电池保护装置的制作方法

文档序号:13807065阅读:220来源:国知局
电池保护装置的制作方法

本发明涉及二次电池的电池保护装置。



背景技术:

以往,已知在具有锂离子电池等二次电池的电池组中设置有用于保护电池免于过充电、过放电以及过电流的半导体装置。

在该半导体装置中,已知在1个封装中内置具有mos(metal-oxide-semiconductor:金属氧化物半导体)开关的充放电控制用芯片和具有mos开关的控制电路的监控用芯片来进行小型化的技术。另外,在该半导体装置中,已知充放电控制用芯片通过多条接合线与电极相连(专利文献1)。

在上述现有技术中,接合线的相应电阻被加到充放电控制用芯片的电阻上,因此是不利于降低导通电阻的构造。在该构造中,为了降低导通电阻,需要以增加引线接合的条数,分散电阻的方式进行引线接合。

然而,为了增加引线接合的条数,还需要增大封装侧的端子尺寸,无法对小型化作出贡献。另外,还考虑增大充放电控制用芯片的尺寸的方法,但是这种情况下封装尺寸也会变大。

专利文献1:日本特开2010-127805号公报



技术实现要素:

公开的技术的目的在于提供一种可以有助于小型化以及导通电阻的降低的电池保护装置。

公开的技术是用于防止二次电池220中的过充电、过放电以及过电流的被形成为一个封装的电池保护装置100,其具备:充放电控制芯片120,其包括与所述二次电池220连接的充电控制fet124和放电控制fet123;保护芯片130,其根据所述二次电池220的两端电压控制所述充电控制fet124和所述放电控制fet123来防止所述二次电池220的过充电、过放电以及过电流;以及引线框架110,其具有多个外部端子的连接面114和与所述连接面114导通的另一面113,所述引线框架110的所述另一面113与形成于所述充放电控制芯片120的表面121的所述充电控制fet124以及所述放电控制fet123的端子经由导电材料111进行电连接,所述保护芯片130以该保护芯片130的背面132相向的方式经由绝缘性部件被安装在所述充放电控制芯片120的背面122,所述保护芯片130的端子t1~t6和所述引线框架110的所述另一面113通过接合线140进行电连接,所述充放电控制芯片120和所述保护芯片130被树脂150覆盖。

有助于小型化以及导通电阻的降低。

附图说明

图1(a)、图1(b)是说明本实施方式的电池保护装置的图。

图2是说明本实施方式的电池保护装置的制造工序的图。

图3是说明搭载了本实施方式的电池保护装置的电池组的一个例子的图。

图4是表示安装了本实施方式的电池保护装置的布线基板的等价电路的图。

图5(a)、图5(b)是对从b-端子到p-端子之间的布线宽度进行说明的图。

图6(a)、图6(b)是表示与本实施方式的比较例的图。

符号说明

100电池保护装置;101外部端子面;110引线框架;111导电材料;112绝缘性粘接材料;113涂布面;114连接面;120充放电控制用芯片;121、131表面;122、132背面;130保护用芯片;140接合线;150树脂。

具体实施方式

以下参照附图对实施方式进行说明。图1(a)、图1(b)是说明本实施方式的电池保护装置的图。图1(a)是本实施方式的电池保护装置的俯视透视图,图1(b)是图1(a)中的a-a截面图。

本实施方式的电池保护装置100具有引线框架110、充放电控制用芯片120、保护用芯片130、接合线140以及树脂150。通过树脂150来密封引线框架110、充放电控制用芯片120、保护用芯片130以及接合线140。

本实施方式的电池保护装置100例如与锂离子电池等二次电池相连。充放电控制用芯片120包括充电控制fet(fieldeffecttransistor场效应晶体管)和放电控制fet,根据来自保护用芯片130的控制信号,控制二次电池与负载或供电电源的断开/连接。

保护用芯片130监控二次电池的两端电压等,并对充放电控制用芯片120输出控制二次电池与负载或供电电源(充电器)的断开/连接的控制信号。

本实施方式的引线框架110具有电极端子dout、cout、v-、vdd、vss、vpp、g1、g2、s1、s2。这些电极端子成为电池保护装置100的外部端子。各电极端子的细节会在后面进行描述。另外,在本实施方式中,在引线框架110中,将与涂布有导电材料111的涂布面113相对的面114称为外部端子的连接面114。

本实施方式的充放电控制用芯片120被芯片焊接(diebonding)在导电材料111上,该导电材料111被涂布在引线框架110的涂布面113上。换言之,充放电控制用芯片120被配置在涂布在电极端子g1、g2、s1、s2上的导电材料111上。

