Sonos结构和sonos存储器的形成方法

文档序号:7158073阅读:388来源:国知局
专利名称:Sonos结构和sonos存储器的形成方法
技术领域
本发明涉及半导体技术领域,尤其涉及SONOS结构的形成方法、SONOS存储器的形成方法。
背景技术
通常,用于存储数据的半导体存储器分为易失性存储器和非易失性存储器,易失性存储器容易在电源中断时丢失其数据,而非易失性存储器即使在电源中断时仍可保存其数据。与其它的非易失性存储技术(例如,磁盘驱动器)相比,非易失性半导体存储器相对较小。因此,非易失性存储器已广泛地应用于移动通信系统、存储卡等。非易失性存储单元可由浮栅结构或SONOS(Silicon-Oxide-Nitride-Oxide-Si licon,简称S0N0S)结构两大主要技术之一实现。浮栅型存储器相对较厚的隧穿氧化层 (70-120埃)提供了良好的电荷保持性能,工艺流程比较容易控制,但是一旦隧穿氧化层中存在缺陷,存储电荷容易沿着缺陷从多晶硅存储层中丢失。SONOS存储器的隧穿氧化层的厚度较薄,利用绝缘的氮化硅介质层来俘获并存储电荷,氮化硅用来捕获电荷的陷阱是独立的,不会因为一个缺陷导致电荷的大量丢失。SONOS还具有抗擦写能力好、操作电压低和功率低、工艺过程简单且与标准CMOS工艺兼容等优势。图1为现有技术的S0N0S结构的示意图,参考图1,现有技术的S0N0S结构包括衬底10 ;位于所述衬底10上的隧穿介质层11、捕获电荷层12和顶部介质层13,其中,隧穿介质层11的材料为氧化硅,捕获电荷层12的材料为氮化硅,顶部介质层13的材料为氧化硅, 隧穿介质层11、捕获电荷层12和顶部介质层13构成了 0N0 (oxide-nitride-oxide)的叠层结构;位于所述顶部介质层13上的栅极14 ;位于所述衬底10内、所述叠层结构两侧的源极 15和漏极16。S0N0S存储器的工作原理为在写过程时,在栅极14和衬底10之间施加正电压 (通常为+10V),在源极15和漏极16上施加相同的低电压(通常为0V),沟道中的电子发生隧穿穿过隧穿介质层11,存储在捕获电荷层12中,完成电子隧穿编程操作过程。在擦除过程时,在栅极14和衬底10之间施加负电压(通常为-10V),在源极14和漏极15上施加相同的电压(通常为0V),即可完成捕获电荷层12中捕获的电子隧穿穿过隧穿介质层11进入衬底10的擦除操作过程。以上所述的现有技术的S0N0S存储器存在擦除饱和的问题,即捕获电荷层中的电子不能完全隧穿出捕获电荷层。现有技术中有许多关于S0N0S存储器的专利以及专利申请,例如2011年6月15日公开的公开号为CN102097491A的中国专利申请中公开的S0N0S及其形成方法。

发明内容
本发明解决的问题是现有技术的S0N0S存储器存在擦除饱和的问题。为解决上述问题,本发明提供一种S0N0S结构的形成方法,包括提供衬底;
在所述衬底上形成图形化的光刻胶层,定义出衬底上ONO结构的区域;以所述图形化的光刻胶层为掩膜,与所述衬底的表面呈小于90度方向干法刻蚀所述衬底的上部分,被刻蚀后的衬底分成第一衬底和第二衬底,第一衬底的表面为凸面;去除所述图形化的光刻胶层;在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层,所述隧穿介质层、捕获电荷层、顶部介质层和导电层的上表面为凸面;对所述第二衬底进行离子掺杂,在所述第二衬底内、第一衬底的两侧形成源极和漏极。可选的,去除所述图形化的光刻胶层后,在所述第一衬底上依次形成隧穿介质层、 捕获电荷层、顶部介质层和导电层之前还包括对所述衬底进行退火,使所述第一衬底的凸面为弧面。可选的,在H2气氛围中,温度为800 900°C范围内进行所述退火。可选的,在所述退火后,在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层之前,还包括利用热氧化方法形成氧化层,覆盖所述第一衬底和第二衬底。可选的,所述氧化层的材料为氧化硅。可选的,所述隧穿介质层的材料为氧化硅。可选的,所述顶部介质层的材料为氧化硅。可选的,所述捕获电荷层的材料为氮化硅。
