基于iii族氮化物材料的准线性掺杂的器件结构的制作方法
【专利摘要】本发明公开了一种基于III族氮化物材料的准线性掺杂的器件结构,属于半导体高频功率器件和高压器件,特别涉及III族氮化物器件的高压领域。本发明中自下而上包括衬底、缓冲层、沟道层和上表面上设有电极的势垒层,势垒层上的上表面呈部分阶梯式递增或全部阶梯式递增;递增方向为器件处于反向截至状态时自低电位电极到高电位电极方向。和常规III族氮化物器件结构相比,本发明主要创新是通过挖槽工艺实现了势垒层沟道的准线性掺杂,巧妙的避开了III族氮化物二次注入工艺,降低了制作难度,同时也降低了器件的制作成本;且本发明的准线性掺杂有效降低了原有的峰值电场,有效的提高了器件的击穿电压,降低了电流崩塌。
【专利说明】基于M I族氮化物材料的准线性掺杂的器件结构
【技术领域】
[0001]本发明涉及半导体器件领域。
【背景技术】
[0002]文献 I ((Dependence of Breakdown Voltage on Drift Length and LinearDoping Gradients in SOI RESURF LDMOS Devices》(Shaoming Yang, Wenchin Tsengand Gene Sheu., The Ninth International Conference on Electronic Measurement &Instruments 2009,pp,594-597)报道了线性掺杂器件有效的提高了器件击穿耐压,均匀掺杂与线性掺杂对击穿电压的影响对比如图1所示。
[0003]文献《Highbreakdown voltage AlGaN/GaN HEMT by employing selectivefluoride plasma treatment》(Young-Shil Kim, Jiyong Lim, O-Gyun Seok and Min-kooHan.Proceedings of the 23rd International Symposium on Power SemiconductorDevices & 1C’s May 23-26,2011 San Diego, CA, pp.251-255)采用 F 处理形成2-Dimensional Electron Gas (2DEG)浓度差,有效地提高了器件的击穿电压,从常规结构的900V提高到了 1400V,结果如图2所示。
[0004]线性掺杂可以有效的提高器件击穿特性,但是III族氮化物材料很难通过注入实现线性掺杂,尤其是掺杂效率低的P型。利用极化工程,采用F处理可以实现2DEG的阶梯变化,但是F处理器件的稳定性差也是个棘手的问题。
【发明内容】
[0005]为了解决III族氮化物材料离子注入实现准线性掺杂难度大和F处理稳定性差的问题,本发明提供了一种基于III族氮化物材料的准线性掺杂的器件结构,该结构利用极化工程,采用多次挖槽技术,实现了 III族氮化物材料准线性掺杂。
[0006]为解决上述技术问题,本发明采用的技术方案为:一种基于III族氮化物材料的准线性掺杂的器件结构,自下而上包括衬底、缓冲层、沟道层和上表面上设有电极的势垒层,所述势垒层上表面呈部分阶梯式递增或全部阶梯式递增;递增方向为器件处于反向截至状态时自低电位电极到高电位电极方向。
[0007]所述阶梯式递增为至少含有两个梯度变化。
[0008]所述阶梯式递增部分的最高台阶的高度不高于势垒层的等平面高度W。
[0009]所述势垒层上表面上阶梯式递增部分中各阶梯间的高度差h的取值范围为lnm_30nmo
[0010]各阶梯间的高度差h为5-10nm。
[0011]所述势垒层上表面上阶梯式递增部分中各阶梯的宽度d的取值范围为lnm-30μ m。
[0012]各阶梯的宽度d为100nm-10ym。
[0013]本发明将线性掺杂定义为势垒层的掺杂浓度沿变化方向线性递增,浓度变化趋势呈直线;所谓的准线性掺杂定义为势垒层的掺杂浓度沿变化方向阶梯式递增,浓度变化趋势为阶梯式曲线,阶梯越多,掺杂浓度的变化曲线越接近于直线,因此将此中浓度阶梯式变化称为准线性掺杂。
[0014]采用上述技术方案取得的技术进步为:
1、传统思想是通过注入工艺实现势垒层的准线性掺杂,但是III族氮化物材料的P型注入效率很低,本发明利用阶梯式势垒层新结构,采用常规的挖槽工艺和III族氮化物极化工程巧妙的避开了 III族氮化物材料的P型注入效率很低的难题,实现了沟道2DEG/2DHG面密度的准线性掺杂,大大降低了准线性掺杂的难度,同时也降低了器件的实现成本;
2、本发明势垒层的阶梯式递增部分中各台阶间的高度差导致了相应部分2DEG/2DHG面密度浓度差,新的浓度差处引入了新的电场峰值,有效的降低了势垒层原有的高峰值电场,从而提高了器件的击穿电压,并降低了基于III族氮化物材料器件的电流崩塌量。
