各向异性导电膜及其制造方法与流程

文档序号:16542604发布日期:2019-01-08 20:33阅读:214来源:国知局
各向异性导电膜及其制造方法与流程

本发明涉及各向异性导电膜及其制造方法。



背景技术:

在ic芯片等电子部件的安装中广泛使用各向异性导电膜,近年来,从适应高安装密度的角度考虑,为了提高连接可靠性或绝缘性、提高颗粒捕集效率、降低制造成本等,有人提案了将各向异性导电连接用导电颗粒以单层排列在绝缘性粘接层中而获得的各向异性导电膜(专利文献1)。

该各向异性导电膜如下制作。即,首先使导电颗粒保持在具有开口的转印模(転写型)的该开口内,从其上方按压形成有转印用粘合层的粘合膜,将导电颗粒一次转印到粘合层上。接下来,相对于附着在粘合层上的导电颗粒按压作为各向异性导电膜的构成要素的高分子膜,并进行加热加压,从而将导电颗粒二次转印到高分子膜表面。接下来,在二次转印有导电颗粒的高分子膜的导电颗粒侧表面形成粘接层使覆盖导电颗粒,从而制成各向异性导电膜。

现有技术文献

专利文献

专利文献1:日本特开2010-33793号公报。



技术实现要素:

发明所要解决的课题

但是,当为使用具有开口的转印模制成的专利文献1的各向异性导电膜时,只要顺利地推进一次转印以及二次转印,则关于各向异性导电膜的连接可靠性、绝缘性、颗粒捕集效率,也许可以期待某种程度的提高,但通常为了容易进行二次转印,使用粘合力较低的粘合膜作为一次转印用粘合膜,而且减小导电颗粒与粘合膜的接触面积。因此,在进行一次转印操作或二次转印操作时,产生未进行一次转印的导电颗粒、在进行一次转印后导电颗粒从粘合膜上剥落或导电颗粒在粘合膜上发生位置偏移等,担心整体的操作效率降低。

另一方面,为了更快速且平滑地进行一次转印操作,而某种程度地增强粘合膜的粘合力以在粘合膜中稳定地保持导电颗粒时,难以向高分子膜上进行二次转印,为了避免这种情况而增强高分子膜的膜性时,存在着各向异性导电膜的通路电阻增大、通路可靠性也降低的问题。这样,即使想要使用具有开口的转印模制作各向异性导电膜,但在实际操作时也不见得顺利地推进一次转印以及二次转印,因此,对于各向异性导电膜,依然强烈要求同时实现良好的连接可靠性、良好的绝缘性和良好的颗粒捕集效率,这是现状。

本发明的目的在于解决上述现有的技术问题,在使用具有开口的转印模制作的、导电颗粒以单层排列的各向异性导电膜中,实现良好的连接可靠性、良好的绝缘性和良好的颗粒捕集效率。

用于解决课题的手段

本发明人在使用具有开口的转印模制作各向异性导电膜时发现:不将导电颗粒暂且一次转印到粘合膜上,而是将其直接以单层排列的方式从转印模转印到构成各向异性导电膜的绝缘性树脂层上,而且以相邻的导电颗粒间的中央的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度的方式进行转印,再用起到粘接层作用的绝缘性树脂层夹持单层排列有导电颗粒的该绝缘性树脂层的两面,从而达到上述目的,完成了本发明。

即,本发明提供一种各向异性导电膜,所述各向异性导电膜是第1连接层被主要由绝缘性树脂构成的第2连接层和第3连接层夹持的3层结构的各向异性导电膜,其中,

第1连接层具有在绝缘性树脂层的第2连接层侧的平面方向导电颗粒以单层排列的结构,且相邻的导电颗粒间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度。

另外,本发明还提供上述的各向异性导电膜的制造方法,该方法具备以下的步骤(a)~(d)。

<步骤(a)>

在形成有开口的转印模的开口内配置导电颗粒,使形成于剥离膜上的绝缘性树脂层与形成有开口的转印模的表面对置。

<步骤(b)>

从剥离膜侧向绝缘性树脂层施加压力,将绝缘性树脂压入开口内,使导电颗粒粘附(転着)在绝缘性树脂层表面,由此形成第1连接层,所述第1连接层是在绝缘性树脂层的平面方向导电颗粒以单层排列的结构,其中,相邻的导电颗粒间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度。

<步骤(c)>

在第1连接层的导电颗粒侧表面形成主要由绝缘性树脂构成的第2连接层。

<步骤(d)>

在第2连接层的相反侧的第1连接层的表面形成主要由绝缘性树脂构成的第3连接层。

另外,本发明还提供上述各向异性导电膜的其他制造方法,该方法具备以下的步骤(a)~(c)。

<步骤(a)>

在形成有开口的转印模的开口内配置导电颗粒,使预先贴合有第3连接层的绝缘性树脂层与形成有开口的转印模的表面对置。

<步骤(b)>

从剥离膜侧向绝缘性树脂层施加压力,将绝缘性树脂压入开口内,使导电颗粒粘附在绝缘性树脂层表面,由此形成第1连接层,所述第1连接层是在绝缘性树脂层的平面方向导电颗粒以单层排列的结构,其中,相邻的导电颗粒间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度。

<步骤(c)>

在第1连接层的导电颗粒侧表面形成主要由绝缘性树脂构成的第2连接层。

另外,本发明还提供连接结构体,所述连接结构体是利用上述的各向异性导电膜将第1电子部件与第2电子部件进行各向异性导电连接而形成的。

另外,本发明还提供利用上述的各向异性导电膜将第1电子部件与第2电子部件进行各向异性导电连接的连接方法,其中,

对于第2电子部件从其第3连接层侧暂且贴附各向异性导电膜,在暂且贴附的各向异性导电膜上搭载第1电子部件,从第1电子部件侧进行热压合。

发明效果

第1连接层被绝缘性的第2连接层和第3连接层夹持的3层结构的本发明的各向异性导电膜,其中,第1连接层具有在绝缘性树脂层的第2连接层侧的平面方向导电颗粒以单层排列的结构,并具有相邻的导电颗粒间的中央的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度的结构。因此,在导电颗粒以单层排列的各向异性导电膜中,可以实现良好的连接可靠性、良好的绝缘性和良好的颗粒捕集效率。

