化锌纳米线阵列;将基板片材 洗净吹干,将所得到的其上生长有氧化锌纳米线的基片产物面正对基板片材,再在基片与 基板片材上施加大于IOOPa的正压力,同时沿同一方向使基片滑过基板片材的表面,使基 片上的氧化锌纳米线被转移到基板片材上;再在基板片材上负载有氧化锌纳米线的表面 旋涂一层光刻胶,光刻胶干燥后用光刻机对光刻胶进行曝光,得到两个各呈梳齿形的且梳 齿相插的电极图形,然后通过物理或化学方法在电极图形上形成金属电极,剥离光刻胶后, 在电极上分别连接导线,取一个封装片材覆盖于基板片材负载有氧化锌纳米线与电极的一 面,在基板片材与封装片材上施加一个正压力,使基板片材与封装片材间贴紧,再将基板片 材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片材与封装片材中 至少有一个是可透紫外光的材料。上述所述的制备方法中采用的在基片上生长出氧化锌纳米线的方法可以是化学 气相沉积法,也可以是化学液相法。本发明的半导体紫外探测传感器的一种制备方法是在基板片材上旋涂一层光刻 胶,经前烘后再在光刻机显微镜下将掩膜板上电极图形对准基板片材曝光,得到一个呈梳齿形的电极图形,在电极图形上磁控溅射一层氧化锌薄膜,再在氧化锌薄膜之上溅射一层 不能在其上形核生长的金属阻挡层,经剥离光刻胶后得到负载有一条下面是氧化锌上面是 金属电极的基板片材,将该片材采用化学液相法在片材的氧化锌条形电极的侧壁垂直生长 的氧化锌纳米线阵列,然后再次旋涂一层光刻胶,再经前烘后用光刻机显微镜对准氧化锌 纳米线另外一端进行曝光,再经后烘并显影后得到第二条呈梳齿形的电极图形,且第二条 呈梳齿形的电极的梳齿插入到第一条呈梳齿形的电极的梳齿间,形成插齿状,然后通过物 理或化学方法在第二条电极图形上形成金属电极,经剥离光刻胶后分别在第一和第二条电 极上连接导线,得到所需的器件。本发明的半导体紫外探测传感器的另一种制备方法是在基板片材上旋涂一层光 刻胶,经前烘后再在光刻机显微镜下将掩膜板上电极图形对准基板片材曝光,得到一个呈 梳齿形的电极图形,在电极图形上磁控溅射一层氧化锌薄膜,再在氧化锌薄膜之上溅射一 层不与化学液相反应物反应的金属阻挡层,经剥离光刻胶后得到负载有一条下面是氧化锌 上面是金属电极的基板片材,将该片材采用化学液相法在片材的氧化锌条形电极的侧壁垂 直生长的氧化锌纳米线阵列,然后再次旋涂一层光刻胶,再经前烘后用光刻机显微镜对准 氧化锌纳米线另外一端进行曝光,再经后烘后显影后得到第二条呈梳齿形的电极图形,且 第二条呈梳齿形的电极的梳齿插入到第一条呈梳齿形的电极的梳齿间,形成插齿状,然后 通过物理或化学方法在第二条电极图形上形成金属电极,经剥离光刻胶后分别在第一和第 二条电极上连接导线,取一个封装片材覆盖于基板片材负载有氧化锌纳米线与电极的一面 之上,在基板片材与封装片材上施加一个正压力,使基板片材与封装片材间贴紧,再将基板 片材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片材与封装片材 中至少有一个是可透过紫外光的材料。相关的实验表明,采用本发明的传感器时,传感器中半导体纳米线集成数量很大, 光响应电流可达到毫安量级,使得紫外光的探测和其强度表征难度显著下降。本发明优点在于1.本发明由半导体纳米线构成的紫外光传感器,价格低廉、重复性好,具有良好的 生物兼容性,完全无毒,无环境公害。2.具有高的光响应信号强度,同时由于集成的半导体纳米线数目可以大量增加, 因此可以使得传感器的光响应电流达到普通电流计可以探测的程度。从而使得探测器的成 本可以大大降低。3.本发明的半导体传感器制备方法较为简便,工艺相对简单。


