微发光二极管显示面板及其修复方法与流程

文档序号:11925424阅读:276来源:国知局
微发光二极管显示面板及其修复方法与流程

本发明涉及显示技术领域,尤其涉及一种微发光二极管显示面板及其修复方法。



背景技术:

平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。

微发光二极管(Micro LED,μLED)显示器是一种以在一个基板上集成的高密度微小尺寸的LED阵列作为显示像素来实现图像显示的显示器,同大尺寸的户外LED显示屏一样,每一个像素可定址、单独驱动点亮,可以看成是户外LED显示屏的缩小版,将像素点距离从毫米级降低至微米级,μLED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但μLED显示器相比OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点,被认为是OLED显示器的最大竞争对手。

微转印(Micro Transfer Printing)技术是目前制备μLED显示装置的主流方法,具体制备过程为:首先在蓝宝石类基板生长出微发光二极管,然后通过激光剥离技术(Laser lift-off,LLO)将微发光二极管裸芯片(bare chip)从蓝宝石类基板上分离开,随后使用一个图案化的聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)传送头将微发光二极管裸芯片从蓝宝石类基板吸附起来,并将PDMS传送头与接收基板进行对位,随后将PDMS传送头所吸附的微发光二极管裸芯片贴附到接收基板上预设的位置,再剥离PDMS传送头,即可完成将微发光二极管裸芯片转移到接收基板上,进而制得μLED显示装置。

请参阅图1,为现有的微发光二极管显示面板的剖面图,包括:基板100、设于所述基板100上的栅极200、设于所述栅极200以及基板100上的栅极绝缘层300、设于所述栅极200上的栅极绝缘层300上的有源层400、设于所述有源层400以及栅极绝缘层300上的层间绝缘层500、设于所述层间绝缘层500上的间隔分布并分别与所述有源层400的两端接触的源极601和漏极602、设于所述源极601、漏极602、以及层间绝缘层500上的平坦层700、设于所述平坦层700上并与所述漏极602电性连接的阳极800、设于所述阳极800四周边缘以及所述平坦层700上的像素定义层900、设于所述阳极800上的阴极隔离层1200、设于所述阳极800上并嵌入所述阴极隔离层1200中的多个微发光二极管1000、以及设于所述像素定义层900、阴极隔离层1200与多个微发光二极管1000上的阴极1100。如图2所示,现有的微发光二极管显示面板中阳极800为一个整体,数个微发光二极管1000依次排列于阳极800上,当其中一颗微发光二极管1000损坏需要修复时,需要将阳极800与漏极602之间的通路切断进行修复,切断点位于图2以及图1中的打叉的位置,修复后其他的正常的微发光二极管1000也无法发光,整个像素均变成了暗点,造成了资源的浪费,降低了显示品质。



技术实现要素:

本发明的目的在于提供一种微发光二极管显示面板,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。

本发明的目的还在于提供一种微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。

为实现上述目的,本发明提供了一种微发光二极管显示面板,包括:基板、以及设于所述基板上阵列排布的多个像素单元;

每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;

所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;

所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;

所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接。

每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。

所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。

所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。

所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。

本发明还提供一种微发光二极管显示面板的修复方法,包括如下步骤:

步骤S1、提供一微发光二极管显示面板,所述微发光二极管显示面板包括:基板、以及设于所述基板上阵列排布的多个像素单元;

每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;

所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;

所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;

所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接;

步骤S2、检测到多个微发光二极管中的一个出现不良,确定该出现不良的微发光二极管的位置;

步骤S3、将与设置该出现不良的微发光二极管的电极板电性连接的连接线全部切断,将该出现不良的微发光二极管单独修复成暗点。

每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。

所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。

所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一及第二过孔过孔与所述有源层的两端接触的源极和漏极。

所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。

本发明的有益效果:本发明提供的一种微发光二极管显示面板,该微发光二极管显示面板的阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,每一个电极块上对应设置一个微发光二极管,当其中一个微发光二极管出现不良时,可通过切断与设置该微发光二极管的电极板电性连接的连接线,将该微发光二极管单独修复为暗点,其他微发光二极管正常发光,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。本发明提供的一种微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1为现有的微发光二极管显示面板的剖面图;

图2为现有的微发光二极管显示面板的阳极俯视图;。

图3为本发明的微发光二极管显示面板的剖面图;

图4为本发明的微发光二极管显示面板的第一实施例的阳极俯视图;

图5为本发明的微发光二极管显示面板的第二实施例的阳极俯视图;

图6为本发明的微发光二极管显示面板的第三实施例的阳极俯视图;

图7为本发明的微发光二极管显示面板的第四实施例的阳极俯视图;

图8为本发明的微发光二极管显示面板的修复方法的流程图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请参阅图3,本发明提供一种微发光二极管显示面板,包括:基板1、以及设于所述基板1上阵列排布的多个像素单元2;

每一个像素单元2均包括:设于所述基板1上的TFT层21、设于所述TFT层21上的平坦化层22、设于所述平坦化层22上并与所述TFT层21电性连接的阳极23、设于所述阳极23的四周边缘以及平坦化层22上的像素定义层24、设于所述阳极23上的阴极隔离层26、设于所述阳极23上并嵌入所述阴极隔离层26中的多个微发光二极管25、以及设于所述像素定义层24、阴极隔离层26与多个微发光二极管25上的阴极27;

所述阳极23包括:与所述TFT层21电性连接的阳极电位输入板231、与阳极电位输入板231间隔分布的多个电极板232、以及与电极板232电性连接的多条连接线233;

所述微发光二极管25与所述电极板232数量相同,每一个电极板232上设置一个微发光二极管25;

