用于形成氧化物超导体的原料溶液的制作方法

文档序号:7254728阅读:224来源:国知局
用于形成氧化物超导体的原料溶液的制作方法
【专利摘要】提供用于形成氧化物超导体(2)的原料溶液,所述原料溶液被用于使用涂布热解法在基板(1)上形成其中引入磁通钉扎点的RE123氧化物超导体(2)。将用于形成钉扎点的预定量的纳米粒子(3)分散在溶解有用于形成所述氧化物超导体(2)的有机金属化合物的溶液中。所述纳米粒子(3)具有5~100nm的粒度。所述有机金属化合物为不含氟的有机金属化合物。因此,即使在FF-MOD法中,也可以容易地添加用于钉扎的材料,用于热分解金属络合物的处理和用于产生钉扎化合物的热处理是不必要的,并且可以合适地控制钉扎的粒度。
【专利说明】用于形成氧化物超导体的原料溶液

【技术领域】
[0001] 本发明涉及用于形成氧化物超导体的原料溶液,其在使用涂布热解法在基板上形 成由氧化物超导体制成的层时使用。

【背景技术】
[0002] 自从在液氮温度下显示超导性的高温超导体的发现以来,已经并且仍在积极开发 旨在应用于电力设备如电缆、限流器和磁体的高温超导线材。其中,目前所关注的是其中在 基板上形成由氧化物超导体制成的薄膜层(氧化物超导层)的氧化物超导薄膜线材。
[0003] 用于制造这种氧化物超导线材的方法之一是涂布热解法(金属有机沉积,缩写为 MOD法)(日本特开2007-165153号公报(PTD1))。
[0004] 这种方法涉及向基板涂覆通过将RE(稀土元素)、Ba(钡)和Cu(铜)的各有机金 属化合物溶解在溶剂中而制造的原料溶液(MOD溶液)以形成涂膜,其后在例如约500°C下 进行煅烧热处理以使有机金属化合物热分解,除去热分解的有机成分从而产生煅烧膜,其 为氧化物超导薄膜的前体,以及在更高温度(例如约750°C至800°C)下对如此产生的煅烧 膜进行烧结热处理以使其结晶,从而形成由REBa2Cu3CVx表示的RE123的超导薄层并且从而 制造氧化物超导线材。这种方法由于与主要在真空中制造超导线材的气相方法(例如气相 沉积、溅射和脉冲激光气相沉积)相比诸如生产设备更简单的特征而被广泛使用,并且容 易适用于大面积或复杂形状。
[0005] 然而,近来,强烈需求在临界电流密度Jc和临界电流Ic方面进一步改进的氧化物 超导薄膜线材。为了满足这个需求,为了阻止在磁场中进入RE123氧化物超导体中的纳米 尺寸磁通量子的运动,人工引入了纳米尺寸的磁通钉扎点(下文中称为"钉扎")。
[0006] 上述MOD法还涉及向所述原料溶液中加入形成钉扎的元素例如Zr的金属络合物 (盐),从而形成其中引入钉扎的氧化物超导层(例如NPD1)。
[0007] 现有技术文献
[0008] 专利文献
[0009]PTD1:日本特开 2007-165153 号公报
[0010] 非专利文献
[0011]NPDI:MasashiMiura等,〃具有源自TFA-MOD工艺的纳米粒子的YhSmxBa2Cu3Oy 涂布导体中的临界电流的磁场角依赖性(MagneticFieldAngularDependenceof CriticalCurrentinY1^SmxBa2Cu3OyCoatedConductorswithNanoparticlesDerived fromtheTFA-M0DProcess) "ΤΕΙ0ΝKOGAKU(J.Cryo.Soc.Jpn·),第 44 卷,第 5 期 (2009),210-216