此时,以形成有电极(端子)的表面121与引线框架110的涂布面113相对的方式,对充放电控制用芯片120进行芯片焊接。因此,在本实施方式中,充放电控制用芯片120的电极(端子)经由导电材料111与引线框架110形成的电极端子g1、g2、s1、s2进行电连接。换言之,本实施方式的充放电控制用芯片120的端子与引线框架110所具有的外部端子的连接面114进行电连接。

本实施方式的保护用芯片130在充放电控制用芯片120中,被配置在涂布在未形成电极的背面122的绝缘性粘接剂112上。此时,保护用芯片130被配置为:未形成电极的背面132与作为绝缘性部件的绝缘性粘接剂112粘接。

在保护用芯片130中,形成有电极(端子)的表面131通过接合线140与引线框架110的涂布面113相连。更具体而言,形成于保护用芯片130的表面的电极(端子)t1~t6通过接合线140在引线框架110的涂布面113中分别与电极端子dout、cout、v-、vdd、vss、vpp相连。进一步,换言之,本实施方式的保护用芯片130的端子与引线框架110所具有的外部端子的连接面114进行电连接。

如上所述,在本实施方式的电池保护装置100中,不需要连接充放电控制用芯片120和引线框架110的接合线,削减了接合线相应的电阻,因此有助于导通电阻的降低。另外,在本实施方式中,不需要接合线,相应地有助于封装的小型化。

另外,在本实施方式中,充放电控制用芯片120所具有的电极(端子)和保护用芯片130的电极(端子)分别与形成于引线框架110的电极端子相连,并互不相连。

具体而言,充放电控制用芯片120所具有的电极(端子)与电极端子g1、g2、s1、s2相连。另外,保护用芯片130所具有的端子t1~t6与电极端子dout、cout、v-、vdd、vss、vpp相连。由此,在本实施方式的电池保护装置100中,不存在与充放电控制用芯片120和保护用芯片130双方都相连的外部端子。

也就是说,在本实施方式的电池保护装置100中,在封装内,充放电控制用芯片120和保护用芯片130被分离,各自通过独立的输入信号来进行动作,并可以从各自获得与输入相对应的独立的输出信号。

因此,根据本实施方式,在进行电池保护装置100的动作测试等时,可以使充放电控制用芯片120和保护用芯片130分别独立地动作,可以容易地进行动作测试。进一步,根据本实施方式,例如当电池保护装置100的动作中存在不良等时,可以分别从充放电控制用芯片120和保护用芯片130取得独立的输出信号,因此可以使故障、不良的原因的分析变得容易。

另外,在本实施方式中,设由引线框架110形成的电极端子的布局被形成为:相对于电池保护装置100的外部端子面101的中心点o为点对称。另外,在本实施方式中,设充放电控制用芯片120也被配置成相对于中心点o为点对称。

另外,在本实施方式中,由引线框架110形成的电极端子的布局被设为在外部端子面101中,电极端子g1与电极端子dout、电极端子g2与电极端子cout分别相邻。

此外,本实施方式的外部端子面101是指在电池保护装置100中由引线框架110形成的电极端子所露出的面。针对基于本实施方式的电极端子的布局的效果,会在后面进行描述。

接下来,参照图2针对本实施方式的电池保护装置100的制造工序进行说明。图2是说明本实施方式的电池保护装置的制造工序的图。

在工序(a)中,引线框架110形成于未图示的不锈钢基板等上。此外,该不锈钢基板之后被剥离,以使引线框架110形成的电极端子作为电池保护装置100的外部端子而露出。

接下来,在工序(b)中,导电材料111被涂布在引线框架110上。本实施方式的导电材料111例如是焊接膏、银膏等。另外,在本实施方式中,可以将导电材料111作为金凸块、焊接凸块等。

接下来,在工序(c)中,充放电控制用芯片120通过倒装芯片接合被安装在导电材料111上。此时,充放电控制用芯片120被安装成表面121与引线框架110的涂布面113相向。因此,形成于充放电控制用芯片120的表面121的电极经由导电材料111与引线框架110电连接。

接下来,在工序(d)中,在充放电控制用芯片120的背面122涂布了作为绝缘性部件的绝缘性粘接剂112。接下来,在工序(e)中,保护用芯片130被安装在绝缘性粘接剂112上。此时,保护用芯片130被安装为背面132与绝缘性粘接剂112粘接。

