具有反射器的双面晶体硅太阳能板的制作方法

文档序号:11434604阅读:195来源:国知局
具有反射器的双面晶体硅太阳能板的制造方法与工艺

本申请是申请日为2013年2月26日、申请号为201380011923.0、发明名称为“具有反射器的双面晶体硅太阳能板”的中国发明专利申请的分案申请。

本专利申请要求根据35usc§119(e)享有2012年2月29日提交的申请号为61/604517的题为“具有反射器和v2o5的双面c-si太阳能板”的美国临时申请,以及2012年5月19日提交的申请号为61/649236的题为“具有反射器和多种接口材料的双面c-si太阳能板”作为优先权。上述提及的每个专利以全文引用的形式结合在此。



背景技术:

光伏板(“太阳能板”)可以用于将太阳光转换成电能。有多种技术用于制造光伏板,包括基于单晶硅晶片的、基于多晶硅晶片的和基于薄膜硅的。很多市售的光伏板制作成仅一个侧面暴露在太阳光下。



技术实现要素:

概括地说,本发明涉及一种改进的光伏太阳能电池系统及其方法。在一种方案中,双面太阳能电池包括耦接到一个n型半导体层的p型晶体硅层。双面太阳能电池可以包括耦接至n型半导体层的多个第一金属导线。至少一些所述第一金属导线可与n型半导体层电连通。双面太阳能电池可以包括耦接到所述p型晶体硅层的阻挡层。阻挡层可包括钒氧化物,钼氧化物,铝氮化物,钨镍氧化物和硼掺杂金刚石中的一种或多种。在一个实施例中,阻挡层的厚度可从1.0纳米到10.0纳米。在其它实施例中,阻挡层的厚度可从2.0纳米到6.0纳米。双面太阳能电池可以包括耦接到所述阻挡层的透明导电层。双面太阳能电池可以包括多个耦接到所述透明导电层的第二金属导线。至少一些所述第二金属导线可以与透明导电层电连通。双面太阳能电池还可以包括耦接到所述n型半导体层的第一侧上并设置在所述多个第一金属导线之间的钝化层。

本发明还公开了具有太阳能板和所述至少一个反射器的光伏系统。所述太阳能板包括太阳能电池,其中至少有一些是双面太阳能电池。该太阳能电池被布置在所述板中,以形成至少两行。太阳能电池中的第一行可串联电连接。太阳能电池中的第一行可以具有第一长轴。太阳能电池的第二行可串联电连接。太阳能电池的第二行可以具有与第一长轴一致的第二长轴。太阳能电池的第一行可以并联电连接到太阳能电池单元的第二行。所述反射器位于太阳能板附近。所述反射器包括面向所述太阳能板的反射表面。在一个实施例中,所述反射表面可以具有与第一和第二长轴一致的第三长轴。在一个实施例中,所述第三长轴与所述第一和第二长轴形成从5°到负5°的夹角角度。反射表面可以包括铝,银,和/或一种白色材料中的至少一种。在一个实施例中,所述反射表面可以具有复合抛物线形轮廓。在其它实施例中,反射表面可以具有半圆形的轮廓,或包含平坦表面的轮廓。太阳能板可进一步包括第一透明保护层和/或第二透明保护层。太阳能板中的太阳能电池可以被布置在第一透明保护层和所述第二透明保护层之间。所述第一透明保护层可以经由第一层压层耦接到所述双面太阳能电池的多个第一金属导线。第二透明保护层可以经由第二层压层耦接到所述双面太阳能电池的多个第二金属导线。

这些和其他方面和优点,以及这种新技术的新颖性特征将列于说明书的下面部分,并且结合下面的说明书和附图,对于本领域技术人员来说将变得清楚,或者通过实践本发明所披露的技术的一个或多个实施例来获知。