附图说明

图1a是本发明的各向异性导电膜的截面图。

图1b是本发明的各向异性导电膜的截面图。

图1c是本发明的各向异性导电膜的截面图。

图2a是本发明的各向异性导电膜的制造步骤(a)的说明图。

图2b是本发明的各向异性导电膜的制造步骤(a)的说明图。

图3a是本发明的各向异性导电膜的制造步骤(b)的说明图。

图3b是本发明的各向异性导电膜的制造步骤(b)的说明图。

图3c是本发明的各向异性导电膜的制造步骤的说明图。

图4是本发明的各向异性导电膜的制造步骤(c)的说明图。

图5是本发明的各向异性导电膜的制造步骤(d)的说明图。

图6a是本发明的各向异性导电膜的制造步骤(a)的说明图。

图6b是本发明的各向异性导电膜的制造步骤(a)的说明图。

图7a是本发明的各向异性导电膜的制造步骤(b)的说明图。

图7b是本发明的各向异性导电膜的制造步骤(b)的说明图。

图7c是本发明的各向异性导电膜的制造步骤(b)的说明图。

图8是本发明的各向异性导电膜的制造步骤(c)的说明图。

具体实施方式

以下,对本发明的各向异性导电膜进行详细说明。

<<各向异性导电膜>>

如图1a所示,本发明的各向异性导电膜100具有第1连接层1被主要由绝缘性树脂构成的第2连接层2和第3连接层3夹持而形成的3层结构。该第1连接层1具有在绝缘性树脂层10的第2连接层2侧的平面方向导电颗粒4以单层排列的结构。这种情况下,导电颗粒4在平面方向可以进行最密充填,但优选导电颗粒4在平面方向空出一定的间隔规则地(例如正方格子状)进行排列。另外,还具有相邻的导电颗粒4间的中央区的绝缘性树脂层厚度t1薄于导电颗粒4附近的绝缘性树脂层厚度t2的结构。若绝缘性树脂层厚度t1薄于绝缘性树脂层厚度t2,则在进行各向异性导电连接时,没有存在于应该连接的端子间而未被利用的导电颗粒4,如图1b所示,通过各向异性导电连接时的加热加压,导电颗粒4间的绝缘性树脂层溶断而包覆导电颗粒4,可以形成包覆层1d,因此可以抑制短路的发生。

这里,如图1a所示,相邻的导电颗粒4间的中央区是指以相邻的导电颗粒间距离l的中点p为中心±l/4以内的区域。另外,导电颗粒附近是指在第1连接层1的层厚方向与导电颗粒4相连的线段附近位置。

需要说明的是,绝缘性树脂层厚度t1和绝缘性树脂层厚度t2更优选具有下述关系。这是由于:若t1相对于t2太薄,则导电颗粒4容易流动,存在着颗粒捕集效率下降的趋势,另外,若t1太接近于t2的厚度,则存在着难以得到本发明的效果的趋势。

另外,作为绝缘性树脂层厚度t1的绝对厚度,若t1的绝对厚度太薄,则担心难以形成第1连接层1,因此优选为0.5μm以上。另一方面,作为绝缘性树脂层厚度t2的绝对厚度,若t2的绝对厚度太厚,则在进行各向异性导电连接时难以从连接区中排除绝缘性树脂层10,担心会发生通路不良,因此优选为6μm以下。

需要说明的是,如图1c所示,包含导电颗粒的树脂层的厚度在平面方向大幅变动,其结果,该树脂层以截断的方式存在时,导电颗粒4间的绝缘性树脂层厚度实质上可以为0。厚度实质上为0是指包含导电颗粒的绝缘性树脂层各自独立存在的状态。这种情况下,无法适用于上述算式,因此为了实现良好的连接可靠性、良好的绝缘性和良好的颗粒捕集效率,可以通过控制经过导电颗粒4中心的垂线与绝缘性树脂层厚度最薄的位置的最短距离l1、l2、l3、l4・・来优选地进行。即,当该最短距离l1、l2、l3・・・变长时,第1连接层1的树脂量相对增加,产率提高,可以抑制导电颗粒4的流动。另一方面,若该最短距离l1、l2、l3、l4・・・变短,则第1连接层1的树脂量相对减少,可以容易地调节颗粒间距离。换言之,可以提高导电颗粒的定位精度。优选的距离l1、l2、l3、l4・・・为导电颗粒4的粒径的优选大于0.5倍且不足1.5倍,更优选为0.6~1.2倍的范围。

另外,如图1c所示,导电颗粒4可以埋藏在第1连接层中。浅埋或深埋的埋藏程度根据形成第1连接层1时的材料的粘度、或排列有导电颗粒的转印模的开口的形状、大小等而变化,特别是可以根据开口的基底径与开口径的关系来控制。例如,基底径优选为导电颗粒径的1.1倍以上且不足2倍,开口径优选为导电颗粒径的1.3倍以上且不足3倍。