可选的,所述导电层的材料为多晶硅。本发明还提供一种SONOS存储器的形成方法,包括利用所述的方法形成的SONOS结构。与现有技术相比,本发明具体实施例具有以下优点在本技术方案中形成的SONOS结构是一个凸面结构,即隧穿介质层、捕获电荷层和顶部介质层、导电层的上表面、下表面均为凸面,与隧穿介质层接触的第一衬底的上表面也为凸面,在这种结构中,衬底和栅极即导电层之间的电力线不再是平行分布,而是从栅极垂直于介质层(包括顶部介质层、捕获电荷层和隧穿介质层)集中到衬底,这使电力线密度即电场强度从栅极到衬底不断增加,即使在捕获电荷层没有电子(完全擦除)的情况下,这种结构也保证隧穿介质层中的电场远大于顶部介质层的电场,相对于传统SONOS结构,本结构在整个擦除过程中,从捕获电荷层经过隧穿介质层隧穿到衬底的电子数量大于从栅极经过顶部介质层隧穿到捕获电荷层的电子数量,以此有效解决了传统SONOS结构擦除饱和的问题。


图1为现有技术的SONOS结构的示意图;图2为本发明具体实施例的SONOS结构的剖面结构示意图;图3为本发明具体实施例的SONOS结构的形成方法的流程示意4至图8为本发明具体实施例的SONOS结构的形成方法的剖面结构示意图。
具体实施例方式基于以上所述的SONOS存储器的工作原理,SONOS存储器采用FN隧穿效应 (Fowler-Nordheim Tunneling)进行擦除在栅极和衬底之间的强场使得捕获电荷层中的电子隧穿过隧穿介质层进入衬底,在隧穿介质层厚度确定的情况下,隧穿过程主要是由隧穿介质层中的电场决定,电场强度越大,越容易发生隧穿,即捕获电荷层中的电子越容易隧穿进入衬底。在SONOS结构中存在两个隧穿过程隧穿一,电子从栅极经过顶部介质层隧穿到捕获电荷层,隧穿二电子从捕获电荷层经过隧穿介质层隧穿到衬底。在传统的平板 SONOS结构中,在擦除开始时捕获电荷层中电子的数量多,隧穿介质层的电场远大于顶部介质层的电场;随着擦除的进行,捕获电荷层中电子逐渐减少,因此隧穿介质层中的电场不断减小而顶部介质层中电场不断增加;直到完全擦除时两者电场相等。可以想见,在擦除过程中,隧穿一由于顶部介质层电场的增强而不断增强,隧穿二由于隧穿介质层电场的减弱而减弱,当隧穿一和隧穿二大小相当时,即从栅极经过顶部介质层隧穿到捕获电荷层的电子数量与从捕获电荷层经过隧穿介质层隧穿到衬底的电子数量相当时,从捕获电荷层的净流出电流变得很小,也就是净流出电子数量非常少,擦除变得非常困难以至在合理时间内无法完全擦除。在本发明中,SONOS结构是一个凸面结构,即隧穿介质层、捕获电荷层和顶部介质层的上表面、下表面均为凸面,与隧穿介质层接触的衬底的表面也为凸面,在这种结构中,衬底和栅极即导电层之间的电力线不再是平行分布,而是从栅极垂直于介质层(包括顶部介质层、捕获电荷层和隧穿介质层)集中到衬底,这使电力线密度即电场强度从栅极到衬底不断增加,即使在捕获电荷层没有电子(完全擦除)的情况下,这种结构也保证隧穿介质层中的电场远大于顶部介质层中的电场,相对于传统SONOS结构,本结构隧穿一过程被减弱,隧穿二过程被增强,在整个擦除过程中,隧穿二一直保持远大于隧穿一,也就是从捕获电荷层经过隧穿介质层隧穿到衬底的电子数量远大于从栅极经过顶部介质层隧穿到捕获电荷层的电子数量,以此有效解决了传统SONOS结构擦除饱和的问题。为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式
