电极箔、集电体、电极及使用这些对象的蓄电组件的制造方法与工艺

文档序号:11541913阅读:252来源:国知局
电极箔、集电体、电极及使用这些对象的蓄电组件的制造方法与工艺
本发明关于内部形成有固态电解质层(典型为导电高分子层)的固态电解电容器,及可在这类电容器中使用的电极箔。此外,本发明关于集电体及电极,以及使用这些对象的蓄电池、电双层电容器、混合式电容器等蓄电组件。

背景技术:
与固态电解电容器相关的先前技术近年来,伴随着电子机器的动作频率达到高频化,电子零件之一的电解电容器中,要求在较以往更高的动作频率区域中具有优异的阻抗特性的制品。因应此要求,开发出各种将具有高电传导度的导电性高分子用作为固态电解质的固态电解电容器。这类固态电解电容器除了寿命和温度特性外,尤其高频特性佳,故广泛地采用于个人计算机用的电路等。最单纯的例子之一,可通过下列步骤制作出卷绕型的固态电解电容器:(i)对阳极铝箔表面进行化成处理以形成氧化覆膜后,夹介分隔器纸将该阳极铝箔与阴极铝箔予以重迭,将引线材连接于各电极箔后卷绕而制作出电容器组件;(ii)将制作出的电容器组件收容于铝盒后,浸渍于导电性高分子溶液并加热使导电性高分子进行热聚合,而在两电极箔间形成固态的导电性高分子层。若以阳极铝箔为阳极,以阴极铝箔及与该阴极铝箔电性连接的导电性高分子层为阴极时,由于此等两极夹介绝缘性的氧化覆膜而连接,故可在两极间进行充放电。上述固态电解电容器中,在阴极铝箔上未进行化成处理,故不存在人为形成的氧化覆膜。然而,由于实际在制造、使用时所产生的自然氧化,而在阴极铝箔上亦形成氧化覆膜。此时,整体固态电解电容器中,形成(i)阳极铝箔、(ii)阳极铝箔上的氧化覆膜、(iii)导电性高分子层、(iv)阴极铝箔上的自然氧化覆膜、(v)阴极铝箔的层构造,而成为等效串联连接2个电容器的状态,因而产生固态电解电容器整体的静电电容减少的问题。为了对应此问题,已进行防止阴极中产生静电电容成分以增大电容器的静电电容的研究。以下针对从先前研究所得的数种阴极箔以及此等先前的阴极箔所具有的问题点进行说明。专利文献1及2中,揭示一种在阴极铝箔表面形成化成覆膜,并通过蒸镀在其上方形成TiN等金属氮化物或TiC等金属碳化物的覆膜而成的阴极箔。然而,Ti等金属及其氮化物、碳化物的抗热氧化性不足,故在这类阴极箔上,由于电容器制造步骤中所包含的热处理使氧化覆膜成长而产生静电电容成分,且亦引起ESR(EquivalentSeriesResistance:等效串联电阻)上升的问题。专利文献3中,揭示一种在具有阀作用的金属的表面形成碳覆膜而成的阴极箔。然而,当将碳直接成膜于铝等的金属箔时,由于金属箔与碳覆膜的密着性差,故会引起ESR上升的问题。专利文献4中,揭示一种在铝箔表面形成含碳层而成的阴极箔,且在铝箔表面与该含碳层之间,形成由纤维状或丝状碳化铝(Al4C3、碳化铝细丝)所构成的中介存在层,以提升层间密着性的阴极箔。然而,这类阴极箔中,上述含碳层是由粒子形态的碳所构成的层,铝箔表面与含碳层的接触为点接触,所以存在有起因于接触面积小而使界面电阻上升的问题。再者,上述含碳层是将含碳物质涂布于铝箔表面,并通过加热干燥处理使碳粒子固着的方法来形成,故难以形成较薄的含碳层,而使Al层与固态电解质层之间的电子传导距离增长,亦会引起ESR上升的问题。此外,这类阴极箔的耐水性不足,尤其在高温环境中,作为电子的传导路径的碳化铝细丝会被切断,亦会引起导电性降低的问题。专利文献5中,揭示一种在经粗面化的铝箔上,通过真空蒸镀法使Ni成膜而成的阴极箔。根据专利文献5,形成于Ni层表面的Ni氧化覆膜为半导体且具有导电性,故可实现电容器的低ESR化。然而,并无法忽视因形成氧化覆膜所导致的导电性的降低,且半导体仍不足以作为覆膜构成物质。至少在覆膜的最上层,仍优选使用抗氧化性佳的导电性物质。其它,用以在非采用固态电解而是采用驱动用电解液而动作的电解电容器中所使用的阴极箔,在专利文献6中,揭示一种将Ti等金属蒸镀在经粗面化的铝箔以形成金属覆膜,然后通过涂布分散有碳微粒的黏合剂及随后的加热处理,使该碳微粒固着而成的阴极箔。然而,专利文献6所记载的阴极箔中,Ti覆膜表面因驱动用电解液而产生氧化,在由Ti覆膜所构成的层与由碳所构成的层的界面上产生较大电阻,而使电容器的ESR上升(专利文献6所记载的阴极箔中,为了抑制这类Ti氧化所造成的影响,较佳进行蚀刻等粗面化处理)。此外,在使用作为固态电解电容器时,亦由于电容器制造步骤中所包含的热处理使氧化覆膜成长而使ESR上升。此外,即使通过黏合剂等来接合Ti覆膜与碳,接合部分上产生较大界面电阻,使电容器的ESR上升。固态电解电容器中,一般而言,若适度地粗化阴极箔表面,则与固态电解质层的接触面积会增加,因而使ESR降低,但该效果较小。此外,当通过蚀刻处理等使铝基材表面粗面化时,会在所形成的细微孔内部的覆膜与铝基材之间形成空间,于电容器的制造步骤中所使用的药品、水分在此空间中引起反应,由于该反应而使表面处于不稳定状态,再者,由于氧扩散而使铝基材与覆膜的界面容易氧化,故会引起界面电阻的上升、及电容器的劣化的问题。此外,伴随着粗面化的进行,亦有电容器的制造成本上升的问题。如上所述,首先在铝箔上形成金属膜而成的已知的阴极箔中,存在有覆膜表面的氧化的问题,若氧化反应随时间变化等而进行,则阴极具有静电电容,此外,在铝箔上直接或夹介金属覆膜等而形成有碳层的已知的阴极箔中,若层间的密着性不足,则与碳接触的铝箔表面或金属覆膜表面会氧化,因此同样地阴极具有静电电容。藉此,如已说明般,固态电解电容器整体的静电电容减少。其它,上述先前的各阴极箔系具有ESR的上升或高成本化等问题。与蓄电池、电双层电容器、混合式电容器等相关的先前技术近年来,从便携式电子机器的多功能化、汽车及运输和建设机械车辆的燃料成本改善、分散型可再生能源的普及、灾害紧急时备用电源的扩充等观点来看,对于所装载的蓄电组件的需求乃逐渐增大。蓄电组件可列举出电双层电容器、混合式电容器、蓄电池等,要求该输出密度(W/kg、W/L)或寿命特性的进一步提升。构成此等蓄电组件的电极,就处理加工强度或电传导性等的性能面、及生产性、制造成本等的观点来看,大多使用由金属箔所构成的集电体。电极是在集电体上形成有由活性物质、导电辅助剂、及黏合剂所构成的电极层而构成,但当集电体与该电极层的密着性以及电传导性、化学稳定性不足时,由于接触电阻的增加而无法得到满足的输出密度,故难以进行急速的充放电。再者,伴随着蓄电组件的充放电循环,集电体与电极层的界面亦随着时间经过,因氧化等化学变化而造成变质,或电极层会从集电体剥离等,而有导致内部电阻增大或寿命降低的疑虑。与此相关,例如在专利文献7中,揭示一种于集电体与活性物质间形成有碳覆膜层的电池。然而,当直接将碳层形成于金属箔上时,由于金属箔与碳覆膜层的密着性以及电传导性、化学稳定性不足,因此逐渐使集电体与电极层的接触电阻增大,不久即产生输出密度的降低或内部电阻上升的问题,而难以进行急速的充放电。其它,根据本发明者的调查,相关联的先前技术文献乃存在有专利文献8至11,但这些所揭示的覆膜构成亦具有同样问题。先前技术文献专利文献专利文献1:日本特开2007-36282专利文献2:日本特开2007-19542专利文献3:日本特开2006-190878专利文献4:日本特开2006-100478专利文献5:日本特开2009-49376专利文献6:日本特开2007-95865专利文献7:日本特开平11-250900专利文献8:日本特开2011-142100专利文献9:日本特开2010-218971专利文献10:日本特开2009-283275专利文献11:日本特开2008-270092