【发明内容】

[0012] 发明要解决的问题
[0013] 然而,在使用上述方法的情况下,为形成钉扎,有必要进行处理以使所加入的金属 络合物热分解并且进一步进行热处理以产生钉扎化合物。为了使所生成的钉扎化合物充分 执行磁通钉扎的作用,有必要使所生成的钉扎化合物聚集以使得所得聚集体具有特定或更 大的尺寸。然而,用这种方式并不容易合适地控制钉扎的粒度。
[0014] 尽管上述方法毫无疑问可应用于在原料溶液中使用含氟有机金属化合物的 TFA-MOD法,但将上述方法应用于其中使用不含氟的有机金属化合物的FF-MOD法存在问 题,即难以向原料溶液中合适地加入呈金属络合物形式的钉扎化合物用材料以及合适地控 制钉扎的形成,并且在氧化物超导体的晶体生长步骤中难以实现取向生长(外延生长)。
[0015] 鉴于上述问题,本发明的目的在于提供用于MOD法的原料溶液,其无需用于使金 属络合物热分解的处理和用于产生钉扎化合物的热处理并且能够合适地控制钉扎的粒度。
[0016] 解决问题的手段
[0017] 本发明的发明人已经进行了多项实验和研究,发现可以通过使用加入有纳米粒子 的原料溶液来解决上述问题。
[0018] 也就是说,在使用通过向MOD溶液中加入纳米粒子而制备的原料溶液利用MOD法 来形成氧化物超导层的情况下,纳米粒子充分充当磁通钉扎。
[0019] 由于所加入的纳米粒子是以钉扎形式引入,因此通常进行的用于使金属络合物热 分解的单独处理和用于产生钉扎化合物的单独热处理是不必要的。此外,由于所引入的钉 扎的粒度取决于所加入的纳米粒子的尺寸,因此可以容易地、精确地且合适地控制钉扎的 粒度。
[0020] 已基于上述发现完成了本发明。根据权利要求1所述的发明是用于形成氧化物超 导体的原料溶液,所述原料溶液被用于使用涂布热解法在基板上形成已引入磁通钉扎点的 RE123氧化物超导体,其特征在于,在其中溶解有用于形成所述氧化物超导体的有机金属化 合物的溶液中,分散有用于形成所述钉扎点的预定量的纳米粒子。
[0021] 使用根据所述权利要求的用于形成氧化物超导体的原料溶液能够形成氧化物超 导层,其中如上所述在合适控制下引入了充分充当磁通钉扎的纳米粒子,从而能够提供具 有进一步提高的Jc和Ic的氧化物超导薄膜线材。
[0022] "用于形成钉扎点的纳米粒子"不仅可以是自身充当磁通钉扎的纳米粒子,而且可 以是在烧结热处理期间与原料溶液中所含的有机金属化合物反应以产生充当磁通钉扎的 钉扎化合物的纳米粒子。
[0023] 前者的纳米粒子可以是例如Ag(银)、Au(金)、Pt(钼)、BaCeO3 (铈酸钡)、 BaTiO3 (钛酸钡)、BaZrO3 (锆酸钡)、SrTiO3 (钛酸锶)等的纳米粒子,并且只要是不会不利 影响氧化物超导薄膜的超导特性的材料就不受限制。
[0024] 这些纳米粒子是不与原料溶液反应的纳米粒子。因此,可以在不另外进行热处理 的情况下引入钉扎。此外,所引入钉扎的粒度取决于所加入的纳米粒子的尺寸,因此可以容 易地、精确地且合适地控制钉扎的粒度。此外,在氧化物超导体形成期间,组成不改变,并且 因此可以获得具有所需高Jc和Ic的氧化物超导薄层。在前述材料中,具有高熔点的材料 如例如Pt是更优选的,因为这种材料在用于形成氧化物超导体的煅烧热处理和烧结热处 理期间的移动聚集或变形受到抑制。
