低内阻质子交换膜燃料电池膜电极及其制备方法与流程

文档序号:16689849发布日期:2019-01-22 18:42阅读:185来源:国知局

本发明涉及一种低内阻质子交换膜燃料电池膜电极及其制备方法。



背景技术:

质子交换膜燃料电池是一种非常高效环保的能源利用技术,其发展和应用对人类社会的可持续发展具有重要的意义。膜电极是质子交换膜燃料电池的核心部件,直接决定燃料电池的使用性能和寿命。膜电极由质子交换膜、阴阳极催化剂层和阴阳极气体扩散层组成,一般情况下,催化剂层由催化剂和质子交换树脂构成,而质子交换树脂属于绝缘物,从而增加了膜电极的电阻;此外催化剂层和气体扩散层主要采用热压或者贴合的方式制备在一起,导致接触电阻上升。而膜电极的电阻过高,会导致燃料电池的工作电压降低,发热过快,使能量利用效率降低,因此有必要降低燃料电池膜电极的电阻。



技术实现要素:

本发明旨在提供一种电阻较低、导热能力较好的低内阻质子交换膜燃料电池膜电极,同时还提供了本发明低内阻质子交换膜燃料电池膜电极的制备方法。

本发明通过以下方案实现:

一种低内阻质子交换膜燃料电池膜电极,在质子交换膜的一面涂覆有阴极催化剂层,在质子交换膜的另一面涂覆有阳极催化剂层,在阴极催化剂层、阳极催化剂层的外侧分别热压有气体扩散层,其特征在于:所述阴极催化剂层、阳极催化剂层分别包括催化剂、质子交换树脂和纳米银线,所述纳米银线整体呈网状结构分布,所述催化剂、质子交换树脂和纳米银线的质量比为(5~20):(1~20):(1~5)。

所述阴极催化剂层的pt载量优选为0.1~0.5mg/cm2,所述阳极催化剂层的pt载量优选为0.05~0.1mg/cm2

所述催化剂优选为pt/c、pt-m/c中的一种或多种,其中pt含量为5~60%,m优选为co、mo、w、ru和pd中的一种或多种;所述质子交换树脂优选为nafion。

一种低内阻质子交换膜燃料电池膜电极的制备方法,在质子交换膜的一面涂覆上阴极催化剂浆料并烘干形成阴极催化剂层,接着在质子交换膜的另一面涂覆上阳极催化剂浆料并烘干形成阳极催化剂层,之后在阴极催化剂层、阳极外催化剂层的外侧分别热压上气体扩散层,最后将热压上气体扩散层的半成品表面负载0.05~0.2mpa的压力置于真空度低于0.01mpa且温度为100~130℃的真空干燥箱中处理30~90min,使得纳米银线在相应的催化剂层内焊接形成网状结构,此时聚乙烯吡咯烷酮(pvp)也从催化剂层内脱附挥发;所述阴极催化剂层的pt载量控制为0.1~0.5mg/cm2,所述阳极催化剂层的pt载量控制为0.05~0.1mg/cm2;热压上气体扩散层的半成品表面负载0.05~0.2mpa的压力一般通过在热压上气体扩散层的半成品表面压上一个物体如钢锭等来实现;

所述阴极催化剂浆料和阳极催化剂浆料的制备工艺相同,具体为:将称好重量的催化剂置于去离子水中分散,之后往其中依次加入质量浓度为5~20%的质子交换树脂溶液、易挥发性溶剂、聚乙烯吡咯烷酮(pvp)和纳米银线形成混合液并将混合液搅拌均匀。

所述去离子水、催化剂、质子交换树脂溶液、易挥发性溶剂、聚乙烯吡咯烷酮(pvp)和纳米银线的质量比为(50~100):(5~20):(20~100):(500~1000):(1~5):(1~5)。

所述易挥发性溶剂为燃料电池催化剂浆料常用试剂,一般为乙醇、异丙醇、乙二醇、醋酸丁酯中的一种或多种。

将所述混合液搅拌均匀的工艺具体为:先磁力搅拌10~30mim,之后超声震荡40~120mim,最后高速搅拌10~30min,高速搅拌的转速一般为2000~8000rpm。