技术实现要素:
发明所欲解决的课题本发明为了解决先前技术中的上述问题点而创作。即,本发明目的为:在将覆膜形成于铝箔上而成的固态电解电容器用阴极箔中,通过提高对构成覆膜的各层的抗氧化性以及层间的密着性,来防止阴极中静电电容的产生。此外,本发明的另一目的为:防止在这类阴极箔中因覆膜中成分构成的急遽变化而产生较大界面电阻,并藉此降低电容器的ESR及漏电流(LC:LeakageCurrent)。再者,本发明的目的为:解决专利文献7至11所揭示的先前技术中的问题点,并且为了实现长期间可降低内部电阻的增大,维持高输出密度以进行急速的充放电,且寿命特性亦佳的蓄电组件,而提高集电体与电极层的密着性及电传导性,并且抑制因集电体与电极层的界面上的化学变化所造成的变质。用以解决课题的手段为了解决上述课题,本发明提供一种电极材料,其特征是,在电极基材上形成有第1导电层、混合存在有构成第1导电层的物质与碳而成的混合存在层、及实质上由碳所构成的第2导电层;混合存在层的成分构成为:自第1导电层朝向第2导电层,从实质上仅含有构成第1导电层的物质的成分构成,变化为实质上仅含有碳的成分构成。本发明所提供的电极材料中,由于在第1导电层与第2导电层之间形成有两导电层的构成成分混合存在的混合存在层,故可提升构成该第1导电层的物质与碳的密着性。根据该构成,可解决因碳与构成第1导电层的物质的密着不足,使构成第1导电层的物质氧化而使电极材料具有静电电容且ESR亦上升的先前技术的问题。此外,第2导电层实质上由碳所构成,所以抗氧化性佳。再者,在与第1导电层的交界区域中,混合存在层实质上仅含有构成第1导电层的物质,且在与第2导电层的交界区域中,混合存在层实质上仅含有碳,故亦不会造成在此等交界区域中因电极材料的成分构成急遽变化而产生较大界面电阻的问题。上述记载中,所谓“实质上仅含有构成第1导电层的物质”,并不必然意味着完全不含构成该第1导电层的物质以外的成分。因应层内的成分纯度的控制、与杂质混入相关的制造技术上的限制、或是在个别制品中作为上述电极材料所能够容许的误差的静电电容的程度等,混合存在层与各导电层的交界区域上的实际的成分构成可有所变化。此内容在“实质上由碳所构成”、“实质上仅含有碳”等记载中亦同。此外,上述记载中,所谓“混合存在层的成分构成,自第1导电层朝向第2导电层,从实质上仅含有构成第1导电层的物质的成分构成,变化为实质上仅含有碳的成分构成”,并不必然意味着混合存在层内的碳含有率在从第1导电层朝向第2导电层的方向上单调增加。因应由制造技术上的限制所产生的各成分浓度的变异等,混合存在层内的各位置上的实际的成分构成可有所变化。然而,较佳系形成混合存在层,以使碳含有率自第1导电层朝向第2导电层连续地上升。上述第1导电层,可含有:Ta、Ti、Cr、Al、Nb、V、W、Hf、Cu、此等金属的氮化物、及此等金属的碳化物中的任一种。可使用在构成本发明的电极材料的第1导电层的物质并不限定于此,但当使用铝基材作为电极基材时,就能源效率或与铝基材的密着性的观点来看,优选使用上述列举的物质,最优选使用以Ti、Al为首的金属(只要不损及与基材的密着性或第1导电层的导电性,亦可为合金等含有复数种成分)。可用作为电极基材的材料并不限于铝,亦可使用阀作用金属的Ta、Ti、Nb等其它任意材料,或是将此等任意材料添加于铝中的铝合金等。本发明的电极材料中,使电极基材粗面化者并非必要条件。如后述实施例中使用性能试验数据所说明般,制作本发明的电极材料时,即使不使电极基材粗面化,使用该电极基材的固态电解电容器,亦具有与以往相比更优异的静电电容、ESR、及漏电流特性。尤其是电极基材未经粗面化所制作的本发明的电极基材,与经粗面化者相比,乃具有优异的耐热性,此将于后述实施例中显示。此外,本发明提供一种固态电解电容器,其含有电容器组件的固态电解电容器,该电容器组件具有:阳极箔与阴极箔;设置于该阳极箔与阴极箔之间的分隔器;及形成于该阳极箔与阴极箔之间的固态的电解质层;该固态电解电容器的特征是使用上述电极材料作为前述阴极箔。本发明的电极材料特别适合用作为卷绕型或积层型固态电解电容器中的阴极箔,但除此之外,亦可使用在以采用电解液而动作的电解电容器为首的各种电容器、或是电双层电容器、锂离子电容器、锂离子电池、太阳能电池等。具体而言,若在本发明的电极材料的上述实质上由碳所构成的第2导电层上还形成由活性碳所构成的层,则可将该电极材料用作为电双层电容器用的正极或负极(这类构成的电极材料亦可直接使用作为锂离子电容器的正极),或者是,同样若在本发明的电极材料的上述第2导电层上形成由含有Li的活性物质所构成的层,则可将该电极材料用作为锂离子电池的正极。即,本发明的电极材料不仅可在该状态下直接用作为电极,亦可如上述般形成追加的层等,因应需要进行进一步的加工而使用作为任意蓄电装置中的阳极(正极)或阴极(负极)。上述固态的电解质层可含有:二氧化锰(MnO2)、四氰基苯醌二甲烷(TCNQ)、聚乙撑二氧噻吩(PEDOT)、聚苯胺(PANI)、及聚吡咯中的任一种,但亦可使用此等之外的电解质。就其一例而言,由PEDOT所构成的固态电解质层的形成,可通过将电容器组件浸渍于3,4-乙撑二氧噻吩及对甲苯磺酸铁(II)的混合溶液中并进行加热,使电解质热聚合来进行。就上述电极材料的典型的一项形态而言,本发明提供一种阴极箔,其使用在含有电容器组件的固态电解电容器的阴极箔,该电容器组件具有:阳极箔与阴极箔;设置于该阳极箔与阴极箔之间的分隔器;及形成于该阳极箔与阴极箔之间的固态的导电性高分子层。该阴极箔的特征为:包括未经粗面化的铝箔、形成于铝箔上且实质上由Ti或Al所构成的金属层、形成于金属层上且混合存在有Ti或Al与碳而成的混合存在层、及形成于混合存在层上且实质上由碳所构成的碳层;混合存在层的成分构成为:自金属层朝向碳层,从实质上仅含有Ti或Al的成分构成变化为实质上仅含有碳的成分构成。上述阴极箔相当于如后述实施例中使用性能试验数据所说明的本发明的典型的一项方式。然而,用以解决上述先前技术的课题的实施方式显然并不限定于此。例如,从后述性能试验中,亦可得知本发明的阴极箔中,即使铝基材经粗面化,使用此固态电解电容器,与以往相比具有优异的静电电容等特性,且可用作为电极材料的材料亦不限定于铝。就与铝的密着性的观点来看,使用于金属层的材料优选使用Ti或Al中的任一种,但同样亦可使用Ta、Cr等与铝具有优异密着性的其它材料,或是当使用其它电极基材时,可因应该基材通过适当的材料来形成金属层。例如,当使用铜箔作为电极基材时,若通过离子蒸镀法等来形成由与铜箔的密着性佳的Cr所构成的金属层,则可推测为Cr贯穿铜箔表面上的自然氧化覆膜,直接与铜箔结合而得到高电传导性,并抑制静电电容成分的产生,因此可得到与在铝箔上形成由Ti或Al所构成的金属层时相同的特性。此外,本发明的阴极箔中,在金属层与碳层之间形成有构成各层的成分所混合存在的混合存在层。依据这类混合存在层的导入所达成的金属与碳间的密着性的提升,显然在以Ti或Al以外的材料来形成该金属层时亦同样可得到,并可推测为由于该密着性的提升,可防止金属中的氧化覆膜的形成,而抑制阴极箔中的静电电容的产生。此外,在与金属层的交界区域中,混合存在层实质上仅含有Ti或Al,且在与碳层的交界区域中,混合存在层实质上仅含有碳,故在该交界区域中不会引起成分构成的急遽变化,而可将界面电阻抑制较低的效果,显然在以Ti或Al以外的材料来形成该金属层时亦同样可得到。