附图说明

图1是光伏系统的一个实施例的示意性透视图,其示出了双面太阳能电池之间的电连接。

图2是一个局部截面图,其示意性地示出了图1中的光伏系统。

图3是图1的光伏系统的示例性双面太阳能电池的截面示意图。

图4是图1的光伏系统的示意性透视图。

图5是双面太阳能电池的另一个实施例的示意图,其具有可选的、高度掺杂的p型半导体层。

图6是包括具有复合抛物线轮廓的反射器的光伏系统的透视图。

图7是包括具有三角形轮廓反射器的光伏系统的另一个实施例的示意性透视图。

图8是包括具有梯形轮廓反射器的光伏系统的另一个实施例的示意性透视图。

图9是包括反射器的光伏系统的另一个实施例的示意性透视图,其中反射器具有包括平面表面的轮廓。

具体实施方式

下面将详细地参考附图,这至少有助于说明由本发明提供的新技术的多种相关的实施方案。

下面参考图1-4来说明一个双面太阳能板系统的实施例。在所示实施例中,该系统包括太阳能板100和位置邻近太阳能板100的反射器120。太阳能板100包括多个设置在相邻两行112、114中的双面太阳能电池110。如本文中所使用的,“双面太阳能电池”是指具有上表面和下表面的基于半导体的太阳能电池,其中两个上、下表面是光活性的。如本文中所使用的,“光活性”是指能够光电地响应的。双面太阳能电池的第一行112具有第一长轴113。双面太阳能电池的第二行114具有第二长轴115。反射器120包括朝向板100的至少一反射面130。反射面130具有第三长轴132。反射器120被配置为促进太阳辐射(日光)朝向板100的反射。

在所示实施例中,第一行112位置邻近第二行114,从而使得所述第一长轴113与第二长轴115一致。而且,取向反射器120从而使得所述第三长轴132与第一和第二长轴113,115一致。如本文所用的“一致”是指大致平行。例如,第一线可与反射器的长轴一致(例如,与反射器的长轴形成约15°至约负15°的角度)。

第一行112的双面太阳能电池110彼此串联电连接。同样地,第二行114的双面太阳能电池110彼此串联电连接。第一行112并联电连接到第二行114。双面太阳能电池110配置为使得每个电池具有有用的电压,通常在约0.5v至约1.5v的量级。

所示的双面太阳能板系统可以从两侧以及在比板本身面积更大的区域吸收光。这通过使用将太阳光反射到太阳能板100的下侧的反射器120来促进。而且,具有长轴132的反射面130促进将太阳光反射到太阳能板100的下侧,使得入射到板上的反射太阳光的量在平行于长轴132的方向上跨板基本上是均匀的,而在垂直于长轴132的方向上跨板是非常不均匀的。如上所述,在行112和114内的电池彼此串联电连接,以及行112和114彼此并联电连接。此外,行112和114配置成其长轴113,115与反射器132的长轴一致。这样,双面太阳能电池110被取向为允许一行中的每个电池相对于行中的其他电池接收近似相同的太阳光量,即使在入射到板100下侧的太阳光在垂直于反射器132的长轴的方向上(例如从板的左侧到板100的中央)可能是非常不均匀的。例如,第一行112中的电池可接收与第一行112中其它电池大约相同的太阳光的量,即使第二行114中的电池可接收少得多的太阳光。因此,串联互连双面太阳能电池110以形成行,将行进行并联连接,并且与反射器132的长轴一致地取向可以提高板的效率,而不需要增加板面积。

双面太阳能电池

双面太阳能电池110包括n型半导体层32,p型晶体硅层36,阻挡层40,和透明导电层44。n型半导体层32耦接到p型晶体硅层36。p型晶体硅层36耦接到所述阻挡层40。阻挡层40耦接到透明导电层44。双面太阳能电池110包括耦接到所述n型半导体层32并位于p型晶体硅层36的对面的多个第一金属导线24。双面太阳能电池110还包括耦接到所述透明导电层44并位于阻挡层40的对面多个第二金属导线48。

n型半导体层32通常包括适于激发自由电子的半导体材料。n型半导体层32可以包括掺杂有磷,锑,和/或砷等的半导体材料。n型半导体层32可以是晶体,非晶,多晶,或它们的任意组合。在一个实施例中,n型半导体层32包括掺杂磷的硅。

p型晶体硅层36通常包括适于激发电子空穴的晶体硅半导体材料。如本文中所使用的“晶体硅”是指包含至少99.9%的硅的材料,它的构成原子,分子,或离子被布置为在所有三个空间维度上延伸的有序图案。晶体硅包括多晶硅。如本文中所使用的,“多晶”(或者“多晶体”)指的是由彼此大小不同和取向不同的许多小晶体(“晶粒”)组成的固体材料,其中每个晶体的组成原子,分子,或离子被布置为在所有三个空间维度上延伸的有序图案。晶体硅也可以由基本上纯的熔融硅(例如,99.99%的硅)的熔体固化而成。晶体硅不包括非晶硅。本文所用的“非晶硅”是指含有硅的材料,它的组成原子,分子,或离子缺乏在所有三个空间维度延伸的有序图案。