需要说明的是,在不损及本发明效果的范围内,如图1c中的点划线所示,导电颗粒4’可以存在于第2连接层2中。

<第1连接层>

作为这样的构成第1连接层1的绝缘性树脂层10,可以适当地采用公知的绝缘性树脂层。例如可以采用:包含丙烯酸酯化合物和热或光自由基聚合引发剂的热或光自由基聚合型树脂层或使其进行热或光自由基聚合而获得的树脂层、或者包含环氧化合物和热或光阳离子或阴离子聚合引发剂的热或光阳离子或阴离子聚合型树脂层或使其进行热或光阳离子聚合或阴离子聚合而获得的树脂层。

其中,作为构成第1连接层1的绝缘性树脂层10,可以采用包含丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层,但优选采用包含丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层。由此,可以对光自由基聚合型树脂层照射紫外线使其发生光自由基聚合而形成第1连接层1。这种情况下,在形成第2连接层2之前,若从导电颗粒侧向光自由基聚合型树脂层照射紫外线使其发生光自由基聚合,则如图1a所示,在第1连接层1中,可以使位于导电颗粒4和第3连接层3的表面3a之间的区1x的固化率低于位于彼此相邻的导电颗粒间的区1y的固化率。因此,可以使第1连接层中固化率低的区1x的最低熔融粘度小于第1连接层中固化率高的区1y的最低熔融粘度,在进行各向异性导电连接时,可以防止导电颗粒4的位置偏移,提高颗粒捕集效率,提高导电颗粒4的压入性,降低通路电阻值,实现良好的通路可靠性。

这里,固化率是指以有助于聚合的官能团(例如乙烯基)的减少比率定义的数值。具体而言,如果固化后的乙烯基的存在量是固化前的20%,则固化率为80%。乙烯基的存在量的测定可以通过红外吸收光谱的乙烯基的特性吸收分析来进行。

如此定义的区1x的固化率优选为40~80%,另一方面,区1y的固化率优选为70~100%。

另外,通过流变仪测定的第1连接层1的最低熔融粘度优选高于第2连接层2和第3连接层3的各自的最低熔融粘度。具体而言,若[第1连接层1的最低熔融粘度(mpa·s)]/[第2连接层2或第3连接层3的最低熔融粘度(mpa·s)]的数值太低,则颗粒捕集效率降低,存在着发生短路的概率上升的趋势;若数值太高,则存在着通路可靠性降低的趋势,因此上述数值优选1~1000、更优选为4~400。需要说明的是,关于各自的优选的最低熔融粘度,就前者而言,若太低则存在着颗粒捕集效率降低的趋势,若太高则存在着通路电阻值变大的趋势,因此优选100~100000mpa·s、更优选为500~50000mpa·s。就后者而言,若太低,则在形成卷轴时存在着发生树脂的溢出的趋势,若太高,则存在着通路电阻值变高的趋势,因此优选0.1~10000mpa·s、更优选为1~1000mpa·s。

<丙烯酸酯化合物>

作为构成第1连接层1的绝缘性树脂层10中使用的丙烯酸酯化合物,可以使用以往公知的自由基聚合性丙烯酸酯。例如可以使用单官能(甲基)丙烯酸酯(这里,(甲基)丙烯酸酯包含丙烯酸酯和甲基丙烯酸酯)、二官能以上的多官能(甲基)丙烯酸酯。在本发明中,为了使粘接剂呈热固化性,优选在丙烯酸酯系单体的至少一部分中使用多官能(甲基)丙烯酸酯。

作为单官能(甲基)丙烯酸酯,可以列举:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-甲基丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸正庚酯、(甲基)丙烯酸2-甲基己酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸2-丁基己酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸异壬酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸苯氧酯、(甲基)丙烯酸正壬酯、(甲基)丙烯酸正癸酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸十六烷基酯、(甲基)丙烯酸硬脂酯、吗啉-4-基(甲基)丙烯酸酯等。作为二官能(甲基)丙烯酸酯,可以列举:双酚f-eo改性二(甲基)丙烯酸酯、双酚a-eo改性二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、聚乙二醇(甲基)丙烯酸酯、三环癸烷二羟甲基二(甲基)丙烯酸酯、二环戊二烯(甲基)丙烯酸酯等。作为三官能(甲基)丙烯酸酯,可以列举:三羟甲基丙烷三(甲基)丙烯酸酯、三羟甲基丙烷po改性(甲基)丙烯酸酯、三聚异氰酸eo改性三(甲基)丙烯酸酯等。作为四官能以上的(甲基)丙烯酸酯,可以列举:二季戊四醇五(甲基)丙烯酸酯、季戊四醇六(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯等。此外,还可以使用多官能聚氨酯(甲基)丙烯酸酯。具体而言,可以列举m1100、m1200、m1210、m1600(以上来自东亚合成(株))、ah-600、at-600(以上来自共荣社化学(株))等。

当构成第1连接层1的绝缘性树脂层10中的丙烯酸酯化合物的含量太少时,存在着不易与第2连接层2产生最低熔融粘度差的趋势,若太多,则固化收缩变大,存在着操作性下降的趋势,因此优选2~70质量%,更优选为10~50质量%。

<光自由基聚合引发剂>

作为光自由基聚合引发剂,可以从公知的光自由基聚合引发剂中适当地选择使用。例如,可以列举苯乙酮系光聚合引发剂、苄基缩酮系光聚合引发剂、磷系光聚合引发剂等。具体而言,作为苯乙酮系光聚合引发剂,可以列举:2-羟基-2-环己基苯乙酮(irgacure184、basfjapan(株))、α-羟基-α,α’-二甲基苯乙酮(darocur1173、basfjapan(株))、2,2-二甲氧基-2-苯基苯乙酮(irgacure651、basfjapan(株))、4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮(darocur2959、basfjapan(株))、2-羟基-1-{4-[2-羟基-2-甲基-丙酰基]-苄基}苯基}-2-甲基-丙烷-1-酮(irgacure127、basfjapan(株))等。作为苄基缩酮系光聚合引发剂,可以列举:二苯甲酮、芴酮、二苯并环庚酮、4-氨基二苯甲酮、4,4’-二氨基二苯甲酮、4-羟基二苯甲酮、4-氯二苯甲酮、4,4’-二氯二苯甲酮等。另外,还可以使用2-苄基-2-二甲基氨基-1-(4-吗啉基苯基)-丁酮-1(irgacure369、basfjapan(株))。作为磷系光聚合引发剂,可以列举:双(2,4,6-三甲基苯甲酰基)苯基氧化膦(irgacure819、basfjapan(株))、(2,4,6-三甲基苯甲酰基-二苯基氧化膦(darocuretpo、basfjapan(株))等。