为了解决专利文献7至11所揭示的先前技术中的问题点,本发明提供一种电极用集电体,其特征为:在含有金属的基材上,形成有含有金属的第1导电层;混合存在有构成该含有金属的第1导电层的物质与碳而成的混合存在层;及实质上由碳所构成的第2导电层而成;前述混合存在层的成分构成为:自前述含有金属的第1导电层朝向前述第2导电层,从实质上仅含有构成前述含有金属的第1导电层的物质的成分,变化为实质上仅含有碳的成分。本发明所提供的集电体中,由于在含有金属的基材表面与实质上由碳所构成的第2导电层之间,形成有含有金属的第1导电层以及两导电层的构成成分混合存在的混合存在层,故可分别提升基材与第1导电层的密着性、以及第1导电层与第2导电层的密着性,藉此提升各界面的电传导性及化学稳定性。根据该构成,可解决:因基材与碳的密着性以及界面的电传导性或化学稳定性不足,使集电体与电极层的接触电阻增大,并随着重复使用而使集电体的内部电阻上升并使电极的输出密度降低的先前技术的问题。此外,第2导电层实质上由碳所构成,所以电传导性以及抗氧化性等的相对于化学变化的承受性佳。再者,在第1导电层与第2导电层的交界区域中,在混合存在层内的第1导电层侧的区域,实质上仅含有构成第1导电层的物质,且在混合存在层内的第2导电层侧的区域,实质上仅含有碳而构成,故亦不会造成在此等交界区域因成分急遽变化而产生较大界面电阻的问题。上述记载中,所谓“实质上仅含有构成含有金属的第1导电层的物质”,并不必然意味着完全不含构成该第1导电层的物质以外的成分。因应层内的成分纯度的控制、与杂质混入相关的制造技术上的限制、或是在个别制品中作为上述集电体所能够容许的误差的密着性或接触电阻的程度等,混合存在层与各导电层的交界区域上的实际的成分构成可有所变化。此内容在“实质上由碳所构成”、“实质上仅含有碳”等记载中亦同。此外,上述记载中,所谓“混合存在层的成分,自第1导电层朝向第2导电层,从实质上仅含有构成含有金属的第1导电层的物质的成分,变化为实质上仅含有碳的成分”,并不必然意味着混合存在层内的碳含有率在从第1导电层朝向第2导电层的方向上单调地增加。因应由制造技术上的限制所产生的各成分浓度的变异等,混合存在层内的各位置上的实际的成分可有所变化。然而,优选形成混合存在层,以使碳含有率自第1导电层朝向第2导电层连续地上升。上述第1导电层,可含有:Ta、Ti、Cr、Al、Nb、V、W、Hf、Cu、此等金属的氮化物、及此等金属的碳化物中的任一种。可使用在构成本发明的集电体的第1导电层的物质并不限定于此等,但当使用铝箔作为含有金属的基材时,就能源效率或与铝箔的密着性的观点来看,优选使用上述列举的物质,更优选使用以Ti、Al为首的金属(只要不损及与基材的密着性或第1导电层的电传导性,亦可为合金等含有复数种成分)。第2导电层所使用的碳并无特别限制,在碳材料中,若构成为电传导性特佳的类石墨碳,则可提高蓄电组件的输出密度,故更为理想。此外,就制造成本方面来看亦佳。在此,所谓类石墨碳是指在形成金刚石键(碳的sp3杂化轨道键结)与石墨键(碳的sp2杂化轨道键结)两者的键所混合存在的非晶质结构的碳中,石墨键的比率为过半数者。但是,非晶质结构以外,亦包含具有局部由石墨结构所构成的结晶结构(即由sp2杂化轨道键结所构成的六角晶系结晶结构)的相。可用作含有金属的基材的材料并不限定于铝,亦可使用Ti、Cu、Ni、Hf、不锈钢等其它任意材料,或由添加此等任意材料于铝中的铝合金等所构成的金属箔。各蓄电组件的正极电极及负极电极中所使用的作为集电体的金属箔,分别考虑到电解质与活性物质的动作电位下,可从电化学稳定性或电传导性、重量、加工性、制造成本等观点来选择。当蓄电组件为电双层电容器时,优选为正极及负极均为铝箔,当蓄电组件为混合式电容器或蓄电池时,优选为正极为铝箔,负极为铝箔或铜箔。本发明的集电体中,使含有金属的基材粗面化者并非必要条件,但如后述实施例中使用性能试验数据所说明般,制作本发明的集电体时,经粗面化的基材可提高集电体与电极层的密着性或集电能力,故对于输出密度或寿命特性的提升更为有利。除了与含有金属的第1导电层、混合存在层、及第2导电层相关的至目前为止所述的效果外,亦可实现集电体与电极层间的因物理定锚效果所致的密着强度的提升,以及因两者接触面积的增大所致的接触电阻的降低效果。尤其在活性物质因离子的吸存(插层)与释出(去插层)而反复产生体积膨胀及收缩的混合式电容器或蓄电池中,基材的粗面化更为有效。粗面化的手段虽无特别限制,但在如上述般使用铝箔或铜箔作为基材的材料时,较佳是通过使用酸或碱溶液的化学或电化学蚀刻等来进行粗面化,该手法可容易地实现有助于因与电极层的定锚效果所致的密着性提升的细孔结构,且亦为生产性佳的手法。在锂离子电容器等的混合式电容器或锂离子蓄电池等的蓄电池中,当必须进行使碱金属离子或碱土类金属离子普遍地吸存于组件内的正极电极及/或负极电极的活性物质的预掺杂操作时,因应该制造手法的形态或生产情况,亦可预先在金属箔上形成贯通孔。从上述第1导电层至第2导电层为止的包含混合存在层的合计层厚并无特别限制,例如若将此层厚设为45nm以下,则可防止集电体与电极层的电子传导距离增长,而进一步提高内部电阻的降低效果。尤其如上述般对金属箔施以粗面化时,若制作出如此合计膜厚较小的集电体,则因蚀刻等而形成于金属箔的细微且紧致的细孔结构,不会被形成于该上方的覆膜所埋没,且不会损及上述定锚效果或接触面积增大的效果,并且无须在细孔结构的内壁上到处地形成第1、第2导电层。当将上述集电体用在混合式电容器或蓄电池的负极电极侧时,构成第2导电层的碳本身可成为能够吸存或释出碱金属离子与碱土类金属离子中的任一种的活性物质。然而,为了得到作为蓄电池的充分的能量密度(Wh/kg、Wh/L),含有活性物质的电极层要求具有至少1μm的层厚,但就生产性或制造成本方面等来看,将第2导电层形成至可用作为活性物质的约1μm的厚度者效果不佳。优选形成含有活性物质的电极层,以作为与构成本案发明的集电体的上述第2导电层不同的另外的层。本发明提供一种电极以及使用该电极作为正极及负极的蓄电池,该蓄电池例如为锂离子蓄电池或钠离子蓄电池、镁离子蓄电池、钙离子蓄电池等蓄电池,其具有:形成电极层的正极电极,该电极层是由包含有含有碱金属与碱土类金属中任一种的过渡金属氧化物或过渡金属磷酸化合物的活性物质、导电辅助剂、及黏合剂所构成;以及形成电极层的负极电极,该电极层是由可吸存或释出碱金属离子与碱土类金属离子中任一种的碳材料,且含有Sn、Si或氧化硅、S或硫化物、及氧化钛中任一种的活性物质、导电辅助剂、及黏合剂所构成,该蓄电池的特征是使用上述集电体。在此,使用在上述蓄电池中的正极活性物质中所含有的含有碱金属与碱土类金属中任一种的过渡金属氧化物或过渡金属磷酸化合物,例如可列举出LiCoO2、LiMn2O4、LiNiO2、Li(Ni-Mn-Co)O2、Li(Ni-Co-Al)O2、LiFePO4、NaCrO2、NaFeO2、MgHf(MoO4)3、Ca3Co2O6、Ca3CoMnO6等。本发明提供一种电极以及使用该电极作为正极及负极的电双层电容器,该电双层电容器使用:形成电极层的正极电极,该电极层是由含有活性碳与碳纳米管中任一种的活性物质、导电辅助剂、及黏合剂所构成;以及形成同样的层构造的负极电极,该电双层电容器的特征是使用上述集电体。