做详细的说明。在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式
的限制。图2为本发明具体实施例的SONOS结构的剖面结构示意图,参考图2,本发明具体实施例的SONOS结构,包括衬底20,所述衬底20包括第一衬底20a和第二衬底20b,所述第一衬底20a位于所述第二衬底20b上,所述第一衬底20a定义出ONO结构的区域,且所述第一衬底20a的表面为凸面;依次位于所述第一衬底20a上的隧穿介质层21、捕获电荷层 22、顶部介质层23和导电层24,即所述隧穿介质层21位于所述第一衬底20a上,所述捕获电荷层22位于所述隧穿介质层21上,所述顶部介质层23位于所述捕获电荷层22上,所述导电层M位于所述顶部介质层23上,所述隧穿介质层21、捕获电荷层22、顶部介质层23 形成ONO结构,所述导电层M作为栅极;源极25和漏极立于所述第二衬底20b内,且分别位于第一衬底20a的两侧;隧穿介质层21的下表面与第一衬底20a的上表面贴合,捕获电荷层22的下表面与隧穿介质层21的上表面贴合,顶部介质层23的下表面与捕获电荷层22的上表面贴合,导电层M的下表面与顶部介质层23的上表面贴合,因此所述隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M的上表面、下表面均为凸面。隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M均具有侧面和上表面、下表面,其中与衬底20相对的两个表面分别为上表面和下表面,靠近衬底20的为下表面,远离衬底20的为上表面,其他在上表面和下表面之间的表面为侧面。在图2所示的本发明的具体实施例中, 所述凸面为弧面,但本发明中,第一衬底20a的表面、隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M的上表面、下表面不限于弧面,也可以为其他形状的凸面,只要保证电力线从栅极垂直于介质层(包括顶部介质层、捕获电荷层和隧穿介质层)集中到衬底,使电场强度从栅极到衬底不断增加,即可。本发明具体实施例中,衬底20即第一衬底20a和第二衬底20b的材料为单晶硅、 单晶锗或者单晶锗硅、III-V族元素化合物、单晶碳化硅或绝缘体上硅(SOI)结构。在衬底 20中形成有阱区以及隔离结构(图中未示),在该实施例中,阱区为N型阱区,隔离结构形成在衬底中、相邻的SONOS结构之间。源极25和漏极沈均为P型掺杂。在其他实施例中, 阱区也可以为P型阱区,相应的源极25和漏极沈均为N型掺杂。在堆叠结构的周围形成有侧墙(图中未示)。在本发明具体实施例中,所述隧穿介质层21的材料为氧化硅,其厚度为30-50A (埃),且隧穿介质层21各处的厚度基本相同。但本发明中,隧穿介质层21的材料不限于氧化硅,也可以为本领域技术人员公知的其他材料。所述顶部介质层23的材料为氧化硅,其厚度为30-50A,且顶部介质层23各处的厚度基本相同。但本发明中,顶部介质层23的材料不限于氧化硅,也可以为本领域技术人员公知的其他材料。捕获电荷层22的材料为氮化硅,其厚度为40-60A,且捕获电荷层22各处的厚度基本相同。但本发明中,捕获电荷层22的材料不限于氮化硅,也可以为本领域技术人员公知的其他材料。导电层M作为栅极,其材料为多晶硅,厚度为1500-3000A,且导电层M各处的厚度基本相同。但本发明中,导电层M的材料不限于多晶硅,也可以为本领域技术人员公知的其他材料。