一种柔性薄膜晶体管及其制备方法与流程

文档序号:17043469发布日期:2019-03-05 19:24阅读:146来源:国知局
一种柔性薄膜晶体管及其制备方法与流程

本发明涉及显示技术领域,尤其涉及一种柔性薄膜晶体管(thinfilmtransistor,tft)及其制备方法。



背景技术:

随着柔性显示技术的发展,显示屏已经可以制作成可弯曲、可折叠、可卷起的形式。可变型、可弯折的柔性显示屏能够给用户带来颠覆性的使用体验。但目前的柔性显示技术还不够成熟,可弯折仍是技术难点。这是因为柔性显示屏的像素区的无机绝缘层较多,且无机绝缘层的厚度较厚,使得在柔性显示屏发生形变时会产生较大应力,直接影响了柔性显示屏的可弯折程度,进而造成显示不良。

图1是现有技术的薄膜晶体管的结构示意图。如图1所示,该薄膜晶体管包括:基板100、形成在基板100上的缓冲层101、形成在缓冲层101上的有源层102、形成在缓冲层101上且与有源层102电连接的源极108和漏极109、形成在有源层102上的栅极绝缘层103、形成在栅极绝缘层103上的栅极104、形成在栅极104上的电容绝缘层105、以及依次形成在电容绝缘层105上的第一层间介电层106和第二层间介电层107。栅极绝缘层103和电容绝缘层105的厚度分别为120nm,第一层间介电层106和第二层间介电层107的整体厚度约为500nm。

由于现有技术中第一层间介电层106和第二层间介电层107主要用于层间绝缘,且二者的整体厚度比其他绝缘层的厚度更厚,因此,在一定程度上影响了薄膜晶体管的可弯折程度。另外,栅极绝缘层103、电容绝缘层105、第一层间介电层106和第二层间介电层107均为无机绝缘层,其材料为弹性和柔韧性相对差的无机材料,因此,在一定程度上也影响了薄膜晶体管的可弯折程度。



技术实现要素:

有鉴于此,本发明实施例提供了一种柔性薄膜晶体管及其制备方法,用于提升柔性显示屏的可弯折程度。

本发明的一个方面提供一种柔性薄膜晶体管,包括:基板;有源层,形成在基板上方;栅极,形成在有源层上方;以及有机绝缘层,形成在栅极上方。

在本发明的一个实施例中,该柔性薄膜晶体管还包括:无机绝缘层,形成在有机绝缘层上。

在本发明的一个实施例中,有机绝缘层的材料为有机胶或聚酰亚胺。

在本发明的一个实施例中,有机绝缘层还掺杂有无机材料。

在本发明的一个实施例中,无机绝缘层的厚度在45nm至55nm范围内。

在本发明的一个实施例中,无机绝缘层的厚度为50nm。

在本发明的一个实施例中,有机绝缘层的厚度在300nm至450nm范围内。

在本发明的一个实施例中,有机绝缘层的厚度为350nm。

在本发明的一个实施例中,该柔性薄膜晶体管还包括:缓冲层,形成在基板与有源层之间;栅极绝缘层,形成在有源层与栅极之间;以及电容绝缘层,形成在栅极与有机绝缘层之间。

本发明的另一个方面提供一种柔性薄膜晶体管的制备方法,包括:在基板上方形成有源层;在有源层上方形成栅极;以及在栅极上方形成有机绝缘层。

在本发明的一个实施例中,该柔性薄膜晶体管的制备方法还包括:在有机绝缘层上形成无机绝缘层。

根据本发明实施例提供的技术方案,通过采用有机绝缘层替代现有技术的层间介电层,减小了层间介电层的应力,降低了层间介电层的整体厚度,进而提升了柔性显示屏的可弯折程度。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。