此外,本发明提供一种电极以及使用该电极作为正极及负极的混合式电容器,该混合式电容器例如为锂离子电容器等的混合式电容器,其具有:形成电极层的正极电极,该电极层是由含有活性碳与碳纳米管中任一种的活性物质、导电辅助剂、及黏合剂所构成;以及形成电极层的负极电极,该电极层是由可吸存或释出碱金属离子与碱土类金属离子中任一种的碳材料,且含有Sn、Si或氧化硅、S或硫化物、及氧化钛中任一种的活性物质、导电辅助剂、及黏合剂所构成,该混合式的电容器的特征是使用上述集电体。发明的效果本发明的电极材料中,通过将混合存在层形成于电极基材上所形成的第1及第2导电层间来提升层间的密着性,故可防止构成第1导电层的物质的氧化。此外,在第1或第2导电层与混合存在层的交界区域中,混合存在层实质上仅由构成该第1或第2导电层的成分所构成,藉此,不会造成在交界区域中因电极材料的成分构成急遽变化而产生界面电阻的上升。通过将这类电极材料用作为阴极箔,即在固态电解电容器中可达成静电电容的增大及ESR与漏电流的降低。此外,如后述性能试验数据所示,本发明的电极材料的耐热性极佳,即使在高温下长时间使用,质量亦几乎不会劣化。此外,即使将由第1导电层、混合存在层、及第2导电层所构成的铝基材上的覆膜薄化至约0.02μm,本发明的电极材料中作为阴极箔的特性几乎不会降低,此外,制作阴极箔时亦不需使电极基材粗面化,故可减少所使用的材料并简化制造步骤而大幅降低制造成本。若将覆膜形成较薄,则卷绕阴极箔时产生龟裂的危险性亦降低。再者,若将覆膜形成较薄,则可缩短电极基材与固态电解层间的电子传导距离,而进一步降低ESR。本发明的集电体中,通过将混合存在层形成于基材上所形成的第1及第2导电层间来提升层间的密着性及电传导性、化学稳定性,故可防止基材表面及构成第1导电层的物质的氧化等的化学变化所造成的变质。此外,在第1或第2导电层与混合存在层的交界区域中,混合存在层实质上仅由构成该第1或第2导电层的成分所构成,藉此,不会造成在交界区域中因电极材料的成分构成急遽变化而产生界面电阻的上升。在这类集电体上形成有由活性物质、导电辅助剂、及黏合剂所构成的电极层的正极电极或负极电极,其电传导性良好且从电极层往集电体的集电能力佳,并且化学稳定性亦佳,故可长期地维持集电体与电极层的高密着性。使用此等电极的蓄电池、电双层电容器、混合式电容器等的蓄电组件中,输出密度提升且充放电时的电压降较小,可抑制以大电流进行充放电时的组件温度的上升,故可长时间连续地进行充放电,而大幅地延长充放电周期寿命。附图说明图1是表示本发明的一种实施方式的阴极箔的层构造的剖面图。图2是表示本发明的一种实施方式的卷绕型固态电解电容器的构造的分解图。图3是用以比较对于使用本发明的一种实施方式的阴极箔的固态电解电容器、与使用已知的阴极箔的固态电解电容器所分别测定的静电电容的柱状图。图4是用以比较对于使用本发明的一种实施方式的阴极箔的固态电解电容器、与使用已知的阴极箔的固态电解电容器所分别测定的ESR的柱状图。图5是用以比较对于使用本发明的一种实施方式的阴极箔的固态电解电容器、与使用已知的阴极箔的固态电解电容器所分别测定的漏电流的柱状图。图6是用以比较对于使用本发明的一种实施方式的阴极箔的固态电解电容器、与使用已知的阴极箔的固态电解电容器,分别进行耐热性试验所测定的试验前后的静电电容变化率的柱状图。图7是用以比较对于使用本发明的一种实施方式的阴极箔的固态电解电容器、与使用已知的阴极箔的固态电解电容器,分别进行耐热性试验所测定的试验前后的ESR变化率的柱状图。图8是表示本发明的一种实施方式的集电体的层构造的剖面图。图9是表示本发明的一种实施方式的正极电极或负极电极的层构造的剖面图。图10a是表示本发明的一种实施方式的锂离子蓄电池的构造的分解图。图10b是表示本发明的一种实施方式的锂离子蓄电池的外观构造的图。图11是比较对于使用本发明的一种实施方式的集电体的锂离子蓄电池、与使用作为比较例的集电体的锂离子蓄电池所分别测定的放电速率特性的结果。图12是比较对于使用本发明的一种实施方式的集电体的锂离子蓄电池、与使用作为比较例的集电体的锂离子蓄电池所分别测定的充放电周期寿命特性的结果。图13是比较对于使用本发明的一种实施方式的集电体的锂离子蓄电池用正极电极、与使用作为比较例的集电体的锂离子蓄电池用正极电极所分别测定的集电体与电极层的密着强度的SAICAS试验的结果。【主要组件符号说明】1、8阴极箔2平滑铝箔3金属层4混合存在层5碳层6卷绕型固态电解电容器7阳极箔9分隔器纸10电容器组件11阳极端子12阴极端子13铝盒14密封橡胶15金属箔16金属层17混合存在层18碳层19集电体(19a正极侧集电体、19b负极侧集电体)20正极电极层21正极电极22负极电极层23负极电极24分隔器25电解质26正极端子27负极端子28锂离子蓄电池组件29电池盒30锂离子蓄电池具体实施方式(第1实施方式)以下说明:在未经粗面化的铝箔上形成有由Ti或Al所构成的第1导电层、混合存在有Ti或Al与碳而成的混合存在层、及由碳所构成的第2导电层的阴极箔,以及使用该阴极箔所制作的固态电解电容器,作为本发明的一种实施方式。但如已说明般,用作为基材的铝箔、及用以形成第1导电层的Ti或Al可通过其它材料来取代,或如使用性能试验数据所说明般,即使不使基材表面粗面化,本发明的阴极箔亦具有良好特性。(本发明的阴极箔)图1是表示上述一种实施方式的阴极箔1的层构造的剖面图。阴极箔1是由:未通过蚀刻处理等进行粗面化的平滑铝箔2、形成于平滑铝箔2上且由Ti或Al所构成的金属层3、形成于金属层3上且混合存在有Ti或Al与碳而成的混合存在层4、以及形成于混合存在层4上的碳层5所构成。平滑铝箔2可使用市售的高纯度铝薄片。铝薄片的厚度并无特别限定,当用作为卷绕型的固态电解电容器用阴极箔时,较佳为20μm以上50μm以下。通过将平滑铝箔2及作为蒸发源的Ti或Al的金属材料配置在真空反应室内后,通过电子束及等离子体产生电极等使Ti或Al蒸发及离子化,并将由此产生的金属阳离子导引至平滑铝箔2而形成金属层3。此时,由于对平滑铝箔2施加负偏压电压,故朝向该平滑铝箔2的金属离子被加速而具有高能量(离子蒸镀法)。因此,Ti或Al离子贯穿平滑铝箔2表面上所形成的自然氧化覆膜,而与平滑铝箔2稳固地密着。在将由Ti或Al等金属的氮化物、或碳化物所构成的层形成于平滑铝箔2上的型态中,只要在氮气或甲烷气体等环境气体中进行上述方法来形成第1导电层即可。此外,用以形成金属层3的方法,除了离子蒸镀法外,亦可使用真空蒸镀法、化学气相沉积(CVD)法、溅镀法等。但就通过使金属层3与平滑铝箔2贯穿自然氧化覆膜并稳固地密着以将电容器的ESR抑制较低的观点,以及容易形成平滑的金属覆膜的观点来看,优选使用离子蒸镀法。混合存在层4与金属层3相同,可通过离子蒸镀法等来形成。即,蒸发源除了Ti或Al的金属材料外,准备碳材料,并同时使用该2种蒸发源来进行成膜处理即可。通过导入这类混合存在层4,可提高金属与碳的密着性,以防止氧化覆膜的形成。混合存在层4的优选构成为:在与金属层3的交界区域中实质上仅含有Ti或Al,且在与碳层5的交界区域中实质上仅含有碳,尤其自金属层3朝向碳层5使碳含有率连续地上升。这类混合存在层4的一例,可通过下列方式形成:(i)混合存在层4的成膜开始时将电子束仅照射在金属材料以仅形成Ti或Al的覆膜;(ii)随着时间的经过逐渐降低电子束对该金属材料的照射量,同时提高电子束对碳材料的照射量,藉此使金属与碳混合存在,且以愈往上层碳含有率愈高的方式形成混合存在覆膜;(iii)成膜结束时,通过将电子束对该金属材料的照射量设为零,而可仅形成碳的覆膜。