基于以上所述的SONOS结构,本发明还提供了一种SONOS存储器,包括多个以上所述的SONOS结构,所述多个SONOS结构呈阵列排布。关于该SONOS存储器的其他方面,例如字线、位线的排列方式,多个SONOS结构的连接方式、排列方式均为本领域技术人员的公知技术,在此不做赘述。基于以上所述的SONOS结构,本发明还提供一种SONOS结构的形成方法,图3为本发明具体实施例的SONOS结构的形成方法的流程示意图,参考图3,本发明具体实施例的 SONOS结构的形成方法包括步骤S31,提供衬底;步骤S32,在所述衬底上形成图形化的光刻胶层,定义出衬底上ONO结构的区域;步骤S33,以所述图形化的光刻胶层为掩膜,与所述衬底的表面呈小于90度方向干法刻蚀所述衬底的上部分,被刻蚀后的衬底分成第一衬底和第二衬底,第一衬底的表面为凸面;步骤S34,去除所述图形化的光刻胶层;
步骤S35,在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层,所述隧穿介质层、捕获电荷层、顶部介质层和导电层的上表面为凸面;步骤S36,对所述第二衬底进行离子掺杂,在所述第二衬底内、第一衬底的两侧形成源极和漏极。图4至图8为本发明具体实施例的SONOS结构的形成方法的剖面结构示意图,下面结合参考图3以及图4至图8详述本发明具体实施例的SONOS结构的形成方法。结合参考图3和图4,执行步骤S31,提供衬底20,本发明具体实施例中,衬底20 的材料为单晶硅、单晶锗或者单晶锗硅、III-V族元素化合物、单晶碳化硅或绝缘体上硅 (SOI)结构。在衬底20中形成有阱区以及隔离结构(图中未示),在该实施例中,阱区为N 型阱区,隔离结构形成在衬底中、相邻的SONOS结构之间。相应的,之后形成的源极和漏极均为P型掺杂。在其他实施例中,阱区也可以为P型阱区,相应的之后形成的源极和漏极均为N型掺杂。在堆叠结构的周围形成有侧墙(图中未示)。结合参考图3和图5,执行步骤S32,在所述衬底20上形成图形化的光刻胶层30, 定义出衬底20上ONO结构的区域;执行步骤S33,以所述图形化的光刻胶层30为掩膜,与所述衬底的表面呈小于90度方向干法刻蚀所述衬底20的上部分,被刻蚀后的衬底20分成第一衬底20a和第二衬底20b,第一衬底20a的表面为凸面。在本发明具体实施例中,所述凸面包括与所述光刻胶层30接触且与所述第二衬底20b的表面相平的第一面211 ;位于所述第一面211的侧面且与所述第一面211相接的第二面212,所述第二面212为斜面,与第一面211不在同一平面上;还包括第三面213,所述第三面213位于所述第二衬底20b与所述第二面212之间,所述第三面213位于所述第二衬底20b与所述第二面212之间,且所述第三面213与所述第二衬底20b的表面垂直。本发明具体实施例中,通过调整干法刻蚀中偏置电压的方向和功率调整离子侧向轰击衬底20的方向和轰击力。偏置电压可以调整干法刻蚀中的离子的偏离方向,从而可以调整离子轰击衬底20的方向,通常离子轰击衬底20的力分为垂直衬底20表面的力和从侧面轰击衬底20的力,因此在该干法刻蚀中,未被光刻胶遮盖的衬底20被离子轰击去除,被光刻胶遮盖的衬底20的侧面也被轰击一部分,而且,越靠近顶部,受到离子轰击力越大,因此可以形成表面为凸面的第一衬底20a。之后,结合参考图3和图6,执行步骤S34,去除所述图形化的光刻胶层。本发明具体实施例中,去除图形化的光刻胶层后,还包括对所述刻蚀后的衬底进行退火,使第一衬底20a凸面为弧面。退火的条件为在压气氛围中,温度为800 900°C范围内进行退火, 在该退火工艺下,第一衬底20a会发生变形,凸面变为凸出的弧面。需要说明的是,本发明中的弧面并不严格指球面中的一段弧面,只要是光滑的曲面,即满足本发明中的弧面要求。