相对于100质量份的丙烯酸酯化合物,光自由基聚合引发剂的使用量若太少,则存在着无法充分进行光自由基聚合的趋势,若太多,则担心其成为刚性降低的原因,因此优选0.1~25质量份,更优选为0.5~15质量份。

<热自由基聚合引发剂>

另外,作为热自由基聚合引发剂,例如可以列举有机过氧化物或偶氮系化合物等,但可以优选使用不会产生成为气泡的原因的氮的有机过氧化物。

作为有机过氧化物,可以列举:过氧化丁酮、过氧化环己酮、过氧化甲基环己酮、过氧化乙酰丙酮、1,1-双(叔丁基过氧)3,3,5-三甲基环己烷、1,1-双(叔丁基过氧)环己烷、1,1-双(叔己基过氧)3,3,5-三甲基环己烷、1,1-双(叔己基过氧)环己烷、1,1-双(叔丁基过氧)环十二烷、异丁基过氧化物、过氧化月桂酰、过氧化琥珀酸、3,5,5-三甲基己酰基过氧化物、过氧化苯甲酰、过氧化辛酰、过氧化硬脂酰、过氧化二碳酸二异丙酯、过氧化二碳酸二正丙酯、过氧化二碳酸二-2-乙基己酯、过氧化二碳酸二-2-乙氧基乙酯、过氧化二碳酸二-2-甲氧基丁酯、过氧化二碳酸双-(4-叔丁基环己基)酯、(α,α-双-新癸酰过氧化)二异丙基苯、过氧化新癸酸枯基酯、过氧化新癸酸辛酯、过氧化新癸酸己酯、过氧化新癸酸叔丁酯、过氧化新戊酸叔己酯、过氧化新戊酸叔丁酯、2,5-二甲基-2,5-双(2-乙基己酰基过氧)己烷、1,1,3,3-四甲基丁基过氧-2-乙基己酸酯、过氧化-2-乙基己酸叔己酯、过氧化-2-乙基己酸叔丁酯、过氧化-2-乙基己酸叔丁酯、过氧化-3-甲基丙酸叔丁酯、过氧化月桂酸叔丁酯、叔丁基过氧-3,5,5-三甲基己酸酯、叔己基过氧异丙基单碳酸酯、叔丁基过氧异丙基碳酸酯、2,5-二甲基-2,5-双(苯甲酰基过氧)己烷、过乙酸叔丁酯、过苯甲酸叔己酯、过苯甲酸叔丁酯等。可以在有机过氧化物中添加还原剂,作为氧化还原系聚合引发剂来使用。

作为偶氮系化合物,可以列举:1,1-偶氮双(环己烷-1-腈)、2,2’-偶氮双(2-甲基丁腈)、2,2’-偶氮双丁腈、2,2’-偶氮双(2,4-二甲基戊腈)、2,2’-偶氮双(2,4-二甲基-4-甲氧基戊腈)、2,2’-偶氮双(2-脒基丙烷)盐酸盐、2,2’-偶氮双[2-(5-甲基-2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮双[2-(2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮双[2-(5-甲基-2-咪唑啉-2-基)丙烷]、2,2’-偶氮双[2-甲基-n-(1,1-双(2-羟甲基)-2-羟乙基)丙酰胺]、2,2’-偶氮双[2-甲基-n-(2-羟乙基)丙酰胺]、2,2’-偶氮双(2-甲基丙酰胺)二水盐、4,4’-偶氮双(4-氰基戊酸)、2,2’-偶氮双(2-羟甲基丙腈)、2,2’-偶氮双(2-甲基丙酸)二甲酯(二甲基2,2’-偶氮双(2-甲基丙酸酯))、氰基-2-丙基偶氮甲酰胺等。

若热自由基聚合引发剂的使用量太少则固化不良,若太多则产品寿命降低,因此相对于100质量份的丙烯酸酯化合物,热自由基聚合引发剂的使用量优选2~60质量份,更优选为5~40质量份。

<环氧化合物>

另外,构成第1连接层1的绝缘性树脂层10可以由含有环氧化合物和热或光阳离子或阴离子聚合引发剂的热或光阳离子或阴离子聚合型树脂层、或使其发生热或光自由基聚合而获得的树脂层构成。

