InGaAs-InP基异质结光电晶体管的制作方法

文档序号:16814275发布日期:2019-02-10 14:08阅读:816来源:国知局
InGaAs-InP基异质结光电晶体管的制作方法

本发明涉及一种红外光电探测领域,具体涉及一种ingaas-inp基异质结光电晶体管。



背景技术:

近年以来,由于ⅲ-ⅴ族半导体inp/ingaas具有诸如直接能带结构,高电子迁移率,禁带宽度可调,长吸收波长(920nm~1700nm)等优点,使其在近红外波段高速光电器件,高功率微波器件中得到了广泛的应用。在此类半导体器件研究当中,由于ingaas/inp异质结结构光电探测器的性能较好,使其成为一种重要的研究对象。

一般来说光电探测器可以分为p-i-n型、异质结光电晶体管(hpt)型、雪崩性(apd)型。p-i-n型光电探测器虽然引入的噪声小但是其响应度也较小;apd光电探测器的响应度很大但是引入的噪声也较大而且工作电压一般也较大。hpt型相较于p-i-n型和apd型具有较小的噪声和较大的光响应度。

目前为止,能够探测1550nm波段的hpt型光电探测器理想工作电压较大或在该电压下器件的响应度较小,不利于弱红外光的探测。



技术实现要素:

本发明要解决的技术问题是提供一种工作电压较小、同时光响应度较大的ingaas-inp基异质结光电晶体管。

为了解决上述技术问题,本发明提供了一种ingaas-inp基异质结光电晶体管,包括衬底、生长在衬底上的发射区、生长在发射区上的基区、生长在基区上的集电区,所述发射区为p型inp,所述基区为n型ingaas,所述集电区为p型ingaas,通过调整所述发射区、基区、集电区的厚度和掺杂浓度来优化所述光电晶体管的光响应度。

本发明一个较佳实施例中,进一步包括所述发射区的厚度为300nm、掺杂浓度为5e17cm-3

本发明一个较佳实施例中,进一步包括所述基区的厚度为80nm、掺杂浓度为1e18cm-3

本发明一个较佳实施例中,进一步包括所述集电区的厚度为1300nm、掺杂浓度为5e17cm-3

本发明一个较佳实施例中,进一步包括所述衬底和发射区之间还生长有p型inp的第一接触层,所述第一接触层的厚度为500nm。

本发明一个较佳实施例中,进一步包括所述集电区上生长有p型ingaas的第二接触层,所述第二接触层的厚度为500nm。

本发明一个较佳实施例中,进一步包括所述衬底、发射区、基区、集电区自下而上依次生长、且整体被刻蚀为台阶状结构,所述集电区、基区、发射区位于顶层台阶结构上,所述衬底位于底层台阶结构上。

本发明一个较佳实施例中,进一步包括所述光电晶体管刻蚀为台阶状结构的方法为,

第一次刻蚀:使用刻蚀溶液刻蚀外延片表面露出发射区,刻蚀溶液为h3po4、h2o2和h2o的混合液,h3po4:h2o2:h2o的体积比为1:1:6~1:1:8,刻蚀时间为150~200s;

第二次刻蚀:使用刻蚀溶液刻蚀发射区表面露出第一接触层,刻蚀溶液为h3po4和hcl的混合液,h3po4:hcl的体积比为3:1,刻蚀时间为6~8s。

本发明一个较佳实施例中,进一步包括刻蚀之前对外延片做预处理,预处理包括使用氢氟酸溶液浸泡外延片10~15s,再用去离子水冲洗,最后用高纯氮气吹干;所述氢氟酸溶液为氢氟酸和水的混合液,hf:h2o的体积比为1:10~1:15。

本发明一个较佳实施例中,进一步包括在第一接触层和第二接触层上同时使用感应耦合等离子体化学气相沉积法生长厚度为200~300nm的氮化硅层,使用反应离子刻蚀方法在氮化硅层上刻蚀窗口,使用磁控溅射法在窗口上沉积电极。

本发明的ingaas-inp基异质结光电晶体管,能够探测波长1550nm的红外光,且在0.5v工作电压、20μw/cm2的入射光功率下光响应度能够达到378a/w。

附图说明

图1是本发明优选实施例中光电晶体管的主视图;

图2是本发明优选实施例中光电晶体管的俯视图;

图3是20μw/cm2入射光功率下光电晶体管的i-v曲线图(光电流和暗电流的测试曲线图)。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。