附图1为制备的氧化锌纳米线阵列扫描电镜俯视图。附图2为制备的氧化锌纳米线阵列扫描电镜断面图。附图3为制备的氧化锌纳米线阵列X射线衍射图。附图4为第一种器件制备方法的示意图。图中1为基片,2为氧化锌纳米线,3为 作为基板的片材,4为柔性聚合物,5为两个互相为齿插状的梳齿形金属电极,6为封装片 材。由本图清楚可见两个呈梳齿形的电极相互方置的位置。附图5为第二种器件制备方法的示意图。图中1为基片。2为氧化锌纳米线。3作为基板的片材。4为柔性聚合物。5为两个互相为齿插状的梳齿形金属电极。6为封装片 材。附图6为第三种器件制备方法的示意图。图中1为基片。2为氧化锌纳米线。3 为第一个作为基板的片材。4为两个互相为齿插状的梳齿形金属电极。附图7为为器件I-V曲线,如图所示,器件为欧姆型接触。附图8为器件的Ι-t曲线,如图所示,在紫外光照射时,光响应电流达到4. 4mA。附图9为3V偏压下,不同强度紫外光的光响应曲线。从下到上,紫外光强度依次 % 100 μ w/cm2, 500 μ w/cm2, lmw/cm2,1. 8mw/cm2。附图10为3V偏压下,不同强度紫外光的光响应曲线。从下到上,紫外光强度依次 为 5 μ w/cm2,10 μ w/cm2, 50 μ w/cm2。附图11为3V偏压下,不同强度紫外光的光响应曲线。从下到上,紫外光强度依次 为 100nw/cm2,500nw/cm2,1 μ w/cm2。附图12 :本发明的器件另一种制备过程的示意图。图中1为基板的片材,2为梳 齿形金属电极下的一层氧化锌薄膜,3为由金属铬阻挡层构成的一个梳齿形金属电极,4为 垂直于2的氧化锌纳米线,5为另一个梳齿形金属电极。
具体实施例方式附图为本发明的最佳实施例,以下结合实施例解说本发明的器件结构可参见附图4和附图5中最下面的一幅,它是由负载有两个各 呈梳齿状且相向布置的电极的基板片材、并联集成于各梳齿间的氧化锌纳米线,以及覆盖 于其上的封装片材构成,其中一个电极的各梳齿插入另一个电极的各两个梳齿之间,形成 齿插状交互布置的位置,见图4或图5 ;而氧化锌纳米线则并联集成于各梳齿间;负载有梳 齿状电极的基板片材与覆盖于其上的封装片材的边缘用绝缘胶封闭,使电极、氧化锌纳米 线被封闭于两个片材之间。本发明的基板片材或封装片材中至少有一个为可紫外光的透光 材料层,本发明的可透过紫外光的片材要求对紫外光的吸收较小、且可满足加工工艺中的 相应烘烤的温度的材料即可。本发明推荐的材料是玻璃片。以下是本发明的器件的制备方法实例及测试实例,在以下的实施例中具体采用的 用于形成氧化锌纳米线阵列的液相化学法为水热法。实施例1 1.首先采用高温化学气相沉积方法或者水热法在基片上生长出垂直于基片的氧 化锌纳米线阵列,本发明所用的基片为硅片,在基片上生长出的氧化锌纳米线的形态及表 征参见附图1、附图2和附图3.采用高温化学气相沉积制备时,先将研磨的0.81g氧化锌和0. 12g石墨粉的混 合物,放入反应舟,反应舟放入单开口套管的封闭端。将抛光面为(100)晶面的硅片切割 成0. 5cmX0. 8cm的小片,先后用HF、丙酮、无水乙醇和蒸馏水依次各超声清洗20分钟,取 出后用氮气吹干硅片表面,放入烘箱175摄氏度烘烤1小时。再将硅片放置在离管口向内 1到5cm区间放置,抛光面向上。套管密封端放在恒温区,开口端正对气体进入方向,通入 190SCCm氩气和IOsccm氧气,体系真空至200Pa,开始从室温升温到1050摄氏度,升温速率 为50摄氏度/分钟,1050摄氏度保温1. 5小时。