其它,当通过溅镀法来形成混合存在层4时,可随着时间的经过而降低施加于金属靶材的电压(降低金属靶材的溅镀速度),提高施加于C靶材的电压(提高C靶材的溅镀速度)等,通过任意方法来形成较佳型态的混合存在层4。后述性能试验数据中,实施例7至12的数据系使用上述离子蒸镀法,并使用以尤其自金属层3朝向碳层5使碳含有率连续地上升的方式形成混合存在层4而成的阴极箔1而得者。然而,混合存在层4中,即使存在有一部分例如随着朝向碳层5使碳含有率减少的区域(起因于成膜技术的限制等,此情形有可能产生),亦可推测同样地可得到与先前技术的阴极箔相比更佳的特性。这是由于即使在这类区域中,亦混合存在有Ti或Al与碳而提升成分间的密着性,所以可防止Ti或Al的氧化,并抑制阴极中的内部电容量的产生之故。此外,当混合存在层4的一部分区域中碳含有率不连续地变化时,虽可视为因在该处中的界面电阻的上升使ESR特性些许降低,但由于混合存在有Ti或Al与碳而提升成分间的密着性,故可推测阴极箔能够得到同样的特性(关于此点,后述性能试验数据中,请参照实施例1至6的数据)。碳层5与金属层3及混合存在层4相同,可通过离子蒸镀法等来形成。典型而言,上述混合存在层4的形成过程中,在将电子束对金属材料的照射量降低至零后,在将电子束仅照射在碳材料的状态下持续进行一定时间的覆膜形成处理,藉此可形成碳层5。本发明的碳层5并非如专利文献6所记载的阴极箔般,在使碳微粒分散于黏合剂后涂布此黏合剂并加热而形成,而是优选使用离子蒸镀法等来形成。这是由于在使用黏合剂来形成的碳微粒层中,下层的Ti或Al与碳的接触为点接触,而造成界面电阻的上升,且密着性亦恶化的故。碳层5较佳系形成为平滑且紧密的碳覆膜。金属层3、混合存在层4、及碳层5的厚度,分别可为0.005μm以上0.01μm以下,此外,如后述性能试验数据所示,若此等3层的厚度合计为0.02μm以上,则可得到作为阴极箔的良好特性。但亦可将各层形成更厚。此外,形成金属层3、混合存在层4、及碳层5各层的步骤,优选为以同一成膜方式来进行。这是由于可通过制造步骤的简化来大幅地降低制造成本的故。但各层亦可通过不同方式来成膜。(本发明的固态电解电容器)图2是表示使用上述阴极箔1所制作的卷绕型固态电解电容器6的分解图。卷绕型固态电解电容器6可通过下列方法制作出:(i)经由分隔器纸9,将通过化成处理使氧化覆膜形成于阳极铝箔上的阳极箔7、与具有图1所示的层构造的阴极箔8重迭,并将阳极端子11连接于阳极箔7,将阴极端子12连接于阴极箔8后,卷绕此而制作出电容器组件10。(ii)将电容器组件10收容于铝盒13后,浸渍于含有正丁醇作为稀释剂的3,4-乙撑二氧噻吩、与作为氧化剂的对甲苯磺酸铁(II)的混合溶液中进行加热,并通过热聚合来形成聚乙撑二氧噻吩的固态电解质层。亦可通过聚吡咯系或聚苯胺系导电性高分子,或是TCNQ络合物等,来形成固态电解质层。(本发明的固态电解电容器的性能试验)首先准备:如上述般未进行铝箔的粗面化所制作的阴极箔、或用于比较而进行铝箔的粗面化所制作的阴极箔,以及使用Ti作为金属层所制作的阴极箔、或使用Al作为金属层所制作的阴极箔,来作为本发明的阴极箔,然后准备:将由金属层、混合存在层、及碳层所构成的覆膜的厚度设为0.5μm与0.02μm者。系采用此等本发明的阴极箔的各种形式来制作出图2所示的构成的卷绕型固态电解电容器,并测定静电电容、ESR、及漏电流。此外,亦对使用基材及覆膜的构成分别不同的已知技术的阴极箔所制作的除了阴极箔的外其它与本发明的电容器为同一构成的卷绕型固态电解电容器进行同样的测定,并比较双方的试验结果。在进行比较用的测定后的固态电解电容器的已知例1至16、以及本发明的固态电解电容器的实施例1至12中所使用的阴极箔的构成,分别如下所述。(已知例1)对平滑铝箔施以蚀刻处理而成的阴极箔。(已知例2)于平滑铝箔形成Ti覆膜0.5μm而成的阴极箔。(已知例3)于平滑铝箔形成Ti覆膜0.02μm而成的阴极箔。(已知例4)于平滑铝箔形成TiN覆膜0.5μm而成的阴极箔。(已知例5)于平滑铝箔形成TiN覆膜0.02μm而成的阴极箔。(已知例6)于平滑铝箔形成TiC覆膜0.5μm而成的阴极箔。(已知例7)于平滑铝箔形成TiC覆膜0.02μm而成的阴极箔。(已知例8)于平滑铝箔形成碳覆膜0.5μm而成的阴极箔。(已知例9)于平滑铝箔形成碳覆膜0.02μm而成的阴极箔。(已知例10)于平滑铝箔形成碳化铝后,使碳微粒固着而成的阴极箔(膜厚因阴极箔表面内的位置不同而不同,为0.5μm至1μm)。(已知例11)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.25μm且还形成碳覆膜0.25μm而成的阴极箔。(已知例12)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.01μm且还形成碳覆膜0.01μm而成的阴极箔。(已知例13)于平滑铝箔形成Ti覆膜0.25μm且还形成碳覆膜0.25μm而成的阴极箔。(已知例14)于平滑铝箔形成Ti覆膜0.01μm且还形成碳覆膜0.01μm而成的阴极箔。(已知例15)于平滑铝箔形成Al覆膜0.25μm且还形成碳覆膜0.25μm而成的阴极箔。(已知例16)于平滑铝箔形成Al覆膜0.01μm且还形成碳覆膜0.01μm而成的阴极箔。(实施例1)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.2μm、Ti及碳的混合存在层a0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例2)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.008μm、Ti及碳的混合存在层a0.004μm、及碳覆膜0.008μm而成的阴极箔。(实施例3)于平滑铝箔形成Ti覆膜0.2μm、Ti及碳的混合存在层a0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例4)于平滑铝箔形成Ti覆膜0.008μm、Ti及碳的混合存在层a0.004μm、及碳覆膜0.008μm而成的阴极箔。(实施例5)于平滑铝箔形成Al覆膜0.2μm、Al及碳的混合存在层a0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例6)于平滑铝箔形成Al覆膜0.008μm、Al及碳的混合存在层a0.004μm、及碳覆膜0.008μm而成的阴极箔。(实施例7)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.2μm、Ti及碳的混合存在层b0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例8)对平滑铝箔施以蚀刻处理,形成Ti覆膜0.008μm、Ti及碳的混合存在层b0.004μm、及碳覆膜0.008μm而成的阴极箔。(实施例9)于平滑铝箔形成Ti覆膜0.2μm、Ti及碳的混合存在层b0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例10)于平滑铝箔形成Ti覆膜0.008μm、Ti及碳的混合存在层b0.004μm、及碳覆膜0.008μm而成的阴极箔。