之后在第一衬底20a上形成由隧穿介质层、捕获电荷层和顶部介质层组成的ONO 结构以及位于顶部介质层上的导电层时,隧穿介质层、捕获电荷层和顶部介质层、导电层的形状均与第一衬底20a的形状吻合,即隧穿介质层、捕获电荷层和顶部介质层、导电层的上表面、下表面均为凸面,在该实施例中,由于第一衬底的表面为弧面,则隧穿介质层、捕获电荷层和顶部介质层、导电层的上表面、下表面也均为弧面。参考图7,在对衬底进行退火后,还包括利用热氧化方法形成氧化层31,覆盖第一衬底20a和第二衬底20b,之后去除所述氧化层31。本发明具体实施例中,氧化层31的
7材料为氧化硅,但不限于氧化硅。利用热氧化方法形成氧化层31的目的在于修复对衬底进行退火工艺中,在衬底中形成的缺陷,以此保证器件的性能不受退火工艺的影响。在形成氧化层31后,再利用湿法刻蚀去除氧化层31。在本发明的其他实施例中,如果退火工艺中不会在衬底20中形成缺陷,则不需要进行氧化层31的生长。结合参考图3和图8,执行步骤S35,在所述第一衬底20a上依次形成隧穿介质层 21、捕获电荷层22、顶部介质层23和导电层M,所述隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M的上表面为凸面。本发明具体实施例中,在去除氧化层31后,在所述第一衬底20a的衬底上依次形成隧穿介质层21、捕获电荷层22、顶部介质层23和导电层24。 具体方法为在第一衬底20a和第二衬底20b上形成隧穿介质层21,在隧穿介质层21上形成捕获电荷层22,在捕获电荷层22上形成顶部介质层23,在顶部介质层23上形成导电层 M。然后,利用光刻、刻蚀工艺图形化隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M剩余第一衬底20a衬底上的隧穿介质层21、捕获电荷层22、顶部介质层23和导电层 24。在本发明具体实施例中,所述隧穿介质层21的材料为氧化硅,其厚度为30-50A, 形成方法为化学气相沉积。但本发明中,隧穿介质层21的材料不限于氧化硅,也可以为本领域技术人员公知的其他材料。顶部介质层23的材料为氧化硅,其厚度为30-50A,形成方法为化学气相沉积,但本发明中,顶部介质层23的材料不限于氧化硅,也可以为本领域技术人员公知的其他材料。捕获电荷层22的材料为氮化硅,其厚度为40-60A,形成方法为化学气相沉积,但本发明中,捕获电荷层22的材料不限于氮化硅,形成方法为化学气相沉积, 也可以为本领域技术人员公知的其他材料。导电层M作为栅极,其材料为多晶硅,厚度为 1500-3000A,形成方法为气相沉积,但本发明中,导电层M的材料不限于多晶硅,也可以为本领域技术人员公知的其他材料。继续参考图8,执行步骤S36,对所述第二衬底20b进行离子掺杂,在所述第二衬底 20b内、第一衬底20a的两侧形成源极25和漏极26。其中,在形成源极25和漏极沈之前, 还包括在隧穿介质层21、捕获电荷层22、顶部介质层23和导电层M形成的堆叠结构的周围形成侧墙,之后以堆叠结构、侧墙为掩膜对第二衬底20b进行离子掺杂以形成源极25和漏极26。掺杂的离子类型根据形成的SONOS的类型确定。基于以上所述的SONOS结构的形成方法,本发明还提供了一种SONOS存储器的形成方法,包括利用以上所述方法形成的SONOS结构,还包括形成字线、位线等。在本技术方案中形成的SONOS结构是一个凸面结构,即隧穿介质层、捕获电荷层和顶部介质层、导电层的上表面、下表面均为凸面,与隧穿介质层接触的第一衬底的上表面也为凸面,在这种结构中,衬底和栅极即导电层之间的电力线不再是平行分布,而是从栅极垂直于介质层(包括顶部介质层、捕获电荷层和隧穿介质层)集中到衬底,这使电力线密度即电场强度从栅极到衬底不断增加,即使在捕获电荷层没有电子(完全擦除)的情况下,这种结构也保证隧穿介质层中的电场远大于顶部介质层的电场,相对于传统SONOS结构,本结构在整个擦除过程中,从捕获电荷层经过隧穿介质层隧穿到衬底的电子数量大于从栅极经过顶部介质层隧穿到捕获电荷层的电子数量,以此有效解决了传统SONOS结构擦除饱和的问题。本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。