附图说明

图1是现有技术的薄膜晶体管的结构示意图。

图2是根据本发明一示例性实施例示出的一种柔性薄膜晶体管的结构示意图。

图3是根据本发明另一个示例性实施例示出的一种柔性薄膜晶体管的结构示意图。

图4是根据本发明一示例性实施例示出的一种柔性薄膜晶体管的制备方法的流程示意图。

图5是根据本发明另一个示例性实施例示出的一种柔性薄膜晶体管的制备方法的流程示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

图2是根据本发明一示例性实施例示出的一种柔性薄膜晶体管的结构示意图。如图2所示,该柔性薄膜晶体管包括:基板200;有源层202,形成在基板200上方;栅极204,形成在有源层202上方;以及有机绝缘层206,形成在栅极204上方。

在本发明实施例中,基板200通常为透明的玻璃基板,也可以是其他透明基板,例如透明的塑料基板,本发明对此不作限制。

有源层202的材料可以是多晶硅(p-si),也可以是非晶硅(a-si)。本实施例优先选用多晶硅,因为多晶硅的电子迁移速率较快、稳定性较高,可以减小薄膜电路的面积、提升显示屏的分辨率。有源层202的厚度通常在20nm至50nm范围内,优选为45nm。

栅极204的材料可以是钼(mo)、钛(ti)、铝(al)、铜(cu)、金(au)、银(ag)中的一种或多种的组合。栅极206的厚度通常在200nm至300nm范围内,优选为250nm。

有机绝缘层206的厚度可以在300nm至450nm范围内,优选为350nm。

根据本发明实施例提供的技术方案,通过采用有机绝缘层替代现有技术的层间介电层,减小了层间介电层的应力,降低了层间介电层的整体厚度,进而提升了柔性显示屏的可弯折程度。

在本发明的另一个实施例中,该柔性薄膜晶体管还包括:无机绝缘层(未示出),形成在有机绝缘层206上。

具体地,无机绝缘层的材料可以是氧化硅(siox)、氮化硅(sinx)中的一种或其组合。另外,无机绝缘层很薄,其厚度在45nm至55nm范围内,优选为50nm。在本发明实施例中,考虑到有机绝缘层的绝缘性远不及无机绝缘层的绝缘性,因此,通过在有机绝缘层206上布置一层薄薄的无机绝缘层,能够更有效地提高薄膜晶体管的绝缘性;此外,由于无机绝缘层的厚度仅为50nm,非常薄,因此,不会对薄膜晶体管的整体厚度造成太大影响。进一步地,本发明实施例的有机绝缘层206和无机绝缘层的整体厚度在345nm至505nm范围内,优选为400nm,明显薄于现有技术的第一层间介电层106和第二层间介电层107(如图1所示)的整体厚度500nm,因此,节约了薄膜晶体管的制作成本。

在本发明的另一个实施例中,有机绝缘层206的材料为有机胶或聚酰亚胺。

具体地,有机绝缘层206的材料可以是具有高电阻率、高强度、高韧性、高绝缘性、耐磨耗、耐高温、防腐蚀的有机胶或聚酰亚胺(polyimide,pi)。由于有机胶或聚酰亚胺具有高电阻率、高韧性和高绝缘性,因此,减小了层间介电层的应力,进而提升了柔性显示屏的可弯折程度。

在本发明的另一个实施例中,有机绝缘层206还掺杂有无机材料。

具体地,无机材料(例如氧化硅、氮化硅等)颗粒/小球可以掺杂在有机绝缘层206的有机胶或聚酰亚胺中,或者也可以布置在有机胶或聚酰亚胺上,本发明对此不作限制。本发明实施例中,通过在有机绝缘层206中掺杂无机材料,能够进一步提高有机绝缘层206的绝缘性,并因此可以省略布置在有机绝缘层206上的无机绝缘层,进而节约了薄膜晶体管的制作成本。

在本发明的另一个实施例中,该柔性薄膜晶体管还包括:缓冲层201,形成在基板200与有源层202之间;栅极绝缘层203,形成在有源层202与栅极204之间;以及电容绝缘层205,形成在栅极204与有机绝缘层206之间。