p型晶体硅层36可以包括掺杂有硼、铝和/或镓等的晶体半导体材料。在一个实施例中,p型晶体硅层36包括硼掺杂的晶体硅(例如,硼掺杂的硅晶片)。

p型晶体硅层36的厚度足够可以促进双面太阳能电池110的结构完整性。在一个实施方案中,p型晶体层36的厚度是从大约20,000纳米至约300,000纳米。在其他实施例中,p型晶体层36的厚度是从大约60,000纳米至约250,000纳米,或从约100,000纳米至约200,000纳米。

阻挡层40一般可包括钒氧化物,钼氧化物,铝氮化物,钨镍氧化物和硼掺杂金刚石中的一种或多种。特别是,适合于阻挡层40的钒氧化物包括由实验式vxoy所述那些的钒氧化物,其中0.130≤x/(x+y)≤0.60。在一个实施例中,阻挡层40是具有实验式v2o5(即vxoy,其中x/(x+y)=0.2857)的钒氧化物。阻挡层40的合适厚度范围可以为约1.0纳米至约10.0纳米。在一个实施例中,阻挡层40具有的厚度不大于10.0纳米。在一个实施例中,阻挡层40具有的厚度不大于6.0纳米。在一个实施例中,阻挡层40的厚度至少为1.0纳米。在一个实施例中,阻挡层40的厚度至少为2.0纳米。在一个实施例中,阻挡层40具有的厚度为约3纳米。

所述的透明导电层44一般包括导电氧化物。透明导电层44可包括氟化锡氧化物,掺铝氧化锌,氧化铟锡中的一种或多种,仅举凡例。在一个实施方案中,透明导电层44是氟化锡氧化物。

第一金属导线24和第二金属导线48可以是任何适于促进电流在双面太阳能电池110中穿行的高导电性材料。这些金属导线24,48可以提高双面太阳能电池110的导电性,这可以促进电流穿行更长的距离。这些金属导线24,48可以用于从双面太阳能电池110的表面收集电流。应该限制金属导线24,48的尺寸,以限制电池的遮蔽。在一些实施例中,第一金属导线24由与第二金属导线48相同的材料制作而成。在其它实施例中,所述第一金属导线24由与所述第二金属导线48不同的材料制作而成。第一金属的导线24和第二金属导线48可包括铜、铝或银中的一种或多种。在一个实施例中,第一和第二金属导线24,48都包括银。

可选地,双面太阳能电池110可包括连接到所述n型半导体层32上并设置在所述多个第一金属导线24之间的钝化层28。钝化层28可以是任何适于限制在n型半导体层32的表面上电子和电子空穴的复合的合适材料。在一个实施例中,钝化层28包括氮化硅。

现在转向图5,示出一种双面太阳能电池111的替代实施例。双面太阳能电池111可选地可以包括高度掺杂的p型半导体38,其设置并耦接到所述p型晶体硅层36和阻挡层40之间。高度掺杂的p型半导体层38通常包括掺杂有硼,铝,和/或镓等的半导体材料。高掺杂p型半导体层38可以具有比p型晶体硅层36浓度高的电子空穴。高度掺杂的p型半导体层38可以包括非晶和/或多晶半导体材料。在一个实施例中,所述高度掺杂的p型半导体层38包括掺杂硼的硅。

制备双面太阳能电池和板系统的方法

制备双面太阳能电池110的工序开始于具有上表面、下表面和侧面(即“各个表面”)的p型(例如,硼掺杂的)晶体硅晶片。晶片的表面可以锯齿形损伤蚀刻至约8微米到约15微米的深度。下一步,晶片的表面可以纹理蚀刻约3微米到约7微米的深度。下一步,在晶片的表面可以覆盖磷。下一步,在表面覆盖磷的晶片可以被退火,由此促进磷扩散到晶片的表面中,并在晶片的表面上形成非晶的磷-硅玻璃层。下一步,晶片的下表面和侧面可以被蚀刻,从而除了上表面,去掉晶片的所有表面上的非晶磷硅玻璃层和扩散磷层。下一步,非晶磷硅玻璃层可以通过蚀刻从上表面除去,只留下晶片的上表面上的扩散磷层。因此,在工序的该点上,该产品包括耦接到p型晶体硅层36(晶片)的n型半导体层32(在晶片的上表面上扩散的磷层)。下一步,氮化硅层可以通过等离子体增强化学气相沉积法沉积在n型半导体层32上。下一步,银导线可以印刷在硅氮化物层上。下一步,晶片的上表面,包括氮化硅层和银导线,可以被“过火处理(fired)”,从而促进一种工艺,其中银导线可以蚀刻穿过氮化硅层和电接触n型半导体层32。所以,多个第一金属导线24(银导线)和钝化层28(氮化硅层)可被耦接到所述n型硅层32。下一步,钒氧化物可以沉积在晶片的下表面上,从而形成耦接到所述p型晶体硅层36的阻挡层40(氧化钒)。下一步,透明导电氧化物可被沉积在阻挡层40上,由此形成透明导电层44。下一步,银导线可以印刷在透明导电层44上。最后,银导线可以被“过火处理(fired)”。从而多个第二金属导线48可被耦接到所述透明导电层44。