所述阴极催化剂浆料、阳极催化剂浆料涂覆在质子交换膜上采用的方法为丝网印刷法或喷涂法。

所述阴极催化剂浆料、阳极催化剂浆料的烘干工艺均为在60~80℃温度下干燥5~30min,使得易挥发溶剂和去离子水完全蒸发掉。

所述热压气体扩散层的工艺具体为:使用热压机在阴极催化剂层、阳极催化剂层的外侧分别热压上气体扩散层,热压压力设置为0.1~0.5mpa,热压温度设置为50~100℃,热压时间为1~2min。

本发明的低内阻质子交换膜燃料电池膜电极,在阳极催化剂层、阴极催化剂层中添加了纳米银线,通过纳米银线的高导电性,从而降低了膜电极的电阻,可提高使用其制作的燃料电池的能量利用效率;同时纳米银线为热的良导体,可以很好的帮助膜电极散热,缓解燃料电池工作过程中过热的现象。本发明的低内阻质子交换膜燃料电池膜电极,电阻较低,导热能力好。

本发明的低内阻质子交换膜燃料电池膜电极的制备方法,简单可行,在阴极、阳极催化剂浆料中添加了聚乙烯吡咯烷酮(pvp),使得纳米银线分散得更为均匀,通过100~130℃的真空干燥箱进行处理,使得纳米银线焊接成网络状结构,同时使得聚乙烯吡咯烷酮脱附挥发出来,可降低膜电极电阻,提高膜电极导热能力,同时可提高膜电极催化剂层的强度。

具体实施方式

以下结合实施例对本发明作进一步说明,但本发明并不局限于实施例之表述。

实施例1

一种低内阻质子交换膜燃料电池膜电极的制备方法,按以下步骤进行:

ⅰ阴极、阳极催化剂浆料的制备:将0.5gpt含量为60%的pt/c催化剂置于5g去离子水中磁力搅拌10min,之后往其中依次加入3g质量浓度为5%的nafion溶液、80g无水乙醇、0.2g聚乙烯吡咯烷酮(pvp)和0.2g纳米银线形成混合液,将混合液先磁力搅拌10min,再超声振荡60min,最后使用8000rpm转速高速搅拌10min,使得催化剂浆料搅拌均匀;

ⅱ将预处理好10cm×10cm的质子交换膜平铺在80℃的平台上,然后将阴极催化剂浆料采用喷涂法喷涂在质子交换膜的一面,pt载量控制为0.2mg/cm2,之后在平台上放置10min,形成阴极催化剂层;然后翻转质子交换膜,将阳极催化剂浆料采用喷涂法喷涂在质子交换膜的另一面上,pt载量控制为0.08mg/cm2,在平台上放置10min,形成阳极催化剂层;

ⅲ将步骤ⅱ获得的产品使用热压机在阴极催化剂层、阳极催化剂层的外侧分别热压上气体扩散层,热压压力设置为0.1mpa,热压温度设置为60℃,热压时间控制为1min;

ⅳ在步骤ⅲ获得的产品即热压上气体扩散层的半成品置于真空干燥箱内,在产品表面压上重量为0.1kg的钢锭使得膜电极负载0.098mpa的压力,对真空干燥箱进行抽真空使得真空度低于0.01mpa,并将真空干燥箱的温度升为130℃,保持60min后,取出产品即完成低内阻质子交换膜燃料电池膜电极的制作。

将实施例1制得的低内阻质子交换膜燃料电池膜电极进行检测,有效面积25cm2,阴极催化剂层、阳极催化剂层内的纳米银线焊接成网状结构,膜电极的欧姆内阻约为18mω。

实施例2

一种低内阻质子交换膜燃料电池膜电极的制备方法,按以下步骤进行:

ⅰ阴极、阳极催化剂浆料的制备:将1.5gpt含量为50%的pt/c催化剂置于10g去离子水中磁力搅拌15min,之后往其中依次加入2.5g质量浓度为20%的nafion溶液、50g异丙醇、0.5g聚乙烯吡咯烷酮(pvp)和0.5g纳米银线形成混合液,将混合液先磁力搅拌15min,再超声振荡80min,最后使用6000rpm转速高速搅拌20min,使得催化剂浆料搅拌均匀;

ⅱ将预处理好的20cm×20cm质子交换膜在室温下平铺在平台上,在质子交换膜的一面上平铺一张聚四氟乙烯模板,再在聚四氟乙烯模板上覆盖一张丝网,然后将阴极催化剂浆料印刷至质子交换膜的一面,pt载量控制为0.3mg/cm2,取下丝网后将其置于70℃的烘箱中干燥15min,形成阴极催化剂层,并去掉聚四氟乙烯模板;然后翻转质子交换膜,在质子交换膜的另一面上平铺一张聚四氟乙烯模板,再在聚四氟乙烯模板上覆盖一张丝网,将阳极催化剂浆料印刷至质子交换膜的另一面上,pt载量控制为0.07mg/cm2,取下丝网后将其置于70℃的烘箱中干燥15min,形成阳极催化剂层并去掉聚四氟乙烯模板;

ⅲ将步骤ⅱ获得的产品使用热压机在阴极催化剂层、阳极催化剂层的外侧分别热压上气体扩散层,热压压力设置为0.4mpa,热压温度设置为80℃,热压时间控制为1.5min;

ⅳ在步骤ⅲ获得的产品即热压上气体扩散层的半成品置于真空干燥箱内,在产品表面压上重量为0.8kg的钢锭使得膜电极负载0.196mpa的压力,对真空干燥箱进行抽真空使得真空度低于0.01mpa,并将真空干燥箱的温度升为110℃,保持80min后,取出产品即完成低内阻质子交换膜燃料电池膜电极的制作。

将实施例2制得的低内阻质子交换膜燃料电池膜电极进行检测,阴极催化剂层、阳极催化剂层内的纳米银线焊接成网状结构,膜电极的欧姆内阻约为15mω。

实施例3

一种低内阻质子交换膜燃料电池膜电极的制备方法,按以下步骤进行:

ⅰ阴极、阳极催化剂浆料的制备:将2gpt含量为40%的pt/c催化剂置于7g去离子水中磁力搅拌25min,之后往其中依次加入10g质量浓度为15%的nafion溶液、100g乙二醇、0.35g聚乙烯吡咯烷酮(pvp)和0.35g纳米银线形成混合液,将混合液先磁力搅拌25min,再超声振荡90min,最后使用7000rpm转速高速搅拌25min,使得催化剂浆料搅拌均匀;

ⅱ将预处理好的20cm×20cm质子交换膜平铺在65℃的平台上,然后将阴极催化剂浆料采用喷涂法喷涂在质子交换膜的一面,pt载量控制为0.35mg/cm2,之后在平台上放置20min,形成阴极催化剂层;然后翻转质子交换膜,将阳极催化剂浆料采用喷涂法喷涂在质子交换膜的另一面上,pt载量控制为0.1mg/cm2,在平台上放置20min,形成阳极催化剂层;

ⅲ将步骤ⅱ获得的产品使用热压机在阴极催化剂层、阳极催化剂层的外侧分别热压上气体扩散层,热压压力设置为0.3mpa,热压温度设置为100℃,热压时间控制为1min;

ⅳ在步骤ⅲ获得的产品即热压上气体扩散层的半成品置于真空干燥箱内,在产品表面压上重量为0.6kg的钢锭使得膜电极负载0.147mpa的压力,对真空干燥箱进行抽真空使得真空度低于0.01mpa,并将真空干燥箱的温度升为120℃,保持75min后,取出产品即完成低内阻质子交换膜燃料电池膜电极的制作。

将实施例3制得的低内阻质子交换膜燃料电池膜电极进行检测,阴极催化剂层、阳极催化剂层内的纳米银线焊接成网状结构,膜电极的欧姆内阻约为22mω。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1