反应结束后自然冷却到室温,在硅片上得到灰白色膜状产物,经表征,为垂直于硅片的氧化锌纳米线阵列。采用水热法生长氧化锌纳米线阵列时,先在任意基片表面,磁控溅射一层氧化锌 薄膜,然后将基片放入2. 5mM硝酸锌和2. 5mM的六次甲基四胺混合液中,基片镀有氧化锌薄 膜的面朝下放置,加热至80摄氏度,每隔2. 5小时更换反应液,10小时反应结束,得到氧化 锌纳米线阵列。采用水热法生长氧化锌纳米线阵列时,也先在任意基片表面,磁控溅射一层氧化 锌薄膜,然后将基片放入25mM硝酸锌,12. 5mM六次甲基四胺,5mM分子量为800的聚乙烯亚 胺和0. 35M氨水组成的混合溶液中,加热到87. 5摄氏度。每隔2. 5小时更换反应液,10小 时反应结束,取出基片,在450摄氏度灼烧3小时,得到氧化锌纳米线阵列。2.制备氧化锌纳米线紫外光探测器。本发明制备器件的第一种方法是取两片玻璃片,一片作为基板,另一片作为封装片材(注在本方法中也可以说这 两片材料互为基板和封装片材,因为其中一片材料是负载氧化锌纳米线的基板,而另一片 是封装片材,而后者又是负载电极的基板)。将一个玻璃片,洗净吹干后,在其表面旋涂上一 层柔性聚合物,将玻璃片放到30-110摄氏度的烘箱内,烘烤至凝固。将生长有氧化锌纳米 线硅片产物面正对涂覆有柔性聚合物的玻璃片表面,并施加一定大小的正压力(一般为大 于IOOPa的正压力),同时沿同一方向使硅片滑过涂覆在玻璃片上的柔性聚合物表面,在此 过程中柔性聚合物与纳米线阵列产生剪切力,使氧化锌纳米线转移到涂覆有柔性聚合物的 玻璃片上,摩擦后,在玻璃片上的柔性聚合物表面得到平躺的并且彼此几乎平行的纳米线。将另外一片玻璃片洗净吹干,在玻璃片表面旋涂一层光刻胶,甩胶机转速由慢到 快,最终转速为3000转/分钟,保持此转速60秒。随后在90摄氏度烘箱中前烘40分钟, 然后用光刻机对光刻胶进行曝光,得到电极图形,再将温度调高至110摄氏度后烘30分钟, 显影后得到光刻图形,然后通过磁控溅射溅射两条铝电极,剥离后,得到一个负载有两条插 指型铝电极的玻璃片。然后将玻璃片上负载有氧化锌纳米线的一面,正对另外一片玻璃片上负载有铝电 极的一面,在两片玻璃片相对静止的情况下,施加一个正压力,使两片玻璃片贴紧。在维持 住压力的情况下,在两片玻璃片的边缘,用胶封装,固化后,撤除压力。以上制备过程参见附图4。本发明制备器件的第二种方法是将一片玻璃片洗净吹干后,在其表面旋涂上一层柔性聚合物,将玻璃片放到 30-110摄氏度的烘箱内,烘烤至凝固。将另外一片玻璃片洗净吹干,在玻璃片表面旋涂一层光刻胶,甩胶机转速由慢到 快,最终转速为3000转/分钟,保持此转速60秒。随后在90摄氏度烘箱中前烘40分钟,然 后用光刻机对光刻胶进行曝光,得到电极图形,再将温度调高至110摄氏度后烘30分钟,显 影后得到光刻图形,然后通过磁控溅射溅射两条铝电极,剥离后,得到一个负载有两条插指 型铝电极的玻璃片。将硅片产物面正对负载有插指型电极的玻璃片表面,并施加一定大小 的正压力,一般为大于IOOPa的正压力,同时沿同一方向使硅片滑过玻璃片表面,在此过程 中玻璃片与纳米线阵列间产生剪切力,使氧化锌纳米线被转移到电极上,在摩擦后在电级 上得到平躺的并且彼此几乎平行的纳米线,纳米线轴向和电极的梳齿状部分成90度夹角。