具体地,缓冲层201的材料可以是氧化硅、氮化硅中的一种或其组合。另外,缓冲层201的厚度通常在200nm至300nm范围内,优选为250nm。需要说明的是,缓冲层201的层数可以根据实际需要设置,例如两层、三层等,本发明对此不作限制。

栅极绝缘层203的材料可以是氧化硅、氮化硅中的一种或其组合,其厚度可以在100nm至150nm范围内,优选为120nm。

电容绝缘层205可以形成在栅极204与有机绝缘层206之间,其厚度可以在100nm至150nm范围内,优选为120nm。

进一步地,源极207和漏极208形成在缓冲层201上且分别与有源层202电连接。源极207和漏极208的材料可以是钼(mo)、钛(ti)、铝(al)、铜(cu)、金(au)、银(ag)中的一种或多种的组合。另外,栅极206的厚度通常在200nm至300nm范围内,优选为250nm。

上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。

图3是根据本发明另一个示例性实施例示出的一种柔性薄膜晶体管的结构示意图。如图3所示,该柔性薄膜晶体管包括:基板300;第一缓冲层301,形成在基板300上;第二缓冲层302,形成在第一缓冲层301上;有源层303,形成在第二缓冲层302上;栅极绝缘层304,形成在有源层303上;栅极305,形成在栅极绝缘304上;电容绝缘层306,形成在栅极305上;有机绝缘层307,形成在电容绝缘层306上;以及无机绝缘层308,形成有机绝缘层307上。

需要说明的是,图3所示的柔性薄膜晶体管的结构与图2所示的柔性薄膜晶体管的结构基本相同,因此,下文将仅针对不同之处进行说明。

在本发明实施例中,基板300上可以依次形成第一缓冲层301和第二缓冲层302,并且第一缓冲层301和第二缓冲层302的材料可以是氧化硅、氮化硅中的一种或其组合。具体地,第一缓冲层301的材料为氮化硅,其厚度通常在45nm至55nm范围内,优选为50nm。第二缓冲层302的材料为氧化硅,其厚度通常在200nm至300nm范围内,优选为250nm。需要说明的是,第一缓冲层301和第二缓冲层302的材料也可以是有机胶或聚酰亚胺,或者掺杂有无机材料的有机胶或聚酰亚胺,也就是说,为了提高薄膜晶体管的可弯折程度,也可以将第一缓冲层301和第二缓冲层302中的任一层或二层制备成有机绝缘层。

栅极绝缘层304的材料可以是氧化硅、氮化硅中的一种或其组合。需要说明的是,栅极绝缘层304的材料也可以是有机胶或聚酰亚胺,或者掺杂有无机材料的有机胶或聚酰亚胺,也就是说,为了提高薄膜晶体管的可弯折程度,也可以将栅极绝缘层304制备成有机绝缘层。

电容绝缘层306的材料可以是氧化硅、氮化硅中的一种或其组合。需要说明的是,电容绝缘层306的材料也可以是有机胶或聚酰亚胺,或者掺杂有无机材料的有机胶或聚酰亚胺,也就是说,为了提高薄膜晶体管的可弯折程度,也可以将电容绝缘层306制备成有机绝缘层。

无机绝缘层308的材料可以是氧化硅、氮化硅中的一种或其组合。另外,无机绝缘层308很薄,其厚度在45nm至55nm范围内,优选为50nm。在本发明实施例中,考虑到有机绝缘层的绝缘性远不及无机绝缘层的绝缘性,因此,通过在有机绝缘层307上布置一层薄薄的无机绝缘层308,能够更有效地提高薄膜晶体管的绝缘性;此外,由于无机绝缘层308的厚度仅为50nm,非常薄,因此,不会对薄膜晶体管的整体厚度造成太大影响。进一步地,本发明实施例的有机绝缘层307和无机绝缘层308的整体厚度在345nm至505nm范围内,优选为400nm,明显薄于现有技术的第一层间介电层106和第二层间介电层107(如图1所示)的整体厚度500nm,因此,节约了薄膜晶体管的制作成本。