作为环氧化合物,优选列举分子内具有2个以上的环氧基的化合物或树脂。这些物质可以是液态也可以是固态。具体而言,可以列举:使双酚a、双酚f、双酚s、六氢双酚a、四甲基双酚a、二烯丙基双酚a、氢醌、儿茶酚、间苯二酚、甲酚、四溴双酚a、三羟基联苯、二苯甲酮、双间苯二酚、双酚六氟丙酮、四甲基双酚a、四甲基双酚f、三(羟苯基)甲烷、联二甲酚(bixylenol)、线型酚醛树脂、甲阶酚醛树脂等多元酚与环氧氯丙烷反应而得到的缩水甘油醚;或者使甘油、新戊二醇、乙二醇、丙二醇、丁二醇、己二醇、聚乙二醇、聚丙二醇等脂肪族多元醇与环氧氯丙烷反应而得到的聚缩水甘油醚;使对羟基苯甲酸、β-羟基萘甲酸这样的羟基羧酸与环氧氯丙烷反应而得到的缩水甘油醚酯、或者由邻苯二甲酸、甲基邻苯二甲酸、间苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、六氢邻苯二甲酸、甲桥四氢邻苯二甲酸、甲桥六氢邻苯二甲酸、偏苯三酸、聚合脂肪酸这样的多元羧酸得到的聚缩水甘油酯;由氨基苯酚、氨基烷基苯酚得到的缩水甘油基氨基缩水甘油醚;由氨基苯甲酸得到的缩水甘油基氨基缩水甘油酯;由苯胺、甲苯胺、三溴苯胺、二甲苯二胺、二氨基环己烷、二氨基甲基环己烷、4,4’-二氨基二苯基甲烷、4,4’-二氨基二苯基砜等得到的缩水甘油胺;环氧化聚烯烃等公知的环氧树脂类。另外,还可以使用3-或4-环氧基环己烯基甲基-3’,4’-环氧基环己烯甲酸酯等脂环式环氧化合物。

<热阳离子聚合引发剂>

作为热阳离子聚合引发剂,可以采用作为环氧化合物的热阳离子聚合引发剂而公知的物质,例如有通过热产生能够使阳离子聚合型化合物发生阳离子聚合的酸的物质,可以使用公知的碘盐、锍盐、磷盐、二茂铁类等,优选使用对温度显示出良好的潜在性的芳族锍盐。作为热阳离子系聚合引发剂的优选例子,可以列举:二苯碘六氟锑酸盐、二苯碘六氟磷酸盐、二苯碘六氟硼酸盐、三苯基锍六氟锑酸盐、三苯基锍六氟磷酸盐、三苯基锍六氟硼酸盐。具体而言,可以列举(株)adeka制sp-150、sp-170、cp-66、cp-77;日本曹达(株)制的ci-2855、ci-2639;三新化学工业(株)制的サンエイドsi-60、si-80;ユニオンカーバイド公司制造的cyracure-uvi-6990、uvi-6974等。

热阳离子聚合引发剂的混合量太少时,存在着热阳离子聚合没有充分进行的趋势,若太多,则担心成为刚性下降的原因,因此相对于100质量份的环氧化合物,热阳离子聚合引发剂的混合量优选0.1~25质量份,更优选为0.5~15质量份。

<热阴离子聚合引发剂>

作为热阴离子聚合引发剂,可以采用作为环氧化合物的热阴离子聚合引发剂而公知的物质,例如有通过热产生能够使阴离子聚合性化合物发生阴离子聚合的碱的物质,可以使用公知的脂肪族胺系化合物、芳族胺系化合物、仲胺或叔胺系化合物、咪唑系化合物、聚硫醇系化合物、三氟化硼-胺络合物、双氰胺、有机酸酰肼等,可以优选使用对温度显示出良好的潜在性的胶囊化咪唑系化合物。具体而言,可以列举旭化成イーマテリアルズ(株)制ノバキュアhx3941hp等。

热阴离子聚合引发剂的混合量过少,也会存在固化不良的趋势,混合量过多,也会存在产品寿命降低的趋势,因此相对于100质量份的环氧化合物,热阴离子聚合引发剂的混合量优选2~60质量份,更优选为5~40质量份。

<光阳离子聚合引发剂和光阴离子聚合引发剂>

作为环氧化合物用的光阳离子聚合引发剂或光阴离子聚合引发剂,可以适当使用公知的物质。

<导电颗粒>

作为构成第1连接层1的导电颗粒4,可以从以往公知的各向异性导电膜所使用的导电颗粒中适当地选择使用。例如可以列举镍、钴、银、铜、金、钯等金属颗粒、金属包覆的树脂颗粒等。还可以将两种以上结合使用。

作为导电颗粒4的平均粒径,若平均粒径太小,则无法应对布线高度的偏差,存在着通路电阻上升的趋势,若平均粒径太大,则存在着导致发生短路的趋势,因此导电颗粒4的平均粒径优选1~10μm,更优选为2~6μm。平均粒径可以利用普通的粒度分布测定装置进行测定。

这样的导电颗粒4在第1连接层1中的存在量过少时,颗粒捕集效率降低,难以进行各向异性导电连接,若其存在量过多,则担心发生短路,因此其存在量优选每平方毫米50~40000个,更优选为200~20000个。

<第1连接层中的其他成分>

在第1连接层1中,根据需要,可以结合使用苯氧树脂、环氧树脂、不饱和聚酯树脂、饱和聚酯树脂、聚氨酯树脂、丁二烯树脂、聚酰亚胺树脂、聚酰胺树脂、聚烯烃树脂等成膜树脂。

当构成第1连接层1的绝缘性树脂层10是使包含丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层发生光自由基聚合而获得的树脂层时,优选在绝缘性树脂层10中还含有环氧化合物和热阳离子聚合引发剂。这种情况下,如下所述,第2连接层2以及第3连接层3也优选成为含有环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层。由此,可以提高层间剥离强度。

在第1连接层1中,如图1a所示,导电颗粒4优选陷入第2连接层2中(换言之,导电颗粒4暴露在第1连接层1的表面)。这是由于:若导电颗粒4完全埋藏在第1连接层1中,则担心因绝缘性树脂层10的排除不足而导致通路电阻下降。陷入的程度过小时,存在着颗粒捕集效率降低的趋势,若程度过大,则存在着通路电阻上升的趋势,因此陷入的程度优选为导电颗粒4的平均粒径的10~90%,更优选为20~80%。