[0025] 后者的纳米粒子可以例如是Ce02(氧化铈)、ZrO2(二氧化锆)、SiC(碳化硅)、 TiN(氮化钛)等的纳米粒子。这些纳米粒子与原料溶液中所含的有机金属化合物反应以分 别产生BaCeO3(铈酸钡)、BaZrO3(锆酸钡)、Y2Si2O7和BaTiO3(钛酸钡)的纳米粒子,并且 充当磁通钉扎。
[0026] 这些纳米粒子与原料溶液中所含的有机金属化合物反应,从而产生钉扎。由此, 与不和原料溶液反应的前述纳米粒子相反,在氧化物超导体形成期间存在组成改变的可能 性。优选在制备原料溶液时提前考虑到这种可能性。
[0027] 根据权利要求2所述的发明是根据权利要求1所述的用于形成氧化物超导体的原 料溶液,其特征在于纳米粒子具有5?IOOnm的粒度。
[0028] 如果纳米粒子的粒度过小,则纳米粒子不能充分充当磁通钉扎。反之,如果粒度过 大,则纳米粒子可能不利地影响氧化物超导薄膜的超导特性。
[0029] 5?IOOnm的粒度为对应于相干长度(coherencelength)的尺寸,其不会出现这 些问题。
[0030] 根据权利要求3所述的发明是根据权利要求1或2所述的用于形成氧化物超导体 的原料溶液,其特征在于相对于所述原料溶液中的RE(稀土元素),加入至所述原料溶液中 的纳米粒子的量为0. 01?10摩尔%。
[0031] 如果所加入的纳米粒子的量过小,则不能形成足够量的钉扎并且纳米粒子不能充 分充当磁通钉扎。反之,如果所加入的纳米粒子的量过大,则形成过量的钉扎,其可能不利 影响氧化物超导薄膜的超导特性。
[0032] 在所加入的纳米粒子相对于原料溶液中的RE的量为0. 01?10摩尔%的情况下, 这些问题将不会出现。
[0033] 根据权利要求4所述的发明是根据权利要求1至3中任一项所述的用于形成氧化 物超导体的原料溶液,其特征在于所述原料溶液中添加有分散剂。
[0034] 由于所加入的纳米粒子有可能在原料溶液中聚集,因此可以加入分散剂以抑制纳 米粒子聚集,从而制备其中纳米粒子更均匀分散的原料溶液。
[0035] 具体的分散剂可例如为聚丙烯酸、烯烃-马来酸共聚物、聚乙烯基吡咯烷酮、聚乙 烯亚胺等。根据纳米粒子的种类和量,合适地确定所加入分散剂的材料和量。在使用市售 纳米粒子分散溶液或纳米胶状溶液的情况下,其中所含的分散剂的种类可能不会公开,但 这不产生问题。这些分散剂优选不含除C、H、0和N之外的元素。
[0036] 根据权利要求5所述的发明是根据权利要求1至4中任一项所述的用于形成氧化 物超导体的原料溶液,其特征在于所述有机金属化合物是不含氟的有机金属化合物。
[0037] 在将上述用于形成氧化物超导体的原料溶液应用于FF-MOD法的情况下,可以显 著发挥本发明的效果。也就是说,与使用加入有金属络合物的常规原料溶液的情况相反,可 以合适地将纳米粒子加入原料溶液中以合适地控制钉扎的形成,并且使得晶体生长为充分 取向的生长。
[0038] 使用不含氟的有机金属化合物的原料溶液的FF-MOD法不会导致在氧化物超导层 形成期间产生如氟化氢气体的危险气体,因此无需用于处理其的设施,这与使用TFA-MOD 法的情况相反。
[0039] 发明效果
[0040] 本发明可以提供能够合适地控制钉扎的粒度的原料溶液。这种原料溶液可以用于 获得其中已在合适的控制下引入充分充当磁通钉扎的纳米粒子的氧化物超导层,并且可以 提供具有进一步提1?的Jc和Ic的氧化物超导薄I吴线材。