太阳能板

在所示的实施例中,所述太阳能板100包括设置在第一透明保护层20和第二透明层52之间的双面太阳能电池110。第一透明保护层20可通过第一层压层22粘附到双面太阳能电池110的上表面。第二透明保护层52可以通过第二层压层50粘附到双面太阳能电池110的下表面。

第一透明保护层20和第二透明保护层52可以是适于保护双面太阳能电池110以及形成太阳能板100的任何合适的透明材料。在一个实施例中,所述第一和第二透光层20,52包含低铁玻璃。

第一层压层22和第二层压层50可以是适合于在第一和第二透明层20,52之间固定双面太阳能电池110的任何合适的透明粘合材料。在一个实施例中,第一层压层22和第二层压层50包括乙基醋酸乙烯酯(eva)。

如上所述,在一个实施例中,太阳能板100的双面太阳能电池110可以布置成形成两行112,114,其中第一行中的所述双面太阳能电池110彼此串联电连接,以及第二行中的所述双面太阳能电池110彼此串联电连接,以及其中所述第一行112并联电连接到第二行114。此外,第一和第二行的长轴113,115可取向为与反射器132的长轴一致。然而,在其他实施例中,太阳能板的双面太阳能电池可以布置成两个以上的行(例如,三行,四行,五行等),其中的每一行中的双面太阳能电池彼此串联电连接,其中各行并联电连接,且其中每行具有取向为具有与反射器132的长轴一致的长轴。

反射器

一个或多个反射器120可以是适于将太阳辐射反射到太阳能板100的下侧的任何合适的设备。在图1-4所示出的实施例中,该系统采用两个互连到所述太阳能板100底部的反射器120。然而,太阳能板100中可以使用任何数目的反射器120,并在太阳能板100的任何一侧。如图4中所示,反射器120和太阳能板100的排列/取向应当使得将太阳光反射向所述太阳能板100。一般情况下,这种设置是通过使用合适的框来实现,该框适于将所述太阳能板100和/或反射器120保持为彼此邻近并彼此相距合适的距离。

反射器120应该有一个反射表面130,包括长轴132。长轴132应排列/取向与上述第一和第二行的半导体单元113,115的长轴一致,出于上文所述的理由。在这点上,在某些情况下,反射器120的长轴132可以对称地分割反射器120。

在一些实施例中,反射器120包括具有被配置为引导太阳辐射朝向太阳能板100的底面的圆形/弧形外表面的反射面130。在一个实施例中,反射面130具有半圆形状的轮廓,如图1和4所示。在这些实施例中,反射面130具有在两个维度上大致弯曲和在第三维度上直线延伸的形状。其他具有长轴的弯曲物体都可以使用。例如,现在转到图6所示,其示出了一种包括具有复合抛物线形轮廓的反射面130的反射器120。

现在转到图7-9,其示出了具有平面型(即非弯曲)反射面130的反射器120。例如,反射面130可以包括三角形和/或梯形的轮廓,如图7-9所示。这种平面状的反射面130可以使用在某些环境中。

所述的反射面130可包括高反射性材料,例如抛光银和/或铝。反射面130也可以至少部分地为白色(例如,涂有白色颜料),以促进太阳辐射朝向所述太阳能板的下侧100的漫反射。

虽然本文对新技术的多种实施例进行了详细地描述,显然本领域技术人员对这些实施例的修改和改进将会出现。然而,应当明确理解的是,这些修改和改进都落入本发明公开的技术的要旨和范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1