根据本发明实施例提供的技术方案,通过采用有机绝缘层加很薄的无机绝缘层替代现有技术的层间介电层,减小了层间介电层的整体应力,并提升了柔性显示屏的可弯折程度。

图4是根据本发明一示例性实施例示出的一种柔性薄膜晶体管的制备方法的流程示意图。如图4所示,该柔性薄膜晶体管的制备方法包括:

410:在基板上方形成有源层。

420:在有源层上方形成栅极。

430:在栅极上方形成有机绝缘层。

根据本发明实施例提供的技术方案,通过采用有机绝缘层替代现有技术的层间介电层,减小了层间介电层的应力,降低了层间介电层的整体厚度,进而提升了柔性显示屏的可弯折程度。

在本发明的另一个实施例中,该柔性薄膜晶体管的制备方法还包括:在有机绝缘层上形成无机绝缘层。

在本发明的另一个实施例中,该柔性薄膜晶体管的制备方法还包括:在基板与有源层之间形成缓冲层;在有源层与栅极之间形成栅极绝缘层;以及在栅极与有机绝缘层之间形成电容绝缘层。

图5是根据本发明另一个示例性实施例示出的一种柔性薄膜晶体管的制备方法的流程示意图。如图5所示,该柔性薄膜晶体管的制备方法包括:

510:在基板上形成第一缓冲层和第二缓冲层。

在本发明实施例中,通过化学气相沉积(chemicalvapordeposition,cvd)方法,在清洗洁净的玻璃基板或塑料基板上依次形成第一缓冲层和第二缓冲层。第一缓冲层和第二缓冲层可以是氧化硅层、氮化硅层、或者氧化硅层与氮化硅层的复合层。在该实施例中,第一缓冲层为氮化硅层,第二缓冲层为氧化硅层。

520:在第二缓冲层上形成有源层。

在本发明实施例中,通过化学气相沉积方法,在第二缓冲层上形成有源层,该有源层的材料为非晶硅。接续,通过准分子激光退火(excimerlaseranneal,ela)工艺将非晶硅转化为多晶硅。

530:在有源层上形成栅极绝缘层。

在本发明实施例中,通过等离子体增强化学气相沉积(plasmaenhancedchemicalvapordeposition,pecvd)方法,在有源层上形成栅极绝缘层,该栅极绝缘层覆盖第二缓冲层。

540:在栅极绝缘层上形成栅极。

在本发明实施例中,通过物理气相沉积(physicalvapordeposition,pvd)方法,在栅极绝缘层上形成正对有源层上方的栅极,即第一金属m1。进一步地,对有源层的两端进行硼离子注入形成源极和漏极。

550:在栅极上形成电容绝缘层。

在本发明实施例中,通过化学气相沉积或成膜,在栅极上形成电容绝缘层,该电容绝缘层覆盖栅极绝缘层。

560:在电容绝缘层上形成电容金属。

在本发明实施例中,通过物理气相沉积或成膜,在电容绝缘层上形成电容金属,即第二金属m2。

570:在电容金属上形成有机绝缘层。

在本发明实施例中,通过涂布有机胶或聚酰亚胺,在电容金属上形成有机绝缘层,并对该有机绝缘层进行曝光、显影。

580:在有机绝缘层上形成无机绝缘层。

在本发明实施例中,通过化学气相沉积或成膜,在有机绝缘层上沉积一层薄薄的无机绝缘层,并对无机绝缘层进行曝光、显影、刻蚀。进一步地,通过物理气相沉积,将第三金属m3沉积到有机绝缘层上。

最后,对玻璃基板或塑料基板和薄膜晶体管进行分离。

需要说明的是,第一金属m1、第二金属m2和第三金属m3的材料可以是钼、钛、铝、铜、金、银中的一种或多种的组合。

根据本发明实施例提供的技术方案,通过采用有机绝缘层加很薄的无机绝缘层替代现有技术的层间介电层,减小了层间介电层的整体应力,并提升了柔性显示屏的可弯折程度。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1