【专利附图】

【附图说明】
[0041]图1是实施例1中制造的氧化物超导线材的示意性横截面图。
[0042] 图2是比较例中制造的氧化物超导线材的示意性横截面图。

【具体实施方式】
[0043] 在下文中,将基于本发明的实施方式,使用附图给出本发明的描述。
[0044] 1.原料溶液的制备
[0045] 首先,将描述用于制备本发明的原料溶液的一般方法。在下文中,使用Y作为RE。
[0046] (I)MOD溶液的制备
[0047] 由比率(摩尔比)为Y:Ba:Cu= 1:2:3的Y、Ba和Cu的有机金属化合物合成其中 溶剂为醇的MOD溶液。将MOD溶液中的Y3+、Ba2+和Cu2+的总阳离子浓度设定为lmol/L。
[0048] 关于有机金属化合物,在TFA-MOD法的情况下使用含氟的有机金属化合物如三氟 乙酸盐,而在FF-MOD法的情况下使用不含氟的有机金属化合物如乙酰丙酮化物。
[0049] (2)纳米粒子分散溶液的制备
[0050] 独立于上述MOD溶液的制备,将预定量的纳米粒子分散在醇中制备了纳米粒子分 散溶液。此时,加入分散剂以防止纳米粒子的聚集。
[0051] (3)原料溶液的制备
[0052] 使用以上述方式制备的MOD溶液和纳米粒子分散溶液。将这些溶液混合以使得所 加入的纳米粒子相对于Y的量为预定的摩尔%,从而制备原料溶液。
[0053] 2·Y123氧化物超导层的形成
[0054] 接着将给出使用以上述方式制备的原料溶液形成Y123氧化物超导层的描述。
[0055] (1)基板的准备
[0056] 首先,准备要在上面形成氧化物超导层的基板。关于基板,优选使用取向的金属基 板,其中具有以Ce02/YSZ/CeCy^次序构成的三层结构的中间层形成在诸如Ni-W合金基材、 包括SUS等作为基底金属的包覆型金属基材、IBAD基材等基材上。
[0057] (2)原料溶液的涂覆
[0058] 在基板上涂覆预定量的原料溶液并且其后干燥以形成预定厚度的涂膜。
[0059] (3)煅烧膜的制备
[0060] 将涂膜在预定煅烧热处理条件下热处理,从而制备煅烧膜。
[0061] (4)烧结膜(氧化物超导层)的制备
[0062] 将煅烧膜在预定烧结热处理条件下热处理,从而制备氧化物超导层。此时,与氧化 物超导层一起,在氧化物超导层中形成由纳米粒子形成的钉扎。
[0063] 所形成的钉扎充分充当氧化物超导层中的磁通钉扎,并且因此获得具有改进的Jc 和Ic的氧化物超导薄膜线材。
[0064]实施例
[0065] 在本发明实施例中,制备其中使用Pt纳米粒子作为纳米粒子的原料溶液。而且, 使用这种原料溶液来形成Y123氧化物超导层。
[0066](实施例I)
[0067] 1.原料溶液的制备
[0068] (I)MOD溶液的制备
[0069]制备Y、Ba和Cu的各乙酰丙酮化物络合物以使得Y:Ba:Cu的摩尔比为1:2:3,并 且将其溶解在醇中以制备有机金属化合物的醇溶液。
[0070] ⑵Pt纳米粒子分散溶液
[0071]使用钼纳米胶状溶液(粒度:l〇nm,Pt浓度:1重量%,溶剂:乙醇,分散剂:分散剂 不含除C、H、0和N之外的元素)。
[0072] (3)原料溶液的制备
[0073] 将所制备的有机金属化合物的醇溶液和Pt纳米粒子分散溶液混合以使得Pt与Y 的比率(Pt/Y)为0.06摩尔%,从而制备原料溶液。
[0074] 2.氧化物超导层的形成
[0075] (1)涂膜形成步骤和煅烧热处理步骤
[0076] 将所制备的原料溶液涂覆在基板上,从而形成预定厚度的涂膜,所述基板中在包 覆基板上形成有由Y203、YSZ和CeO2的三层构成的中间层,所述包覆基板中在SUS上形成有 Cu层和Ni层。此后,在大气气氛中将涂膜温度升高至500°C并保持两小时,其后冷却以形 成作为第一层的厚度为300nm的煅烧膜。然后,在与第一层相同的条件下形成第二层和第 三层,从而制备三层型煅烧膜。
[0077] (2)烧结热处理步骤
[0078] 在具有IOOppm氧浓度的氩气/氧气混合物的气氛中将如此获得的煅烧膜温度升 高至800°C,其后原样保持90分钟,并且在约三小时内将温度降至500°C。此时,将气氛改 变为100%氧气气氛,并且在五小时内进一步降低温度至室温。由此,制备了其中形成厚度 为0. 75μm的Y123氧化物超导层的实施例1的氧化物超导线材。
[0079](比较例)
[0080] 以与实施例1类似的方式制备比较例的氧化物超导线材,不同之处在于使用未向 其中加入Pt纳米粒子分散溶液的MOD溶液作为原料溶液。
[0081] 3.氧化物超导线材的评价
[0082] 以下列方式评估实施例1和比较例的所得氧化物超导线材。
[0083] (1)横截面结构
[0084] 使用S-TEM方法来观察在实施例1和比较例的氧化物超导线材中形成的氧化物超 导层的横截面。
[0085] 观察结果示意性示于图1和图2中。图1和图2分别是在实施例1和比较例中制 备的氧化物超导线材的示意性横截面图。在图1和图2中,基板由1表示,所形成的Y123 氧化物超导层由2表示,并且Pt纳米粒子由3表示。
[0086] 如图1中所示,证实在实施例1中,Pt纳米粒子3均匀分散在Y123氧化物超导层 2中。相比之下,如图2中所示,在比较例中未观察到纳米粒子在Y123氧化物超导层2中的 形成。
[0087] (2)Ic的测量
[0088] 在自磁场中在77K下测量实施例1和比较例的超导特性(Jc、Ic)。测量结果示于 表1中。
[0089]表1
[0090]

【权利要求】
1. 一种用于形成氧化物超导体(2)的原料溶液,所述原料溶液被用于使用涂布热分解 法在基板(1)上形成已引入磁通钉扎点的RE123氧化物超导体(2),其特征在于, 在其中溶解有用于形成所述氧化物超导体(2)的有机金属化合物的溶液中,分散有用 于形成所述钉扎点的预定量的纳米粒子(3)。
2. 根据权利要求1所述的用于形成氧化物超导体(2)的原料溶液,其特征在于,所述纳 米粒子⑶具有5?lOOnm的粒度。
3. 根据权利要求1或2所述的用于形成氧化物超导体(2)的原料溶液,其特征在于,相 对于所述原料溶液中的RE (稀土元素),加入至所述原料溶液中的所述纳米粒子(3)的量为 0? 01?10摩尔%。
4. 根据权利要求1至3中任一项所述的用于形成氧化物超导体(2)的原料溶液,其特 征在于,所述原料溶液中添加有分散剂。
5. 根据权利要求1至4中任一项所述的用于形成氧化物超导体(2)的原料溶液,其特 征在于,所述有机金属化合物是不含氟的有机金属化合物。
【文档编号】H01B12/06GK104364856SQ201280073816
【公开日】2015年2月18日 申请日期:2012年6月8日 优先权日:2012年6月8日
【发明者】本田元气, 永石龙起, 花房庆, 山口岩, 松井浩明, 近藤和吉, 熊谷俊弥 申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1