【专利附图】
【附图说明】
[0015]图1为SOI RESURF LDMOS Devices线性掺杂和非线性掺杂的击穿电压对比示意图;
图2为常规AlGaN/GaN HEMT与F-处理高压AlGaN/GaN HEMT的实测击穿电压示意图;图3为常规基于III族氮化物材料的SBD的结构示意图及其2DEG/2DHG面密度的分布示意图;
图4为与图3相对应的本发明实施例1的结构示意图及其该实施例的2DEG/2DHG面密度分布示意图;
图5为实现实施例1阶梯式递增部分的工艺流程图;
图6为实施例2的结构示意图及其该实施例的2DEG/2DHG面密度分布示意图;
图7为常规HMET结构示意图及其2DEG/2DHG面密度分布示意图;
图8为与图7相对应的实施例3的结构示意图及其该实施例的2DEG/2DHG面密度分布示意图;
图9为图7与图8所示器件的沟道电场比较图;
其中,1、衬底;2、缓冲层;3、沟道层;4、势垒层;5、源电极;6、栅电极;7、漏电极、8、阳极电极;9、阴极电极。
【具体实施方式】
[0016]实施例1
由图4所示可知,基于III族氮化物材料的准线性掺杂的SBD器件结构,自下而上依次包括衬底1、缓冲层2、沟道层3和势垒层4,所述势垒层4上表面两端设有阳极电极8和阴极电极9 ;所述势垒层4的上表面呈阶梯式递增,递增方向为从阳极电极8到阴极电极9。因为递增部分的变化方向应该是在器件反向截止状态下,从低电位电极向高电位电极逐渐递增;本实施例在反向截止状态下,阳极电极8上加的是低电位电压,阴极电极9上加的是高电位电压,因此从图4上可以观察到阶梯式递增是从左向右方向的。
[0017]本实施例中,递增部分从势垒层4的左端的阳极电极8开始,一直递增至势垒层4的右端的阴极电极9,即递增部分的总宽度等于势垒层4的总宽度;阶梯式变化部分最高台阶的高度等于势垒层4的等平面高度W ;各阶梯间的高度差h相等,各阶梯间的高度差h的取值范围为lnm-30nm ;各阶梯的宽度d也相等,宽度d的取值范围为lnm-30 μ m。所述阶梯式递增为至少含有两个梯度变化,本实施例中共有三个梯度变化。
[0018]各阶梯的高度差h的更加优选的范围为5-10nm,各阶梯的宽度d的更加优选的范围为 IOOnm-1O μ m。
[0019]本实施例中衬底I为Si,或者蓝宝石;缓冲层2为AlN或者GaN ;沟道层3为GaN或者 AlxGa1-JiN (0〈χ〈1);势鱼层 4 为 InxAlyGa1IyN (O ^ x ^ I, O ^ y ^ I, x+y Si)。
[0020]势垒层4上表面呈阶梯式递增,因此势垒层4的厚度随之不同,厚度越大,相应部分的2DEG/2DHG的面密度越大,掺杂浓度越大,这点从2DEG/2DHG面密度随着势垒层4的宽度的变化折线图中可以清楚看到。2DEG/2DHG面密度的变化也呈阶梯式递增,也就是准线性递增。所含的台阶越多,越接近于线性掺杂。
[0021]此类结构的势垒层4的实现工艺步骤如下:
首先,生长等平面势垒层4 ;接着,在等平面势垒层4上干法刻蚀第一个槽;然后再第一个槽上干法刻蚀第二个槽;再刻蚀第三个槽。如此即可得到各台阶,形成阶梯式递增。本发明的具体制备过程如图5所示。在制备过程中根据需要控制阶梯间的高度差h和阶梯的宽度d即可。
[0022]由上述步骤可知,阶梯式递增部分其实是通过对等平面势垒层4的多次挖槽实现的,因此,即使是最高台阶的高度也不会高于势垒层4的等平面高度W。
[0023]现有传统思想中准线性掺杂是通过注入工艺实现的,但是本发明的准线性掺杂结构则是通过对势垒层4进行多次挖槽实现的,III族氮化物材料的P型注入效率低,本发明就巧妙的避开了此难题,降低了准线性掺杂的实现难度。
[0024]图3所示为与本实施例相对应的常规结构的SBD器件结构,图3中还有该SBD的2DEG/2DHG面密度浓度示意图。图3和图4相对比可知,势垒层4上各台阶间的高度差h的存在会导致2DEG/2DHG面密度浓度差,新的浓度差处引入了新的电场峰值,可有效降低原有的高峰值电场,从而降低基于III族氮化物材料器件的电流崩塌量,提高器件的击穿电压。
[0025]实施例2
如图6所示可知,与实施例1不同的是,势垒层4的部分上表面呈部分阶梯式递增。由图6可以看出,阶梯式递增方向为自右向左递增,递增方向与实施例1正好相反,原因是本实施例中阳极电极8和阴极电极9的左右位置关系与实施例1正好相反,根据递增方向的规则:在器件反向截止状态下,从低电位电极向高电位电极逐渐递增,本实施例中阶梯式递增的方向应该是自右向左。