权利要求
1.一种SONOS结构的形成方法,其特征在于,包括 提供衬底;在所述衬底上形成图形化的光刻胶层,定义出衬底上ONO结构的区域; 以所述图形化的光刻胶层为掩膜,与所述衬底的表面呈小于90度方向干法刻蚀所述衬底的上部分,被刻蚀后的衬底分成第一衬底和第二衬底,第一衬底的表面为凸面; 去除所述图形化的光刻胶层;在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层,所述隧穿介质层、捕获电荷层、顶部介质层和导电层的上表面为凸面;对所述第二衬底进行离子掺杂,在所述第二衬底内、第一衬底的两侧形成源极和漏极。
2.如权利要求1所述的SONOS结构的形成方法,其特征在于,去除所述图形化的光刻胶层后,在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层之前还包括对所述衬底进行退火,使所述第一衬底的凸面为弧面。
3.如权利要求2所述的SONOS结构的形成方法,其特征在于,在H2气氛围中,温度为 800 900°C范围内进行所述退火。
4.如权利要求2所述的SONOS结构的形成方法,其特征在于,在所述退火后,在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层之前,还包括利用热氧化方法形成氧化层,覆盖所述第一衬底和第二衬底。
5.如权利要求2所述的SONOS结构的形成方法,其特征在于,所述氧化层的材料为氧化 娃。
6.如权利要求1或2所述的SONOS结构的形成方法,其特征在于,所述隧穿介质层的材料为氧化硅。
7.如权利要求1或2所述的SONOS结构的形成方法,其特征在于,所述顶部介质层的材料为氧化硅。
8.如权利要求1或2所述的SONOS结构的形成方法,其特征在于,所述捕获电荷层的材料为氮化硅。
9.如权利要求1或2所述的SONOS结构的形成方法,其特征在于,所述导电层的材料为多晶娃。
10.一种SONOS存储器的形成方法,其特征在于,包括利用权利要求1 9任一项所述的方法形成SONOS结构。
全文摘要
一种SONOS结构和SONOS存储器的形成方法,所述SONOS结构的形成方法包括提供衬底;在所述衬底上形成图形化的光刻胶层,定义出衬底上ONO结构的区域;以所述图形化的光刻胶层为掩膜,与所述衬底的表面呈小于90度方向干法刻蚀所述衬底的上部分,被刻蚀后的衬底分成第一衬底和第二衬底,第一衬底的表面为凸面;去除所述图形化的光刻胶层;在所述第一衬底上依次形成隧穿介质层、捕获电荷层、顶部介质层和导电层,隧穿介质层、捕获电荷层、顶部介质层和导电层的上表面为凸面;对所述第二衬底进行离子掺杂,在所述第二衬底内、第一衬底的两侧形成源极和漏极。可以解决现有技术中SONOS存储器擦除饱和的问题。
文档编号H01L21/336GK102280378SQ20111025459
公开日2011年12月14日 申请日期2011年8月31日 优先权日2011年8月31日
发明者刘宪周, 吴小利, 唐树澍 申请人:上海宏力半导体制造有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1