然后将玻璃片上负载有氧化锌纳米线的一面,正对另外一片玻璃片上涂覆有柔性 聚合物的一面,在两片玻璃片相对静止的情况下,施加一个正压力,使两片玻璃片贴紧。在 维持住压力的情况下,在两片玻璃片的边缘,用胶封装,固化后,撤除压力。以上的制备过程参见附图5。本发明制备器件的第三种方法是将一片玻璃片洗净吹干后,将硅片产物面正对玻璃片,并施加一定大小的正压力, 一般为大于IOOPa的正压力,同时沿同一方向使硅片滑过玻璃片表面,在此过程中玻璃片 与硅片间产生剪切力,使氧化锌纳米线被转移到玻璃片上,在摩擦后在玻璃片表面得到平 躺在玻璃片上并且彼此几乎平行的纳米线。在此玻璃片上旋涂一层光刻胶,甩胶机转速由 慢到快,最终转速为3000转/分钟,保持此转速60秒。随后在90摄氏度烘箱中前烘40分 钟,然后在光刻机显微镜下将掩膜板上电极图形对准玻璃片上沿垂直于有取向的纳米线进 行曝光,得到电极图形,再将温度调高至110摄氏度后烘30分钟,显影后得到插指型电极光 刻图形,然后通过磁控溅射溅射两条铝电极,剥离后,得到纳米线和电极为欧姆接触的紫外 光探测器。整个制备过程参见见附图6。3.器件的测试用本发明制备的器件作为探测器探测紫外光。在加3V偏压下,让紫外光照射到探 测器上,测得光响应电流Δ I,其实测值约为12mA。由这个实例可知,本发明的器件中氧化 锌纳米线集成度极大,使得器件具有极高的紫外响应,其实测值已经完全可以脱离精密的 测量仪器,使用普通的电流测量就可以实现紫外光子的探测。实测结果见附图7和图8。由 图可见本发明的器件光响应电流可达4. 4毫安。在3V偏压下,将照射到本探测器上的紫外光强度从lOOnw/cm2到1. 8mw/cm2变化, 得到了变化范围从2μ A到4. 4mA,并且与强度一一对应的光响应电流.。紫外光强度分别 用商用紫外光探测器标定,分别为 100nw/cm2,500nw/cm2,1 μ w/cm2,5 μ w/cm2,10 μ w/cm2, 50 μ w/cm2,100 μ w/cm2, 500 μ w/cm2, lmw/cm2,1. 8mw/cm2。实测结果见附图 8、9 禾口 10。实施例2 非密压封装欧姆接触的高响应紫外光传感器的制备在玻璃片上,旋涂一层光刻胶,甩胶机转速由慢到快,最终转速为3000转/分钟, 保持此转速60秒。随后在90摄氏度烘箱中前烘40分钟,然后在光刻机显微镜下将掩膜板 上电极图形对准玻璃片曝光,然后在110摄氏度下后烘30分钟,显影后做出宽度为ΙΟμπι 的插指型电极的一半光刻图形。磁控溅射一层氧化锌薄膜,厚度大约在300 4000nm之 间,在氧化锌薄膜之上再溅射一层铬阻挡层(亦可以是不与Si (NO3) 2和HMTA反应的其他金 属),厚度约为10 lOOnm。剥离后得到一条下面是氧化锌上面是Cr的梳齿状电极。将玻璃片放入浓度为2. 5mmol/L Si (NO3) 2和2. 5mmol/L HMTA的混合培养液中,玻 璃片用塑料托固定,有图形的面朝下,漂浮浸入培养液中,在一定反应温度下(60 100摄 氏度)反应5 12小时,得到在氧化锌条形电极侧壁垂直生长的氧化锌纳米线阵列。然后再次旋涂一层光刻胶,甩胶机转速由慢到快,最终转速为3000转/分钟,保持 此转速60秒。随后在90摄氏度烘箱中前烘40分钟,用光刻机显微镜对准氧化锌纳米线另 外一端进行曝光,再将温度调高至110摄氏度后烘30分钟,显影后得到光刻图形,如果需要 得到欧姆接触的探测器,则可以溅射一条铝电极,剥离后在电极上连接导线,传感器即制备 完成。整个制备过程参见附图12。
权利要求
1.半导体紫外探测传感器,由基板、负载于基板上的电极和位于电极之间的并联集成 的氧化锌纳米线构成,其特征是电极为两个各呈梳齿状且相向布置的电极,其中一个电极 的梳齿插入另一个电极的两个梳齿之间,形成齿插状,在相邻的两个梳齿之间均并联集成 着氧化锌纳米线。