第1连接层1的形成可以如下进行:在形成有开口的模型的开口内配置导电颗粒4,使形成于剥离膜上的作为第1连接层1的绝缘性树脂层10与形成有开口21的模型表面对置,根据需要,一边加热一边加压至绝缘性树脂没有进入开口底部的角落的程度,从而可以形成第1连接层1。

<第2连接层和第3连接层>

第2连接层2和第3连接层3均主要由绝缘性树脂形成。作为绝缘性树脂,可以从公知的绝缘性树脂中适当地选择使用。可以由与第1连接层1的绝缘性树脂层10相同的材质形成。

第2连接层2位于第1连接层1的导电颗粒4侧,其通常配置在ic芯片的凸点(バンプ)等要求以高的位置精度排列的端子侧。另一方面,第3连接层3通常配置在玻璃基板的β电极等对排列精度要求相对不高的端子侧。

第2连接层2的层厚过薄时,担心因树脂充填不足而发生通路不良,若其层厚过厚,则压合时发生树脂的溢出,担心会污染压合装置,因此第2连接层2的层厚优选5~20μm,更优选为8~15μm。另一方面,当第3连接层3的层厚过薄时,担心在第2电子部件上暂且贴附时发生贴附不良,若其层厚过厚,则存在着通路电阻值变大的趋势,因此第3连接层3的层厚优选0.5~6μm,更优选为1~5μm。

<<各向异性导电膜的制造方法>>

接下来,对本发明的各向异性导电膜的制造方法之一例进行说明。该制造方法具备以下的步骤(a)~(d)。以下对每个步骤进行说明。

<步骤(a)>

如图2a所示,在形成有开口21的转印模20的开口21内配置导电颗粒4,再如图2b所示,使形成于剥离膜22上的绝缘性树脂层10与形成有开口21的转印模20的表面对置。

作为转印模20,例如是通过光刻法等公知的开口形成方法,在硅酮、各种陶瓷、玻璃、不锈钢等金属等无机材料或各种树脂等有机材料等上形成开口而获得的模具。这样的转印模20可以形成板状、滚筒状等形状。

转印模20的开口21,在其内部收纳导电颗粒4。作为开口21的形状,可以例示圆柱状、四角锥等多角柱状、四角锥等角锥状等。

作为开口21的排列,优选形成格子状、锯齿状等规则排列。

需要说明的是,转印模20的开口21的直径和深度可以通过激光显微镜来测定。

对将导电颗粒4收纳在转印模20的开口21内的方法没有特别限定,可以采用公知的方法。例如,只要将已干燥的导电颗粒粉末或将其分散在溶剂中而获得的分散液散布或涂布在转印模20的开口形成面上,之后用刷子或刮板等擦净开口形成面的表面即可。

从转印性的提高与导电颗粒保持性的平衡方面考虑,导电颗粒4的平均粒径相对于开口21的深度的比例(=导电颗粒的平均粒径/开口深度)优选0.4~3.0,更优选为0.5~1.5。

另外,从容易收纳导电颗粒、容易压入绝缘性树脂等的平衡方面考虑,开口21的直径相对于导电颗粒4的平均粒径的比例(=开口直径/导电颗粒的平均粒径)优选1.1~2.0,更优选为1.3~1.8。

需要说明的是,当该基底侧的直径小于开口21的直径时,基底径优选为导电颗粒径的1.1倍以上且不足2倍,而开口径优选为导电颗粒径的1.3倍以上且不足3倍。

<步骤(b)>

接下来,如图3a所示,从剥离膜22侧向绝缘性树脂层10施加压力,将绝缘性树脂压入开口21内,使导电颗粒4以埋入的方式粘附在绝缘性树脂层10的表面。由此,形成第1连接层1,所述第1连接层1是图3b所示的、在绝缘性树脂层10的平面方向导电颗粒4以单层排列的结构,其中,相邻的导电颗粒4间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度。这种情况下,在相邻的导电颗粒4间绝缘性树脂层厚度实质上可以为0(参照图1c)。厚度实质上为0时,连接后各导电颗粒的独立性提高,在连接时易于防止导电颗粒彼此相连。

<步骤(c)>

接下来,如图4所示,在第1连接层1的导电颗粒4侧表面形成主要由绝缘性树脂构成的第2连接层2。由此,形成了第1连接层与第2连接层的边界起伏的状态,换言之,其形状为波型或凹凸型。这样,通过在存在于膜内的层中使用具有起伏的形状,在接合时可以提高主要增加与凸点的接触面积的概率,其结果,可以期待着提高粘接强度。

<步骤(d)>

接下来,取下剥离膜22,之后在第2连接层2的相反侧的第1连接层1的表面形成主要由绝缘性树脂构成的第3连接层3。由此,得到图5所示的各向异性导电膜100。

需要说明的是,在步骤(b)和步骤(c)之间,如图3c所示,优选从导电颗粒4侧向第1连接层1照射紫外线uv。由此,可以将导电颗粒4固定在第1连接层1上,而且,可以使导电颗粒4下方的第1连接层1的固化率较其周围相对降低,可以提高各向异性导电连接时的导电颗粒的压入性。

<<各向异性导电膜的制造方法>>

另外,对本发明的各向异性导电膜的其他制造方法的例子进行说明。该制造方法是使用第3连接层3来代替剥离膜22的方案,具备以下的步骤(a)~(c)。以下,对每个步骤进行说明。

<步骤(a)>

如图6a所示,在形成有开口21的转印模20的开口21内配置导电颗粒4,如图6b所示,使预先贴合了第3连接层3的绝缘性树脂层10与形成有开口21的转印模20的表面对置。

