低温多晶硅薄膜晶体管阵列基板及其制作方法与流程

文档序号:18059947发布日期:2019-07-03 03:00阅读:144来源:国知局
低温多晶硅薄膜晶体管阵列基板及其制作方法与流程

本发明涉及晶体管制造领域,尤其涉及了一种低温多晶硅薄膜晶体管阵列基板及其制作方法。



背景技术:

目前用于AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极体或主动矩阵有机发光二极体)的TFT(Thin Film Transistor,薄膜晶体管)大多采用低温多晶硅作为有源层,用于AMOLED上TFT的制作方法是首先在玻璃基板上形成缓冲层,然后在缓冲层上沉积非晶硅薄膜,接着对非晶硅薄膜进行准分子激光退火的结晶化工艺,在结晶化工艺之前需对非晶硅薄膜进行清洗,在非晶硅薄膜上形成一层极薄的氧化膜,形成保温层,以降低结晶冷却速率,提高晶粒尺寸。该种方法所得多晶硅薄膜往往存在晶粒尺寸不够大,均匀性过度依赖于前清洗工艺,且存在表面粗糙度过大等问题,严重影响薄膜晶体管的电学特性,进而影响AMOLED的显示效果。

请参考图1,在现有技术中,为了获得较大的多晶硅晶粒,通常会在多晶硅层1上形成带有凹陷弧面的氧化层2作为保温层,凹形弧面可使垂直照射于氧化层2的激光束发生折射(如图1中箭头方向所示),由于激光的折射能够在多晶硅上形成规整的颗粒结构,从而获得较大的多晶硅颗粒。然而,采用上述方法形成结晶化的多晶硅,首先需要在氧化层1上形成凹陷弧面,接着进行激光结晶化,结晶化完成后,再去除氧化层,工艺较为复杂,不易控制;其次,由于凹陷弧面处的激光发生了折射,因此,导致凹陷弧面区域下方的多晶硅会存在结晶效果不佳,使多晶硅整体结晶均匀性变差,晶界处缺陷态密度较大,从而会严重影响薄膜晶体管的电特性。



技术实现要素:

本发明的目的在于提供一种低温多晶硅薄膜晶体管阵列基板及其制作方法,具有工艺简单,可获得较大尺寸且均匀的晶粒,提高薄膜晶体管的性能。

为了实现上述目的,本发明提出了一种低温多晶硅薄膜晶体管阵列基板及其制作方法,包括:

在基底上形成图案化的非晶硅;

在所述基底及图案化的非晶硅上形成栅绝缘层,所述栅绝缘层的厚度为1/4激光波长奇数倍;

进行准分子激光照射,使所述图案化的非晶硅进行结晶化,获得多晶硅。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述栅绝缘层的材质为氧化硅或者氮化硅。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述栅绝缘层采用等离子体化学气相沉积技术形成。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述准分子激光的波长为308nm。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述栅绝缘层的厚度为77nm或231nm。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述准分子激光为XeCl准分子激光。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,进行准分子激光照射的步骤中,所述准分子激光固定不动,移动所述基底,使所述准分子激光均匀照射至所述图案化的非晶硅。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,在形成所述多晶硅后,还包括:

在所述栅绝缘层上形成栅极;

形成栅极后采用自对准工艺对多晶硅进行离子掺杂形成源漏极;

在所述栅绝缘层及栅极表面形成层间介质层;

对所述层间介质层及栅绝缘层进行刻蚀,暴露出所述源漏极;

在暴露出的源漏极上形成金属通孔连线。

进一步的,在所述的低温多晶硅薄膜晶体管阵列基板的制作方法中,所述基底包括玻璃基板及形成在所述玻璃基板上的缓冲层。

本发明还提出了一种低温多晶硅薄膜晶体管阵列基板,采用如上文所述的低温多晶硅薄膜晶体管阵列基板及其制作方法制备而成,包括:基底;形成在所述基底上通过准分子激光照射图案化非晶硅形成的多晶硅;形成在所述多晶硅上的栅绝缘层;形成在所述栅绝缘层上的栅极;形成在所述栅极两侧多晶硅两端的源漏极;形成在所述栅绝缘层和栅极上的层间介质层;以及,穿过层间介质层及栅绝缘层与所述源漏极相连的金属通孔连线;其中,所述栅绝缘层的厚度为1/4激光波长奇数倍。

与现有技术相比,本发明的有益效果主要体现在:在图案化的非晶硅上形成厚度为激光波长奇数倍的栅绝缘层,以作为保温层,由于栅绝缘层的厚度为激光波长1/4的奇数倍,因此,激光能够最大程度的透过栅绝缘层,到达图案化的非晶硅,以对图案化的非晶硅进行良好的结晶化处理,获得较大的晶粒,由于栅绝缘层表面均匀,因此透过的激光也较为均匀照射在图案化的非晶硅上,从而形成具有均匀晶粒的多晶硅。此外,由于栅绝缘层的厚度相比于现有技术的厚度更厚,因此,可以具有更好的保温效果,可以降低结晶冷却速率,延长晶粒生长时间,得到较大且尺寸均匀的晶粒。

附图说明

图1为现有技术中对非晶硅进行激光照射的结构剖面示意图;

图2为本发明一实施例中低温多晶硅薄膜晶体管阵列基板制作方法的流程图;