2.权利要求1所述的半导体紫外探测传感器,其特征在于在电极与氧化锌纳米线的 上面和下面分别设有基板与封装片材,且基板与封装材中至少有一个为可透过紫外光的材 料,基板与封装层的边缘用绝缘胶封闭。
3.权利要求2所述的半导体紫外探测传感器的制备方法,其特征在于在基片上生长 出一层垂直于基片表面的氧化锌纳米线阵列,然后将基片上的氧化锌纳米线阵列转移一个 作为基板的片材的表面,并使纳米线平行于基板片材的表面,在这一基板片材上或者事先 制备有梳齿相插的梳齿形电极,或者在将氧化锌纳米线转移到基板片材上后再在其上制备 出梳齿相插的梳齿形电极,分别在两个电极上连接导线,然后在所述的基板片材上覆盖一 封装片材,再将基板片材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基 板片材与封装片材中至少有一个是可透过紫外光的材料。
4.权利要求3所述的半导体紫外探测传感器的制备方法,其特征在于将洗净干燥的 基板片材表面旋涂上一层柔性聚合物,再烘烤至凝固;在基片上生长出一层垂直于基片表 面的氧化锌纳米线阵列;将基片长有氧化锌纳米线的一面覆盖于基板片材上带有柔性聚合 物的一面,在基片与基板片材面上施加大于IOOPa的正压力,同时沿同一方向使基片滑过 涂覆在基板片材上的柔性聚合物表面,使氧化锌纳米线转移到涂覆有柔性聚合物的基板片 材上;取一个封装片材洗净并干燥处理,在其一个表面旋涂一层光刻胶,光刻胶干燥后用光 刻机对光刻胶进行曝光,得到两个各呈梳齿形的且梳齿相插的电极图形,然后通过物理或 化学方法在电极图形上形成金属电极,经剥离光刻胶后在电极上分别连接导线,然后在基 板片材上负载有氧化锌纳米线的面上覆盖封装片材,并使封装片材上的金属电极与氧化锌 纳米线相接触,在基板片材与封装片材上施加一个正压力,使基板片材与封装片材间贴紧, 再将基板片材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片材与 封装片材中至少有一个是可透过紫外光的材料。
5.权利要求3所述的半导体紫外探测传感器的制备方法,其特征在于将基板片材洗 净吹干,在其一个表面上旋涂一层光刻胶,光刻胶干燥后用光刻机对光刻胶进行曝光,得到 两个各呈梳齿形的且梳齿相插的电极图形,然后通过物理或化学方法在电极图形上形成金 属电极,剥离光刻胶后,得到一个其上负载有两条电极的基板片材,在电极上分别连接导 线;在基片上生长出一层垂直于基片表面的氧化锌纳米线阵列;将所得到的其上生长有一 层垂直于表面的氧化锌纳米线阵列的基片正对基板片材负载有插指型电极的一面,再在基 片与基板片材上施加大于IOOPa的正压力,同时沿同一方向使第一基片滑过基板片材表 面,使氧化锌纳米线被转移到基板片材上,并使氧化锌纳米线的两端位于指插电极的齿上; 取一片封装片材洗净吹干后,再在其表面旋涂上一层柔性聚合物并烘烤至凝固,然后将涂 覆有柔性聚合物的一面置于基板片材上负载有氧化锌纳米线的面上,在基板片材与封装片 材上施加一个正压力,使基板片材与封装片材间贴紧,再将基板片材与封装片材的边缘用 绝缘胶封闭固化,得到所需的器件,所用的基板片材与封装片材中至少有一个是可透过紫 外光的材料。
6.权利要求3所述的半导体紫外探测传感器的制备方法,其特征在于在基片上生长 出一层垂直于基片表面的氧化锌纳米线阵列;将基板片材洗净吹干,将所得到的其上生长 有氧化锌纳米线的基片产物面正对基板片材,再在基片与基板片材上施加大于IOOPa的正 压力,同时沿同一方向使基片滑过基板片材的表面,使基片上的氧化锌纳米线被转移到基 板片材上;再在基板片材上负载有氧化锌纳米线的表面旋涂一层光刻胶,光刻胶干燥后用 光刻机对光刻胶进行曝光,得到两个各呈梳齿形的且梳齿相插的电极图形,然后通过物理 或化学方法在电极图形上形成金属电极,剥离光刻胶后,在电极上分别连接导线,取一个封 装片材覆盖于基板片材负载有氧化锌纳米线与电极的一面,在基板片材与封装片材上施加 一个正压力,使基板片材与封装片材间贴紧,再将基板片材与封装片材的边缘用绝缘胶封 闭固化,得到所需的器件,所用的基板片材与封装片材中至少有一个是可透紫外光的材料。