(实施例11)于平滑铝箔形成Al覆膜0.2μm、Al及碳的混合存在层b0.1μm、及碳覆膜0.2μm而成的阴极箔。(实施例12)于平滑铝箔形成Al覆膜0.008μm、Al及碳的混合存在层b0.004μm、及碳覆膜0.008μm而成的阴极箔。于基材上的覆膜形成,除了已知例10的阴极箔外,均通过上述离子蒸镀法来进行。尤其是已知例4至7中的氮化钛及碳化钛的覆膜形成,分别是在氮气及甲烷气的环境气体中,以钛为蒸发源进行的,已知例8、9中的碳覆膜的形成,是以碳为蒸发源进行的。实施例1至12的覆膜形成亦如已说明般,是通过离子蒸镀法来进行的。在此,实施例1至6中的混合存在层a形成为Ti或Al与碳的比率为一致,另一方面,实施例7至12中的混合存在层b,形成为愈往上层碳的存在比率愈高。已知例10中,使用制造贩卖的样本。性能试验的结果如下列第1表所示。[表1]表1中,cap.表示电容器的静电电容(单位:μF),ESR表示等效串联电阻(单位:mΩ),LC表示漏电流(单位:μA)。在120Hz的频率中测定静电电容。等效串联电阻在100kHz的频率中测定。漏电流是对固态电解电容器施加定额4V的直流电压,并测定经过3分钟后的值。此外,表1所示的静电电容、ESR、漏电流的各项测定结果,于图3至图5中显示为柱状图。如表1及图3的柱状图所示,实施例1至12中的静电电容的测定值较已知例1至16中的测定值更大。与将未形成金属等覆膜的蚀刻箔用作为阴极箔的已知例1中的测定值(175.4μF)相比,可得知实施例1至12中的静电电容增加约60%。此外,已知例11、12与实施例1、2及实施例7、8的电容器,仅在阴极箔上是否于Ti层与碳层之间形成有混合存在层者为不同(实施例1、2及实施例7、8的电容器,仅在阴极箔的混合存在层中各成分的含有率是否具有梯度者为不同),但可得知实施例1、2中的测定值(279.1μF、及277.3μF)及实施例7、8中的测定值(282.1μF、及280.1μF),较已知例11及12中的测定值(264.1μF、及258.1μF)更大。同样可得知新设置有混合存在层的实施例3至6、及实施例9至12中的测定值较已知例13至16中的测定值更大。尤其可得知,在通过上述方法使混合存在层的成分含有率具有梯度的实施例7至12中的测定值,较混合存在层的成分含有率不具有梯度的实施例1至6中的测定值更大。此外,如表1及图4的柱状图所示,实施例1至12中的ESR的测定值较已知例1至16中的测定值更小。与将未形成金属等覆膜的蚀刻箔用作为阴极箔的已知例1中的测定值(12.32mΩ)相比,可得知实施例1至12中的ESR降低约60至65%。此外,已知例11、12与实施例1、2及实施例7、8的电容器,如已说明般,仅在阴极箔中是否于Ti层与碳层之间形成有混合存在层者为不同,但可得知实施例1、2中的测定值(4.76mΩ、4.82mΩ)及实施例7、8中的测定值(4.61mΩ、4.73mΩ),较已知例11及12中的测定值(6.43mΩ、7.10mΩ)更小。同样地可得知新设置有混合存在层的实施例3至6、及实施例9至12中的测定值较已知例13至16中的测定值更小。尤其可得知,在通过上述方法使混合存在层的成分含有率具有梯度的实施例7至12中的测定值,较混合存在层的成分含有率不具有梯度的实施例1至6中的测定值更小。再者,已知例11及12、13及14、15及16的各个阴极箔的覆膜构成为相同,仅厚度为不同的0.5μm及0.02μm的电容器的例子,但如表1及图4的柱状图所示,可得知不论何者均因覆膜的薄化而使ESR上升(上升幅度为0.3mΩ至0.7mΩ)。相对于此,比较本发明中仅覆膜厚度不同的实施例1及2、3及4、5及6中的ESR测定值时,实施例1中的测定值(4.76mΩ)与实施例2中的测定值(4.82mΩ)虽几乎不变(这类测定结果推测为在实施例1及2中与铝箔经粗面化具有关系),实施例4中的测定值(4.39mΩ)较实施例3中的测定值(4.56mΩ)更小,此外,实施例6中的测定值(4.37mΩ)较实施例5中的测定值(4.51mΩ)更小。该倾向在混合存在层的成分含有率具有梯度的实施例7至12中亦可观测到。因此,至少在未使铝箔粗面化而使用的具体实例中,就即使将覆膜形成较薄亦可维持良好的ESR特性的方面来看,可理解到本发明的阴极箔较已知者更佳。此外,如表1及图5的柱状图所示,实施例1至12中的漏电流的测定值较已知例1至16中的漏电流的测定值更小。此外,可得知形成有混合存在层b的实施例7至12中的测定值,较形成有混合存在层a的实施例1至6中的测定值更小。当比较已知例11至16中的测定值与实施例1至6中的测定值时,可得知通过设置混合存在层而能够将漏电流降低约20%。此外,当比较设置有混合存在层a的实施例1至6中的测定值与设置有混合存在层b的实施例7至12中的测定值时,可得知降低约数%。本发明的固态电解电容器的耐热性试验接着对上述已知例的电容器与实施例的电容器进行耐热性试验。耐热性试验是在125℃的温度下,分别对已知例1至16与实施例1至12的各电容器施加定额电压4V达1000小时来进行,并比较试验前后的静电电容及ESR的测定值。下表2显示在各电容器中,试验后所测定的静电电容与ESR以及试验前后的此等测定值的变化率。[表2]表2中,ΔC/C为静电电容测定值于试验前后的变化率,以百分率来表示[(试验后的测定值)-(试验前的测定值)]/(试验前的测定值)。同样地,ΔESR/ESR为以百分率来表示ESR测定值于试验前后的变化率。各变化率计算时,试验前的测定值使用表1所示的值。此外,表2所示的静电电容及ESR的各变化率,于图6至图7中显示为柱状图。首先探讨耐热性试验后的静电电容,如第2表所示,实施例1至12中的静电电容的测定值较已知例1至16中的测定值更大。尤其是实施例7至12的静电电容的测定值较实施例1至6中的静电电容的测定值更大。可得知本发明的电容器,即使在耐热性试验后亦具有较已知的电容器更大的静电电容。再者,探讨静电电容测定值于试验前后的变化率,从表2及图6中可得知,该变化率在已知例1至16与实施例1至12之间有着极大的不同。亦即,已知例11及12的电容器中,通过耐热性试验,使静电电容测定值分别减少3.8%及4.5%,但在此等中设置有混合存在层而成的实施例1及2的电容器中,因耐热性试验所导致的静电电容测定值的减少率为1.6%及2.0%,此外,实施例7及8的减少率仅为0.9%及1.3%。同样地,可得知新设置有混合存在层的实施例3至6及实施例9至12中的减少率较已知例13至16中的静电电容测定值的减少率更小,尤其是实施例9至12中的减少率较实施例3至6中的减少率更小,可得知本发明的阴极箔在静电电容特性上,其耐热性较已知者更佳。实施例7及8中的静电电容的减少率为0.9%及1.3%,相对于此,使用平滑铝箔来制作阴极箔的实施例9及10中的静电电容的减少率为0.7%及0.3%。亦即,就耐热性的观点来看,优选不对铝箔施以蚀刻处理。此外,图6中,从实施例3至6及9至10的柱状图中可得知,在此等实施例中,与将覆膜厚度设为0.5μm时相比,设为0.02μm时较能将静电电容测定值的减少率抑制为较低。亦即,未对铝箔施以蚀刻处理来制作本发明的阴极箔时,就耐热性的观点来看,优选将覆膜形成较薄。然后,探讨耐热性试验后的ESR,如表2所示,实施例1至12中的ESR的测定值较已知例1至16中的测定值更小。尤其是实施例7至12的ESR的测定值较实施例1至6中的ESR的测定值更小。