<步骤(b)>

接下来,如图7a所示,从第3连接层3侧向绝缘性树脂层10施加压力,将绝缘性树脂压入开口21内,使导电颗粒4粘附在绝缘性树脂层10的表面。由此,形成第1连接层1,所述第1连接层1是图7b所示的、在绝缘性树脂层10的平面方向导电颗粒4以单层排列的结构,其中,相邻的导电颗粒4间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度。这种情况下,在相邻的导电颗粒4间绝缘性树脂层厚度实质上可以为0(参照图1c)。厚度实质上为0时,连接后的各导电颗粒的独立性提高,在连接时易于防止导电颗粒彼此相连。

<步骤(c)>

接下来,在第1连接层1的导电颗粒4侧表面形成主要由绝缘性树脂构成的第2连接层2。由此,得到图8所示的各向异性导电膜100。

需要说明的是,在步骤(b)和步骤(c)之间,如图7c所示,优选从导电颗粒4侧向第1连接层1照射紫外线uv。由此,可以将导电颗粒4固定在第1连接层1上,而且,可以使导电颗粒4下方的第1连接层1的固化率较其周围相对降低,可以提高各向异性导电连接时的导电颗粒的压入性。

可是,在图8所示的各向异性导电膜中,导电颗粒4主要包含在第1连接层1中。这种情况下,只从一个导电颗粒来看时,包入该导电颗粒的第1连接层1的区域在第2连接层2侧形成凸状,因此,该区在第3连接层侧的宽度大于该区在第2连接层侧的宽度。该宽度大的一侧的导电颗粒4的厚度方向端部(颗粒的下侧端部)到第2连接层2的水平方向的最短距离p有助于提高连接时的导电颗粒的稳定性。即,p具有相当于固定部分的台座的作用。换言之,导电颗粒附近的树脂形成山型,这使得其中所包含的颗粒留在其内部而孤立。这是由于:在通过挤压使导电颗粒被压缩时,由于包入该导电颗粒的第1连接层的下坡(裾野)部分的存在,导电颗粒在平面方向的流动被相对抑制的概率提高。如已经说明的那样,即使在导电颗粒间的中央区不存在第1连接层的厚度,也会显示出与该效果本质上相同的效果。这是由于:如上所述,颗粒流动的抑制是由其附近树脂的形状负责的,当其端部闭合或稍微开放时,没有本质上的差别。因此,作为防止导电颗粒间相连的效果,其结果,可以期待着大致相同的发现。由以上可知:p表示相当于到山型的下坡的长度、即直至可以期待作用效果的长度。这种情况下,导电颗粒到厚度方向端部和第2连接层2的水平方向的最短距离p优选为导电颗粒粒径的0.5~1.5倍、更优选为0.55~1.25倍。

<<各向异性导电膜的用途>>

如此操作而得到的各向异性导电膜,可以优选在将ic芯片、ic模块等第1电子部件和挠性基板、玻璃基板等第2电子部件通过热或光进行各向异性导电连接时使用。如此操作而得到的连接结构体也是本发明的一部分。这种情况下,从提高连接可靠性的角度考虑,优选对于布线基板等第2电子部件,从其第3连接层侧暂且贴附各向异性导电膜,在暂且贴附的各向异性导电膜上搭载ic芯片等第1电子部件,从第1电子部件侧进行热压合。另外,还可以利用光固化进行连接。

实施例

以下,通过实施例来具体说明本发明。

实施例1~10

按照表1或表2所记载的配比,使用乙酸乙酯或甲苯将丙烯酸酯和光自由基聚合引发剂等调制成混合液,使固体含量达到50质量%。该将混合液涂布在厚50μm的聚对苯二甲酸乙二酯膜(pet膜)上,使干燥厚度达到5μm,在80℃的烘箱中干燥5分钟,从而形成了作为第1连接层的光自由基聚合型绝缘性树脂层。

接下来,准备以纵横9μm的间距设有直径为5.5μm、深4.5μm的圆柱状开口的不锈钢制转印模,各开口内各收纳一个平均粒径为4μm的导电颗粒(镀ni/au树脂颗粒、aul704、积水化学工业(株))。使第1连接层用的绝缘性树脂层与该转印模的开口形成面对置,在60℃、0.5mpa的条件下从剥离膜侧进行加压,从而将导电颗粒压入绝缘性树脂层中。由此,形成了相邻的导电颗粒间的中央区的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度的绝缘性树脂层。

接下来,从该导电颗粒侧向光自由基聚合型绝缘性树脂层照射波长为365nm、累积光量为4000ml/cm2的紫外线,从而形成了表面固定有导电颗粒的第1连接层。

使用乙酸乙酯或甲苯将热固化性树脂和潜在性固化剂等调制成混合液,使固体含量达到50质量%。在厚50μm的pet膜上涂布该混合液使干燥厚度达到12μm,在80℃的烘箱中干燥5分钟,从而形成了第2连接层。利用相同的操作,形成了干燥厚度为3μm的第3连接层。

在如此操作而得到的第1连接层上,在60℃、0.5mpa的条件下层合第2连接层使导电颗粒成为内侧,接着,在相反面上同样地层合第3连接层,从而得到了各向异性导电膜。

需要说明的是,在实施例7~10中,以导电颗粒间的第1连接层的厚度实质上为0的方式制作了各向异性导电膜。具体而言,除了使第1连接层用绝缘性树脂层对置,并在60℃、0.5mpa的条件下从剥离膜侧加压,之后在60℃、1.0mpa的条件下进行再加压以外,按照与实施例1相同的条件制作了各向异性导电膜。

比较例1

按照表1所记载的配比,与实施例1同样地形成了作为第1连接层的前驱层的光自由基聚合型绝缘性树脂层。

接下来,准备以纵横9μm的间距设有直径为5.5μm、深4.5μm的圆柱状开口的不锈钢制转印模,在各开口内各收纳一个平均粒径为4μm的导电颗粒(镀ni/au树脂颗粒、aul704、积水化学工业(株))。使第1连接层用绝缘性树脂层与该转印模的开口形成面对置,在40℃、0.1mpa的相对较弱的条件下从剥离膜侧加压,从而将导电颗粒转印到绝缘性树脂层表面。取出转印有导电颗粒的该膜,将导电颗粒完全压入绝缘性树脂层中,使树脂层的表面变得平坦。