[0026]本实施例与实施例1不同的是还有:I)阶梯式递增部分占势垒层4的部分上表面;2)各阶梯间的高度差h各不相同;3)各阶梯的宽度d也各不相同;4)最高台阶的高度低于势垒层4的等平面高度W。
[0027]本实施例中衬底I为金刚石;缓冲层2为AlN和InxAlhN (0<χ<1);所述沟道层3 为 GaN 或者 AlxGa1^N (0〈χ〈1);所述势垒层 4 为 InxAlyGanyN (O x 1,O y 1,x+y Si)。
[0028]实施例3如图8所示,基于III族氮化物材料准线性掺杂的HEMT结构,自上而下包括衬底1、缓冲层2、沟道层3和势垒层4 ;与实施例1不同的是,所述势垒层4的上表面设有源电极5、栅电极6和漏电极7。所述势垒层4的部分上表面的高度呈阶梯式递增,此部分位于势垒层4上栅电极6和漏电极7之间,与实施例2的位置类似。递增方向为从栅电极6到漏电极7方向递增,此处也是遵循递增方向的规则的:在器件反向截止状态下,从低电位电极向高电位电极逐渐递增,在截止状态下,栅电极6加低电位电压,漏电极7加高电位电压,因此递增方向为从栅电极6到漏电极7。
[0029]本实施例中递增部分包括两个梯度变化,最后一个台阶的高度与势垒层4右边部分的等平面高度W相等。在势垒层4的左边部分设有源电极5、栅电极6。栅电极6的右边缘位于C处的左侧,在递增部分最后一个台阶上设有漏电极7。漏电极7的左边缘位于E处的右侧。在本实施例中,各阶梯间的高度差h不尽相同,各阶梯的宽度d也不相等。
[0030]本实施例中衬底I为SiC或者GaN ;缓冲层2为AlN和Α1χ6&1_χΝ(0〈χ〈1);沟道层3为 GaN或者AlxGa1_xN(0〈x〈l);势垒层 4 为 InxAlyGanyN(O ≤ χ ≤ 1,0 ≤ y ≤1,x+y ≤1)。
[0031]图7所示为与本实施例相对应的常规HEMT结构,图9所示为实施例3与常规HEMT结构的沟道电场对比示意图。
[0032]势垒层4上不同部分间的高度差产生2DEG/2DHG面密度浓度差,而新的浓度差处则引入了新的电场峰值,如图9所示,若是没有阶梯式递增部分,那么原势垒层4的电场峰值仅包括A、B、H、F四处,且H处的电场峰值很高;有了此阶梯式递增部分后,就新引入了 C、D和E处的电场峰值,新引入的峰值大大降低了 H处的电场峰值。由此可见,阶梯式递增部分有效的降低了势垒层4原有的H处的高峰值电场,提高了器件的击穿电压,并降低了器件的电流崩塌量。
[0033]本发明仅介绍了几种具有代表意义的结构形式,但是本发明不限于上述实施方式,本发明保护的是沿沟道层表面厚度阶梯递增的势垒层结构。根据上述实施例的描述,本领域的普通技术人员还可做出一些显而易见的改变,例如选用本发明描述以外器件类型(如PolFET)等,但这些改变均应落入本发明权利要求的保护范围之内。
【权利要求】
1.一种基于III族氮化物材料的准线性掺杂的器件结构,其特征在于自下而上包括衬底(I)、缓冲层(2)、沟道层(3)和上表面上设有电极的势垒层(4),所述势垒层(4)上表面呈部分阶梯式递增或全部阶梯式递增;递增方向为器件处于反向截至状态时自低电位电极到高电位电极方向。
2.根据权利要求1所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于所述阶梯式递增为至少含有两个梯度变化。
3.根据权利要求1所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于所述阶梯式递增部分的最高台阶的高度不高于势垒层(4)的等平面高度W。
4.根据权利要求1或2或3所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于所述势垒层(4)上表面上阶梯式递增部分中各阶梯间的高度差h的取值范围为lnm_30nmo
5.根据权利要求4所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于各阶梯间的高度差h为5-10nm。
6.根据权利要求1或2或3所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于所述势垒层(4)上表面上阶梯式递增部分中各阶梯的宽度d的取值范围为lnm-30μ m。
7.根据权利要求6所述的基于III族氮化物材料的准线性掺杂的器件结构,其特征在于各阶梯的宽度d为IOOnm-1O μ m。
【文档编号】H01L29/06GK103489897SQ201310366202
【公开日】2014年1月1日 申请日期:2013年8月21日 优先权日:2013年8月21日
【发明者】王元刚, 冯志红, 敦少博, 吕元杰, 张雄文, 房玉龙 申请人:中国电子科技集团公司第十三研究所