图3至图11为本发明一实施例中低温多晶硅薄膜晶体管阵列基板制作过程中的剖面示意图。

具体实施方式

下面将结合示意图对本发明的低温多晶硅薄膜晶体管阵列基板及其制作方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。

为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。

在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。

请参考图2,在本实施例中,提出了一种低温多晶硅薄膜晶体管阵列基板的制作方法,包括步骤:

S100:提供基底,在所述基底上形成图案化的非晶硅;

S200:在所述基底及图案化的非晶硅上形成厚度为1/4激光波长奇数倍的栅绝缘层;

S300:进行准分子激光照射,使所述图案化的非晶硅进行结晶化,获得多晶硅。

具体的,请参考图3,在本实施例中,提出的基底包括玻璃基板10及形成在所述玻璃基板10上的缓冲层20,接着,在所述缓冲层20上形成非晶硅层30,所述缓冲层20的材质为氧化硅,以使形成的非晶硅层30与玻璃基板10之间具有更好的粘附性。在本实施例的其他实施例中,所述基底可以包括其他衬底材料,例如硅衬底等等,在此不作限定。

接着,请参考图4,对所述非晶硅层30进行刻蚀,形成图案化的非晶硅30’,所述图案化的非晶硅30’暴露出部分缓冲层20。

接着,请参考图5,在所述基底及图案化的非晶硅30’上形成厚度为1/4激光波长奇数倍的栅绝缘层40,其中,所述栅绝缘层40的材质为氧化硅或者氮化硅,其可以采用等离子体化学气相沉积技术形成。由于后续进行准分子激光照射所使用的激光波长通常为308nm,因此,所述栅绝缘层40的厚度可以为77nm或231nm,优选的,在本实施例中,所述栅绝缘层40是厚度为231nm的氧化硅。

由于形成的栅绝缘层厚度为激光波长1/4的奇数倍,因此,可以确保激光能够最大程度的透过栅绝缘层40,使达到图案化的非晶硅30’上具有最大的能量,从而可以很好的对图案化的非晶硅30’进行结晶化处理,获得较大的晶粒。此外,由于本实施例中的栅绝缘层40并不需要形成凹陷弧面,因此,避免了后续形成的晶粒不均匀的问题,并且,相比于现有技术中先对非晶硅进行清洗,形成一层极薄的氧化膜,本实施例中形成的栅绝缘层的厚度更厚,因此,其可以具有更好的保温效果,可以降低结晶冷却速率,延长晶粒生长时间,得到较大的晶粒。

接着,请参考图6,进行准分子激光照射(准分子激光沿图Y方向进行照射),使所述图案化的非晶硅30’进行结晶化,获得多晶硅31;所述准分子激光为XeCl准分子激光,其固定不动,使基底沿着图中箭头X方向缓慢移动,从而能够图案化的非晶硅30’被均匀照射到,获得具有均匀晶粒的多晶硅31,如图7所示。

接着,请参考图8,在所述栅绝缘层40上形成栅极50,形成栅极50的工艺为先形成栅极层,接着对其进行刻蚀,从而获得栅极50,本领域技术人员理应知晓形成栅极50的工艺,在此不作赘述。

接着,请参考图9,形成栅极50后采用自对准工艺对多晶硅31进行离子掺杂形成源漏极32,所述源漏极32由自对准工艺形成重掺杂获得,其为本领域的惯用技术手段,在此同样不做赘述。

接着,请参考图10和图11,在形成源漏极32后,还包括步骤:

在所述栅绝缘层40及栅极50表面形成层间介质层60;

对所述层间介质层60及栅绝缘层40进行刻蚀,暴露出所述源漏极32;

在暴露出的源漏极32上形成金属通孔连线70,从而将源漏极32引出。

在本实施例的另一方面,还提出了一种低温多晶硅薄膜晶体管阵列基板,包括:基底,基板包括玻璃基板10和缓冲层20,还包括多晶硅31、源漏极32、栅绝缘层40、栅极50、层间介质层60及金属通孔连线70,其中,所述缓冲层20形成在所述玻璃基板10上,所述多晶硅31形成在所述缓冲层20上,所述多晶硅31由准分子激光照射图案化的非晶硅30’得到。所述栅绝缘层40形成在所述多晶硅31上,所述栅绝缘层40的厚度为1/4所述激光波长的奇数倍。所述栅极50形成在所述栅绝缘层20上,所述源漏极32形成于栅极50两侧多晶硅31的两端,所述层间介质层60覆盖所述栅绝缘层60及栅极50,所述金属通孔连线70形成于所述层间介质层60及栅绝缘层40内,并与所述源漏极32相连。

综上,在本发明实施例提供的低温多晶硅薄膜晶体管阵列基板及其制作方法中,在图案化的非晶硅上形成厚度为激光波长1/4奇数倍的栅绝缘层,以作为保温层,由于栅绝缘层的厚度为激光波长1/4的奇数倍,因此,激光能够最大程度的透过栅绝缘层,到达图案化的非晶硅,以对图案化的非晶硅进行良好的结晶化处理,获得较大的晶粒,由于栅绝缘层表面均匀,因此透过的激光也较为均匀照射在图案化的非晶硅上,从而形成具有均匀晶粒的多晶硅。此外,由于栅绝缘层的厚度相比于现有技术的厚度更厚,因此,可以具有更好的保温效果,可以降低结晶冷却速率,延长晶粒生长时间,得到较大且尺寸均匀的晶粒。

上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1