接下来,在工序(f)中,形成于保护用芯片130的表面131的电极与引线框架110的涂布面113通过引线接合而连接。具体而言,形成于表面131的端子(电极)t1~t6与电极端子dout、cout、v-、vdd、vss、vpp的各自通过引线接合而连接。

此外,在本实施方式中,可以通过逆向接合来进行连接形成于表面131的端子与引线框架110的引线接合。在本实施方式中,通过逆向接合进行引线接合,由此可以抑制接合线140的环路的高度,有助于封装的小型化。

接下来,在工序(g)中,使用树脂150来密封充放电控制用芯片120、保护用芯片130以及接合线140。

接下来,参照图3以及图4,针对具有本实施方式的电池保护装置100的电池控制系统进行说明。

图3是说明搭载有本实施方式的电池保护装置的电池组的一例的图。在本实施方式的电池组200中,电池保护装置100被安装在布线基板210上,与二次电池220相连。布线基板210在背面具有p-端子和p+端子,在部件安装面具有b-端子和b+端子(未图示)。二次电池220具有作为负极端子的b-端子和作为正极端子的b+端子。

布线基板210的b+端子与作为二次电池220的正极端子的b+端子相连。布线基板210的b-端子与二次电池220的b-端子相连。

另外,p-端子与负载或供电电源的负极相连,p+端子与负载或供电电源的正极相连。此外,供电电源是指例如充电器等。

图4是表示安装了本实施方式的电池保护装置的布线基板的等价电路的图。

电池组200具有充放电控制用芯片120、保护用芯片130、二次电池220、电阻元件r1、r2以及电容元件c1、c2。

电阻元件r1、r2、电容元件c1、c2出于防止由静电破坏、闩锁或外部噪音所引起的误动作、破坏等的目的,被安装在布线基板210上。

在本实施方式的电池保护装置100中,充放电控制用芯片120具有2个fet(fieldeffecttransistor场效应晶体管)123、124。fet123是控制来自二次电池220的放电/放电停止的放电控制fet。fet124是控制对于二次电池220的充电/充电停止的充电控制fet。

本实施方式的保护用芯片130具有端子t1~t6。端子t1连接到电极端子dout,端子t2与电极端子v-相连,端子t3与电极端子vdd相连。端子t4与电极端子vss相连、端子t5与电极端子vpp相连,端子t6与电极端子cout相连。

与电极端子dout相连的端子t1是输出控制信号的放电控制端子,该控制信号用于控制来自二次电池220的放电。

与电极端子cout相连的端子t6是输出控制信号的充电控制端子,该控制信号用于控制对于二次电池220的充电。

电极端子v-是与p-端子相连的充电器负极连接端子。电极端子vdd是与b+端子相连的正极连接端子。电极端子vss是与b-端子相连的负极连接端子。

电极端子s1、vss、vpp连接到二次电池220的b-端子,电极端子s2连接到充电器的p-端子。电极端子vdd经由电阻元件r1连接到二次电池220或充电器的p+端子。电极端子v-经由电阻元件r2连接到充电器的p-端子。电极端子dout连接到电极端子g1,电极端子cout连接到电极端子g2。

电极端子g1与fet123的栅极端子相连,从保护用芯片130的电极端子dout输出的控制信号经由电极端子g1被提供给充放电控制用芯片120的fet123的栅极端子。fet123通过该控制信号来控制接通/断开。

电极端子g2与fet124的栅极端子相连,从保护用芯片130的电极端子cout输出的控制信号经由电极端子g2被提供给充放电控制用芯片120的fet124的栅极端子。fet124通过该控制信号来控制接通/断开。

另外,电极端子s1与充放电控制用芯片120的fet123的源极端子相连,电极端子s2与充放电控制用芯片120的fet124的源极端子相连。

fet123与fet124的漏极端子在充放电控制用芯片120内共同连接。因此,本实施方式的电池保护装置100在被安装在布线基板等上时,不需要将fet123、124的漏极端子在充放电控制用芯片120的外部进行连接,可以容易地安装。

在电池组200中,在正常的动作中,从二次电池220向负载进行供电,或者在通过充电器对二次电池220进行充电时,由于充放电控制用芯片120处于接通状态,因此从端子b-到端子p-之间流过电流。此时,如果充放电控制用芯片120的导通电阻高,则伴随发热产生电力损失。因此,特别理想的是当从端子b-向端子p-之间流过大电流等时,从端子b-到端子p-之间的电阻小。

在本实施方式的电池保护装置100中,在安装充放电控制用芯片120时,不使用接合线,因此可以去除接合线的相应的电阻。

进一步,在本实施方式的电池保护装置100中,通过倒装芯片接合,导电材料111被涂布在成为fet123、124的源极焊盘的电极端子s1、s2的整个面上。因此,根据本实施方式,可以降低充放电控制用芯片120的导通电阻,并可以抑制由导通电阻所引起的损失。