可得知本发明的电容器,即使在耐热性试验后亦具有较已知的电容器更小的ESR。再者,探讨ESR测定值于试验前后的变化率,从表2及图7得知,该变化率在已知例1至16与实施例1至12的间有着极大的不同。亦即,已知例11及12的电容器中,因耐热性试验所导致的ESR测定值的增加率分别为18.8%及25.4%,但在此等中设置有混合存在层a而成的实施例1及2的电容器中,因耐热性试验所导致的ESR测定值的增加率为2.5%及2.3%,此外,在设置有混合存在层b而成的实施例7及8的电容器中,因耐热性试验所导致的ESR测定值的增加率仅为2.2%及2.1%。同样地,可得知新设置有混合存在层的实施例3至6及实施例9至12中的增加率较已知例13至16中的ESR测定值的增加率更小,尤其是实施例7至12中的ESR测定值的增加率较实施例1至6中的ESR测定值的增加率更小,可得知本发明的阴极箔在ESR特性上,其耐热性较已知者更佳。实施例7及8中的ESR的增加率为2.2%及2.1%,相对于此,使用平滑铝箔来制作阴极箔的实施例9及10中的ESR的增加率为0.5%及0.2%。亦即,就耐热性的观点来看,优选不对铝箔施以蚀刻处理。(第2实施方式)以下说明:在经粗面化的铝箔上形成有由Ti或Al所构成的第1导电层、混合存在有Ti或Al与类石墨碳(以下有时记载为GLC的情形)而成的混合存在层、及由GLC所构成的第2导电层的集电体,以及使用该集电体所制作的锂离子蓄电池,作为本发明的另一项实施形态。但如已说明般,用作为集电体的基材的铝箔、及用以形成第1导电层的Ti或Al可通过其它材料来取代,或如后述使用性能试验数据所说明般,即使不使基材表面粗面化,本发明的集电体亦具有良好特性。此外,如已说明般,本发明的集电体的用途亦不限于锂离子蓄电池,亦可将该集电体使用在其它蓄电池、电双层电容器、混合式电容器等的任意的蓄电组件的电极用途。(本发明的集电体)图8是表示上述一项实施形态的集电体19的层构造的剖面图。集电体19包括:通过在酸性溶液中进行电化学蚀刻处理而施以粗面化后的属于铝箔的金属箔15;形成于该金属箔15上且由Ti或Al的金属覆膜所构成的金属层16;形成于金属层16上且混合存在有该Ti或Al与GLC而成的混合存在层17;以及形成于该混合存在层17上且由GLC所构成的碳层18。铝箔可使用市售的高纯度铝箔。铝箔的厚度并无特别限定,就加工性或电传导性、重量、体积、成本等来看,较佳为5μm以上50μm以下。通过将金属箔15及作为蒸发源的Ti或Al的金属材料配置在真空反应室内后,通过电子束及等离子体产生电极等使Ti或Al蒸发及离子化,并将由此产生的金属阳离子导引至该金属箔15而形成金属层16。就成膜方法的一例而言,可列举离子蒸镀法等的物理气相沉积法(PVD)。在将由Ti或Al等金属的氮化物、或碳化物所构成的层形成于金属箔15上的态样中,只要在氮气或甲烷气体等环境气体中进行上述方法来形成第1导电层即可。此外,用以形成金属层16的方法、即离子蒸镀法以外的物理气相沉积法,可列举真空蒸镀法或溅镀法等。亦可使用热CVD或光CVD、等离子体CVD、有机金属气相沉积法等化学气相沉积(CVD)法。混合存在层17与金属层16相同,可通过离子蒸镀法等来形成。亦即,蒸发源除了Ti或Al的金属材料外,更准备石墨材料,并同时使用该2种蒸发源来进行成膜处理即可。通过导入这类混合存在层17,即可提高金属与GLC的密着性及化学稳定性,防止因金属的化学反应所造成的变质。混合存在层17较佳构成为:在与金属层16的交界区域中实质上仅含有Ti或Al,且在与碳层18的交界区域中实质上仅含有碳(GLC),尤其自金属层16朝向碳层18使GLC含有率连续地上升。就这类混合存在层17的一例而言,可通过下列方式形成:(i)混合存在层17的成膜开始时将电子束仅照射在金属材料以仅形成Ti或Al的覆膜;(ii)随着时间的经过逐渐降低电子束对该金属材料的照射量,同时提高电子束对石墨材料的照射量,藉此使金属与GLC混合存在,且以愈往上层GLC含有率愈高的方式形成混合存在覆膜;(iii)成膜结束时,将电子束对该金属材料的照射量设为零,而可仅形成GLC的覆膜。除此之外,当通过溅镀法来形成混合存在层17时,可随着时间的经过而降低施加于金属靶材的电压(降低金属靶材的溅镀速度),以提高施加于石墨靶材的电压(提高石墨靶材的溅镀速度)等,通过任意方法来形成较佳态样的混合存在层17。后述性能试验数据中,实施例1至4的数据是使用上述离子蒸镀法,并使用以尤其自金属层16朝向碳层18使GLC含有率连续地上升的方式形成混合存在层17而成的集电体19而得者。然而,在混合存在层17中,即使存在有一部分例如GLC含有率随着朝向碳层18而减少的区域(起因于成膜技术的限制等,此情形有可能产生),亦可推测同样可得到与已知技术的集电体相比更佳的特性。这是由于即使在这类区域中,Ti或Al与GLC亦混合存在而提升成分间的密着性,所以可防止Ti或Al的氧化等的化学反应所造成的变质,而长期间将集电体与电极层的接触电阻抑制为较低。碳层18与金属层16及混合存在层17相同,可通过离子蒸镀法等来形成。典型而言,在上述混合存在层17的形成过程中,在将电子束对金属材料的照射量降低至零后,在将电子束仅照射在碳材料的状态下持续进行一定时间的覆膜形成处理,藉此可形成碳层18。本发明的碳层18并非在使碳微粒分散于树脂黏合剂等的黏结剂后涂布此黏结剂而形成,而是与上述的金属层16及混合存在层17相同,较佳例如使用离子蒸镀法等的蒸镀法来形成。这是由于在与黏结剂捏揉而形成的碳微粒层中,碳的占有率会降低达实质混合的黏结剂的份量,此外,下层的Ti或Al与碳粒子的接触为点接触,再者,上述涂布法中,难以提高界面的电传导性,造成界面电阻的上升,密着性亦恶化,并且难以均匀地被覆较薄之故。碳层18较佳形成为平滑且紧密的GLC覆膜。金属层16、混合存在层17、及碳层18的厚度,分别可为0.1nm以上15nm以下左右,若至少此等3层的厚度合计为0.3nm以上,则可得到作为集电体的良好特性。但在不损及电传导性或经济性的范围内,亦可将各层形成较厚,但在使金属箔粗面化时,考虑到对细孔构造内壁的均匀被覆性,较佳将该3层的厚度合计设为45nm以下。此外,形成金属层16、混合存在层17、及碳层18各层的步骤,较佳是以同一成膜方式来进行。这是由于可通过制造步骤的简化来提高生产性且大幅降低制造成本的故。但在不损及经济性的范围内,此等各层亦可通过不同方式来成膜。(本发明的蓄电池)图9是表示使用上述集电体19(将正极所使用的集电体设为正极侧集电体19a,将负极所使用的集电体设为负极侧集电体19b)所制作的正极电极21、负极电极23的剖面图,图10a、图10b是表示使用该电极21、23所制作的一例的锂离子蓄电池30的分解图及外观图。锂离子蓄电池30可通过下列方法制作出:(i)夹介分隔器,重迭:在集电体19a上形成有将作为活性物质的磷酸铁锂(LiFePO4)、作为导电辅助剂的乙炔黑、作为黏合剂的丁苯橡胶、作为增黏剂的羧甲基纤维素铵盐、及与水捏揉而成的电极层20的正极电极21,以及在集电体19b上形成有将作为活性物质的石墨、作为导电辅助剂的乙炔黑、作为黏合剂的丁苯橡胶、作为增黏剂的羧甲基纤维素铵盐、及与水捏揉而成的电极层22的负极电极23,然后将正极耳片端子26连接于正极侧集电体19a,将负极耳片端子27连接于负极侧集电体19b后,重迭此复数片而制作出锂离子蓄电池组件28。