接下来,通过对埋有导电颗粒的光自由基聚合型绝缘性树脂层照射波长为365nm、累积光量为4000ml/cm2的紫外线,形成了平坦的第1连接层。

通过在该第1连接层上层合与实施例1同样地制作的12μm厚的第2连接层和3μm厚的第3连接层,得到了各向异性导电膜。

比较例2

在表1的第1连接层用树脂组合物中均匀分散与实施例1中使用的导电颗粒相同的导电颗粒使达到20000个/平方毫米,由所得的混合物制作厚6μm的含导电颗粒的树脂膜。通过在60℃、0.5mpa的条件下在该薄膜上贴附与实施例1同样地制作的厚12μm的第2连接层,制作了双层结构的各向异性导电膜。

<评价>

关于得到的各向异性导电膜中的导电颗粒间的平面方向均匀排列,当形成了平面均匀排列时认为其适用(有),除此以外的情形认为其不适用(无)。另外,关于导电颗粒附近的绝缘性树脂层厚度,当其大于导电颗粒间的中间区域的绝缘性树脂层厚度(还包括层厚0)时,认为导电颗粒附近的绝缘性树脂层厚度增加(有),除此以外的情形认为导电颗粒附近的绝缘性树脂层厚度没有增加(无)。其结果见表1或表2。需要说明的是,还一并显示各向异性导电膜的构成层数。

使用得到的各向异性导电膜,将0.5×1.8×20.0mm大小的ic芯片(凸点尺寸30×85μm:凸点高15μm、凸点间距50μm)在180℃、80mpa、5秒的条件下安装在0.5×50×30mm大小的コーニング公司制造的玻璃布线基板(1737f)上,得到了连接结构体样品。在电子显微镜下观察该连接结构体样品的连接部截面时,如图1a所示,可以确认在导电颗粒周围存在绝缘性树脂层。

对于得到的连接结构体样品,如以下说明的那样,对“最低熔融粘度”、“颗粒捕集效率”、“通路可靠性”和“绝缘性”进行试验评价。得到的结果见表1或表2。

“最低熔融粘度”

使用旋转式流变仪(tainstruments公司),在升温速度为10℃/分钟、测定压力恒定在5g、所用测定板直径为8mm的条件下,测定构成连接结构体样品的第1连接层和第2连接层的各自的最低熔融粘度。

“颗粒捕集效率”

根据以下的数式求出“在加热·加压后(实际安装后)的连接结构体样品的凸点上实际捕集的颗粒量”相对于“加热·加压前的连接结构体样品的凸点上存在的理论颗粒量”的比例。在实用上优选为50%以上。

颗粒捕集效率(%)={[加热加压后的凸点上的颗粒数]/[加热加压前的凸点上的颗粒数]}×100

“通路可靠性”

将连接结构体样品放置在85℃、85%rh的高温高湿环境下,测定初期和经过500小时后的通路电阻值。在实用上,即使经过500小时后,也优选电阻值为10ω以下。

“绝缘性”

求出7.5μm间隔的梳状(櫛歯)teg图案的短路发生率。在实用上,优选短路发生率为100ppm以下。

由表1可知:实施例1~6的各向异性导电膜在颗粒捕集效率、通路可靠性、绝缘性的各评价项目上均显示出实用上令人满意的结果。需要说明的是,由实施例1~4的结果可知:当第1、第2、第3连接层均为相同的固化系时,由于这些层彼此发生反应,所以导电颗粒的压入性稍有下降,存在着通路电阻值上升的趋势。另外,若第1连接层为阳离子聚合系,则与自由基聚合系相比耐热性有所改善,但导电颗粒的压入性仍稍有下降,存在着通路电阻值上升的趋势。

相对于此,关于比较例1的各向异性导电膜,由于在第1连接层中相邻的导电颗粒间的中央区的绝缘性树脂层厚度不比导电颗粒附近的绝缘性树脂层厚度薄,因此通路可靠性大幅降低。关于现有的双层结构的比较例2的各向异性导电膜,颗粒捕集效率大幅降低,绝缘性也存在问题。

另外,由表2可知:实施例7~10的各向异性导电膜,由于导电颗粒间中央部的厚度为零,所以导电颗粒的独立性提高,在颗粒捕集效率、通路可靠性、绝缘性的各评价项目上均显示出实用上令人满意的结果。

产业实用性

第1连接层被绝缘性的第2连接层和第3连接层夹持的3层结构的本发明的各向异性导电膜,其中第1连接层具有在绝缘性树脂层的第2连接层侧的平面方向导电颗粒以单层排列的结构,并具有相邻的导电颗粒间的中央的绝缘性树脂层厚度薄于导电颗粒附近的绝缘性树脂层厚度的结构。因此,在导电颗粒以单层排列的各向异性导电膜中,可以实现良好的连接可靠性、良好的绝缘性和良好的颗粒捕集效率。因此,对ic芯片等电子部件在布线基板上的各向异性导电连接有效。

符号说明

1:第1连接层;

1x:第1连接层中的固化率低的区;

1y:第1连接层中的固化率高的区;

1d:包覆层;

2:第2连接层;

3:第3连接层;

3a:第3连接层的表面;

4:导电颗粒;

10:绝缘性树脂层;

20:转印模;

21:开口;

22:剥离膜;

100:各向异性导电膜;

l:导电颗粒间距离;

p:导电颗粒间距离的中点;

t1、t2:绝缘性树脂层厚度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1