7.权利要求3至6所述的任一方法所采用的在基片上生长出氧化锌纳米线的方法,其 特征是化学气相沉积法。
8.权利要求3至6所述的任一方法所采用的在基片上生长出氧化锌纳米线的方法,其 特征是液相化学法。
9.权利要求1所述的半导体紫外探测传感器的制备方法,其特征在于在基板片材上 旋涂一层光刻胶,经前烘后再在光刻机显微镜下将掩膜板上电极图形对准基板片材曝光, 得到一个呈梳齿形的电极图形,在电极图形上磁控溅射一层氧化锌薄膜,再在氧化锌薄膜 之上溅射一层不与化学液相反应物反应的金属阻挡层,经剥离光刻胶后得到负载有一条下 面是氧化锌上面是金属电极的基板片材,将该片材采用化学液相法在片材的氧化锌条形电 极的侧壁垂直生长的氧化锌纳米线阵列,然后再次旋涂一层光刻胶,再经前烘后用光刻机 显微镜对准氧化锌纳米线另外一端进行曝光,再经后烘并显影后得到第二条呈梳齿形的电 极图形,且第二条呈梳齿形的电极的梳齿插入到第一条呈梳齿形的电极的梳齿间,形成插 齿状,然后通过物理或化学方法在第二条电极图形上形成金属电极,经剥离光刻胶后分别 在第一和第二条电极上连接导线,得到所需的器件。
10.权利要求2所述的半导体紫外探测传感器的制备方法,其特征在于在基板片材上 旋涂一层光刻胶,经前烘后再在光刻机显微镜下将掩膜板上电极图形对准基板片材曝光, 得到一个呈梳齿形的电极图形,在电极图形上磁控溅射一层氧化锌薄膜,再在氧化锌薄膜 之上溅射一层氧化锌不能在其上形核生长的金属阻挡层,经剥离光刻胶后得到负载有一条 下面是氧化锌上面是金属电极的基板片材,将该片材采用化学液相法在片材的氧化锌条形 电极的侧壁垂直生长的氧化锌纳米线阵列,然后再次旋涂一层光刻胶,再经前烘后用光刻 机显微镜对准氧化锌纳米线另外一端进行曝光,再经后烘后显影后得到第二条呈梳齿形的 电极图形,且第二条呈梳齿形的电极的梳齿插入到第一条呈梳齿形的电极的梳齿间,形成 插齿状,然后通过物理或化学方法在第二条电极图形上形成金属电极,经剥离光刻胶后分 别在第一和第二条电极上连接导线,取一个封装片材覆盖于基板片材负载有氧化锌纳米线 与电极的一面之上,在基板片材与封装片材上施加一个正压力,使基板片材与封装片材间 贴紧,再将基板片材与封装片材的边缘用绝缘胶封闭固化,得到所需的器件,所用的基板片 材与封装片材中至少有一个是可透过紫外光的材料。
全文摘要
本发明公开一种用于紫外探测的半导体传感器及这种传感器的制备方法。本发明的半导体紫外探测传感器由基板、负载于基板上的电极和位于电极之间的并联集成的氧化锌纳米线,其中的电极为两个各呈梳齿状且相向布置的电极,其中一个电极的梳齿插入另一个电极的两个梳齿之间,形成齿插状,在相邻的两个梳齿上均并联集成着氧化锌纳米线。本发明的传感器光响应电流可达到毫安量级,使得紫外光的探测和其强度表征难度显著下降。
文档编号H01L31/09GK102110735SQ20101050859
公开日2011年6月29日 申请日期2010年10月13日 优先权日2010年10月13日
发明者吴巍炜, 白所, 秦勇 申请人:兰州大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1