所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接。

具体地,如图4所示,在本发明的第一实施例中,每一个像素单元2包括三个微发光二极管25和三个电极板232,其中两个电极板232均通过两连接线233分别与另一个电极板232以及阳极电位输入板231电性连接,当其中任意一个微发光二极管25出现不良时,只要将与设置该微发光二极管25的电极板232电性连接的两连接线233进行切断即可将该微发光二极管25修复为暗点,而剩余的两个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号,正常发光。

具体地,如图5所示,图5为本发明的第二实施例,其与第一实施例的区别在于,所述另一个电极板232还通过一连接线233与所述阳极电位输入板231电性连接,也就是说三个电极板232均与所述阳极电位输入板231电性连接,此时,比第一实施例更优的是,当出现其中任意两个微发光二极管25均不良时,仍可以通过将与设置该两个微发光二极管25的两个电极板232电性连接的四连接线233进行切断实现将该两个微发光二极管25修复为暗点,并且剩余的一个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号。

具体地,请参阅图6,图6为本发明的第三实施例,每一个像素单元2包括八个微发光二极管25和八个电极板232,该八个电极板232与阳极电位输入板231呈3行3列矩阵排列,外围的七个电极板232与阳极电位输入板231依次串联到一起,中间的一个电极板232通过两连接线233分别与所述阳极电位输入板231以及一外围的电极板232电性连接。此外,图7为本发明的第四实施例,第四实施例为对第三实施例的改进,其中间的一个电极板232通过四连接线233分别与所述阳极电位输入板231以及三个外围的电极板232电性连接,第三实施例可以实现对任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,第四实施例可以实现对任意一个或两个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光。

可以理解的是,本发明还可以包括其他的电极板排列方式与其他的连接方式,只要所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接,就能够实现本发明的对微发光二极管进行单独修复的目的,这不会影响本发明的实现。

具体地,所述TFT层21包括:设于所述基板1上的栅极211、设于所述栅极211以及基板1上的栅极绝缘层212、设于所述栅极211上的栅极绝缘层212上的有源层213、设于所述有源层213以及栅极绝缘层212上的层间绝缘层214、以及间隔分布于所述层间绝缘层214上并分别通过贯穿所述层间绝缘层214的第一过孔2141及第二过孔2142与所述有源层213的两端接触的源极215和漏极216。所述阳极电位输入板231通过一贯穿所述平坦化层22的第三过孔221与所述漏极216接触。

请参阅图8,基于上述的微发光二极管显示面板,本发明还提供一种微发光二极管显示面板的修复方法,包括如下步骤:

步骤S1、提供一本发明的微发光二极管显示面板,具体结构如上述,此处不再赘述。

步骤S2、检测到多个微发光二极管25中的一个出现不良,确定该出现不良的微发光二极管25的位置。

步骤S3、将与设置该出现不良的微发光二极管25的电极板232电性连接的连接线233全部切断,将该出现不良的微发光二极管25单独修复成暗点。

具体地,所述步骤S3通过镭射切割工艺切断所述连接线233,具体的切断点可以为如图4至图7中打叉的位置。

具体地,如图4所示,在本发明的第一实施例中,每一个像素单元2包括三个微发光二极管25和三个电极板232,其中两个电极板232均通过两连接线233分别与另一个电极板232以及阳极电位输入板231电性连接,当其中任意一个微发光二极管25出现不良时,只要将与设置该微发光二极管25的电极板232电性连接的两连接线233进行切断即可将该微发光二极管25修复为暗点,而剩余的两个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号,正常发光。例如图4中,中间一个微发光二极管25出现不良,只将与设置该微发光二极管25的电极板232电性连接的两连接线233切断即可,切断点可以为如图4中打叉的位置。

具体地,如图5所示,图5为本发明的第二实施例,其与第一实施例的区别在于,所述另一个电极板232还通过一连接线233与所述阳极电位输入板231电性连接,也就是说三个电极板232均与所述阳极电位输入板231电性连接,此时,比第一实施例更优的是,当出现其中任意两个微发光二极管25均不良时,仍可以通过将与设置该两个微发光二极管25的两个电极板232电性连接的四连接线233进行切断实现将该两个微发光二极管25修复为暗点,并且剩余的一个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号。例如图5中,中间一个微发光二极管25出现不良,只将与设置该微发光二极管25的电极板232电性连接的三条连接线233切断即可,切断点可以为如图5中打叉的位置。

具体地,请参阅图6,图6为本发明的第三实施例,每一个像素单元2包括八个微发光二极管25和八个电极板232,该八个电极板232与阳极电位输入板231呈3行3列矩阵排列,外围的七个电极板232与阳极电位输入板231依次串联到一起,中间的一个电极板232通过两连接线233分别与所述阳极电位输入板231以及一外围的电极板232电性连接。此外,图7为本发明的第四实施例,第四实施例为对第三实施例的改进,其中间的一个电极板232通过四连接线233分别与所述阳极电位输入板231以及三个外围的电极板232电性连接,第三实施例可以实现对任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,第四实施例可以实现对任意一个或两个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光。

可以理解的是,本发明还可以包括其他的电极板排列方式与其他的连接方式,只要所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接,就能够实现本发明的对微发光二极管进行单独修复的目的,这不会影响本发明的实现。

需要说明的是,本发明通过将阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,不仅可以实现任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,而且可以清晰的找出应该进行镭射切割的区域,便于修复时的定位,保证修复效果。

综上所述,本发明提供的微发光二极管显示面板,该微发光二极管显示面板的阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,每一个电极块上对应设置一个微发光二极管,当其中一个微发光二极管出现不良时,可通过切断与设置该微发光二极管的电极板电性连接的连接线,将该微发光二极管单独修复为暗点,其他微发光二极管正常发光,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。本发明提供的微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1