在这里,针对基于本实施方式的电池保护装置100的外部端子面101中的电极端子的布局的效果进行说明。

在本实施方式中,从b-端子到p-端子之间成为电流路径。换言之,在本实施方式中,电池保护装置100的电极端子s1与电极端子s2之间成为电流路径。因此,从b-端子到p-端子之间,为了抑制由电阻、发热所引起的电力损失,需要尽量增大布线宽度来进行基板设计。

因此,在本实施方式的电池保护装置100中,电极端子在外部端子面101中,形成为相对于外部端子面101的中心点o是点对称的(参照图1(a))。换言之,在本实施方式的电池保护装置100中,充放电控制用芯片120形成为相对于中心点o是点对称的。

在本实施方式中,通过如此布局电极端子,在布线基板210中,可以增大从b-端子到p-端子之间的布线的宽度。

图5(a)、图5(b)是对从b-端子到p-端子之间的布线宽度进行说明的图。图5(a)表示布线基板210的部件安装面(表面),图5(b)表示布线基板210的背面。

在图5(a)、图5(b)的例子中,在布线基板210的部件安装面(表面)211安装有电池保护装置100,形成了b-端子、b+端子。另外,在布线基板210的背面212形成有p-端子、p+端子。

在本实施方式中,电极端子s1与电极端子s2的位置相对于外部端子面101的中心点o为点对称。因此,b-端子与电极端子s1之间不会被其他布线妨碍,可以容易地将连接b-端子和电极端子s1的布线171的宽度增大到在布线基板210中可以取的最大宽度。

b+端子与电极端子s2之间也同样地不会被其他布线妨碍,可以容易地将连接b+端子和电极端子s2的布线172的宽度增大到在布线基板210中可以取的最大宽度。

另外,在本实施方式中,电池保护装置100被配置为布线基板210的长边与外部端子面101的长边大致平行,但是电池保护装置100的配置方法并不限定于此。

本实施方式的电池保护装置100例如即使在以布线基板210的短边与外部端子面101的长边为大致平行的方式被安装在布线基板210上时,电极端子也被点对称地配置,因此可以获得与图5(a)、图5(b)所示的例子同样的效果。

也就是说,b-端子与电极端子s1之间和b+端子与电极端子s2之间,分别不会被其他布线妨碍,可以容易地将连接各自的端子的布线的宽度增大到在布线基板210中可以取的最大宽度。

在本实施方式的电池保护装置100中,电极端子dout与电极端子g1、电极端子cout与电极端子g2还分别被配置为相邻。

从电极端子dout输出的控制信号被提供给电极端子g1。另外,从电极端子cout输出的控制信号被提供给电极端子g2。

因此,在本实施方式中,如上所述,通过将电极端子dout与电极端子g1、电极端子cout与电极端子g2分别配置为相邻,可以简单地、没有浪费地在端子间连接。

图6(a)、图6(b)是表示与本实施方式的比较例的图。图6(a)是比较例的电池保护装置的俯视透视图,图6(b)是图6(a)的侧面透视图。

在图6(a)、图6(b)所示的电池保护装置60中,在涂布在引线框架61上的导电材料62上粘接充放电控制用芯片63。此时,充放电控制用芯片63被配置为:未形成电极的背面631与导电材料62相粘接。

在充放电控制用芯片63中,在形成了电极的表面632涂布有绝缘性粘接剂64,并在其上粘接保护用芯片65。

然后,充放电控制用芯片63的表面632与引线框架61通过接合线66进行连接,保护用芯片65的表面651与引线框架61通过接合线67进行连接。

因此,在图6(a)、图6(b)所示的电池保护装置60中,连接引线框架61与充放电控制用芯片63的接合线66的电阻与充放电控制用芯片63的导通电阻相加,导通电阻增大。

相反地,在应用了本实施方式的电池保护装置100中,不需要连接充放电控制用芯片120和引线框架110的接合线,因此不会增大导通电阻。在本实施方式中,还可以将导电材料111涂布在充放电控制用芯片120的源极焊盘的整个面上来与引线框架110连接,因此可以进一步降低充放电控制用芯片120与引线框架110的连接中的电阻。

以上,根据实施方式进行了本发明的说明,但是本发明并不限定于上述实施方式所示的要件。关于这些方面,可以在不损害本发明的主旨的范围内进行变更,并可以根据其应用方式进行适当的规定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1