(ii)将锂离子蓄电池组件28收容于盒29后,注入将作为电解质25的六氟化磷酸锂(LiPF6)溶解于有机溶剂的碳酸乙烯酯及碳酸二乙酯的混合溶液而成的电解液后,将盒密封。电池的制作中所使用的活性物质、导电辅助剂、黏合剂、电解质的材质或组合、以及组件构造(钮扣型、卷绕型、积层型等)并不限定于此等。(本发明的集电体的性能试验)本发明的集电体的性能试验,分别对下列集电体进行,即,以如上述般通过在酸性溶液中进行电化学蚀刻处理而施以粗面化后的铝箔为基材所制作的集电体,以及以未经粗面化的铝箔为基材所制作的集电体。各个集电体中,金属层系使用Ti或Al,将由金属层、混合存在层、及碳层所构成的覆膜的厚度设为合计25nm。以提高评估精确性者为目的,性能评估用的锂离子蓄电池组件,以将上述电极层形成于该集电体上而成的电极作为正极电极,对极则使用锂板来制作出性能试验用的钮扣型电池,使用该钮扣型电池,来测定并评估该正极电极的放电速率特性、及充放电周期寿命特性。通过下列方式评估正极电极的放电速率特性,首先各进行一次下列充放电:(i)以既定的充电速率电流值对上述钮扣型电池进行定电流充电至4.2V为止,然后进行定电压充电至电流值成为0.01C为止来实施充电,(ii)然后以既定的放电速率电流值进行定电流放电至3.0V为止来实施放电,以放电速率电流值0.2C时的放电电容量为基准,从各放电速率电流值中所测定的钮扣型电池的放电电容量的比率中,计算出电容量维持率(各放电速率电流值时的放电电容量[mAh/g]÷放电速率电流值0.2C时的放电电容量[mAh/g]×100)而进行评估。将环境温度设定在25℃,一边将上述放电速率电流值从0.2C改变至10C,一边评估放电速率特性,并比较各放电速率电流值时的电容量维持率。当放电速率电流值未达1C时,上述既定的充电速率电流值设为与该放电速率电流值相同的值,当放电速率电流值为1C以上时,固定在1C。在此,所谓放电速率电流值1C,表示花费1小时使电池的全电容量放电的电流值,所谓放电速率电流值10C,意味着于6分钟内使全电池电容量放电的急速放电。正极电极的充放电周期寿命特性,是将环境温度设定在25℃,且将充电速率电流值及放电速率电流值均固定在1C后,反复进行上述充放电20周期,并且于每次完成1周期时,以初期(第1周期)的放电电容量为基准来计算出电容量维持率而而进行评估。为了验证金属箔的粗面化对于集电体与电极层的密着强度所带来的效果,使用SAICAS(SurfaceAndInterfacialCuttingAnalysisSystem)装置作为斜向切削装置来进行试验。将宽度1mm的具有金刚石刀尖的刀刃,从电极表面以一定速度(水平:6μm/s、垂直:0.6μm/s)斜向地切入,到达集电体与电极层的接合界面后,以一定速度(水平:6μm/s)水平地移动,将此时施加于刀刃的水平应力作为剥离强度来进行比较。在进行比较用的测定后的蓄电池的比较例1至7、以及本发明的蓄电池的实施例1至4中所使用的集电体的构成,分别如下所述。(比较例1)由平滑铝箔所构成的集电体。(比较例2)对平滑铝箔施以蚀刻处理而成的集电体。(比较例3)于平滑铝箔形成类石墨碳覆膜20nm而成的集电体。(比较例4)于平滑铝箔形成Ti覆膜12.5nm、类石墨碳覆膜12.5nm而成的集电体。(比较例5)对平滑铝箔施以蚀刻处理,并形成Ti覆膜12.5nm、类石墨碳覆膜12.5nm而成的集电体。(比较例6)于平滑铝箔形成Al覆膜12.5nm、类石墨碳覆膜12.5nm而成的集电体。(比较例7)对平滑铝箔施以蚀刻处理,并形成Al覆膜12.5nm、类石墨碳覆膜12.5nm而成的集电体。(实施例1)于平滑铝箔形成Ti覆膜10nm、Ti及类石墨碳覆膜的混合存在层5nm、及类石墨碳覆膜10nm而成的集电体。(实施例2)对平滑铝箔施以蚀刻处理,并形成Ti覆膜10nm、Ti及类石墨碳覆膜的混合存在层5nm、及类石墨碳覆膜10nm而成的集电体。(实施例3)于平滑铝箔形成Al覆膜10nm、Al及类石墨碳覆膜的混合存在层5nm、及类石墨碳覆膜10nm而成的集电体。(实施例4)对平滑铝箔施以蚀刻处理,并形成Al覆膜10nm、Al及类石墨碳覆膜的混合存在层5nm、及类石墨碳覆膜10nm而成的集电体。于金属箔上的覆膜形成,均通过上述离子蒸镀法来进行。关于各比较例、及实施例的放电速率特性的试验结果,如表3至表13所示。此外,关于各比较例、及实施例的每个放电速率电流值中所决定的电容量维持率,于图11中显示为柱状图。[表3][表4][表5][表6][表7][表8][表9][表10][表11][表12][表13]观察图11,与使用比较例1至7的集电体时的放电速率特性相比,使用本发明的集电体的实施例1至4的放电速率特性提升较为明显。此外,表14至表15显示于各个比较例1至7、实施例1至4中结束充放电的1周期时所决定的电容量维持率,并于图12中显示为柱状图。[表14][表15]实施例1实施例2实施例3实施例41(周期数)1001001001002100.1100.2100.1100.33100.1100.4100.3100.44100.4100.5100.1100.35100.2100.5100.3100.46100.3100.4100.4100.57100.1100.7100.2100.68100.4100.8100.3100.69100.2100.4100.3100.410100.3100.5100.4100.311100.2100.8100.3100.512100.3100.9100.4100.813100.4101.3100.2100.914100.5101.2100.3101.015100.3101.1100.4101.016100.2101.2100.1100.917100.3101.2100.2101.018100.5100.9100.3100.919100.6100.9100.2101.020100.1101.1100.3100.9图12中,与使用随着周期数的增加而产生电容量维持率的降低的比较例1至7的集电体时的充放电周期寿命特性相比,使用本发明的集电体的实施例1至4中,在第20周期为止均未引起电容量的降低,可得知充放电循环寿命的提升较为明显。图13是显示关于比较例1及2、实施例1及2,用以评估金属箔的粗面化对集电体与电极层的密着强度所带来的效果的SAICAS试验的结果。不论有无形成覆膜,金属箔的粗面化对于电极层间的密着强度的效果皆明显。如上所述,使用本发明的集电体所制作出的电极中,显示在高放电速率下的使用以及多数次的重复使用所造成的质量的劣化极小。这类效果可考虑为:由于本发明的集电体具有已说明般的覆膜构成,所以可得到界面上的高电传导性及化学稳定性而产生这类效果。起因于本发明的覆膜构成的电传导性及化学稳定性的提升,显然受到集电体的具体用途所影响,有鉴于此,当将本发明的集电体使用在锂离子蓄电池的负极电极侧时,或是使用在电双层电容器或混合式电容器等的正极电极侧、负极电极侧时,亦可推测为同样地抑制品质劣化。(产业利用性)本发明的电极材料可应用作为卷绕型或积层型固态电解电容器的阴极箔。此外,本发明的电极材料亦可使用在以采用电解液而动作的以电解电容器为首的各种电容器、或是电双层电容器、锂离子电容器、锂离子电池、太阳能电池等。本发明的集电体可应用作为蓄电池、电双层电容器、混合式电容器的电极。此外,本发明的集电体亦可使用在采用电解质而驱动的太阳能电池等。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1