实施例

如图1-2所示,本实施例公开了一种ingaas-inp基异质结光电晶体管,包括衬底、生长在衬底上的第一接触层、生长在第一接触层上的发射区、生长在发射区上的基区、生长在基区上的集电区、和生长在集电区上的第二接触层。其中,衬底为inp型;

第一接触层为p型inp,生长过程中控制第一接触层的厚度为500nm;

发射区为p型inp,生长过程中控制发射区的厚度为300nm、掺杂浓度为5e17cm-3

基区为n型ingaas,生长过程中控制基区的厚度为80nm、掺杂浓度为1e18cm-3

集电区为p型ingaas,生长过程中控制集电区的厚度为1300nm、掺杂浓度为5e17cm-3

第二接触层为p型ingaas,生长过程中控制第二接触层的厚度为500nm。

以上,通过调整发射区、基区、集电区的厚度和掺杂浓度来优化光电晶体管的工作电压和光响应度。具体的,控制集电区的厚度为1300nm、掺杂浓度为5e17cm-3,1300nm厚的集电区有利于载流子的收集,5e17cm-3的掺杂浓度产生的感生电场能够最优的加快光生载流子的分离并辅助空穴从基区漂移到集电区。控制基区的厚度为80nm、掺杂浓度为1e18cm-3;80nm厚度基区能够最大的减小载流子的复合,1e18cm-3能够最优的提高基区空穴势垒高度,防止晶体管发生穿通现象。控制发射区的厚度为300nm、掺杂浓度为5e17cm-3;300nm厚的发射区最大的利于空穴发射。通过以上发射区、基区、集电区的厚度和掺杂浓度,使得本申请的ingaas-inp基异质结光电晶体管,能够探测波长1550nm的红外光。如图3所示,在20μw/cm2入射光功率下光电晶体管的i-v曲线图,根据响应度公式

其中,r-响应度;

i光-有光照射时晶体管的光电流密度;

i暗-无光照射时晶体管的暗电流密度;

pin-入射光的光功率密度。

测试时第二接触层接电源负极,第一接触层接电源正极,基区悬空,保证晶体管工作在放大模式下,即发射结正偏,集电结反偏,测试结果如图3所示,根据响应度公式计算出本申请的光电晶体管在0.5v工作电压、20μw/cm2的入射光(波长为1550nm的红外光)功率下光响应度能够达到378a/w。

如图1所示,衬底、第一接触层、发射区、基区、集电区和第二接触层自下而上依次生长、且整体被刻蚀为台阶状结构。其中,第二接触层、集电区、基区、发射区位于顶层台阶结构上,第一接触层和衬底位于底层台阶结构上。

具体的,光电晶体管刻蚀为台阶状结构的方法为:

外延片预处理:使用氢氟酸溶液浸泡外延片10~15s,再用去离子水冲洗,最后用高纯氮气吹干;氢氟酸溶液为氢氟酸和水的混合液,hf:h2o的体积比为1:10~1:15;通过预处理去除外延片表面的氧化层,提高接触层的导电性能。

第一次刻蚀:使用刻蚀溶液刻蚀外延片表面露出发射区,刻蚀溶液为h3po4、h2o2和h2o的混合液,h3po4:h2o2:h2o的体积比为1:1:6~1:1:8,刻蚀时间为150~200s;通过严格控制刻蚀溶液的成份和各自的体积比,使得晶体管的第二接触层、集电区和基区均位于晶体管台阶式结构的顶层台阶结构上。另一方面,通过严格控制刻蚀溶液的体积比以及刻蚀时间来严格控制台阶的高度。

第二次刻蚀:使用刻蚀溶液刻蚀发射区表面露出第一接触层,刻蚀溶液为h3po4和hcl的混合液,h3po4:hcl的体积比为3:1,刻蚀时间为6~8s。通过控制刻蚀溶液的成份和各自的体积比,使得晶体管的发射区位于台阶式结构晶体管的顶层台阶结构上、第一接触层和衬底均位于台阶式结构晶体管的底层台阶结构上。

在第一接触层和第二接触层上同时使用感应耦合等离子体化学气相沉积法生长厚度为200~300nm的氮化硅层,使用反应离子刻蚀方法在氮化硅层上刻蚀窗口,使用磁控溅射法在窗口上沉积电极,分别为第一层钛(ti),厚度为20nm;第二层铂(pt),厚度为30nm;第三层金(au),厚度为150nm。

整个刻蚀过程中,使用丙酮作为溶解液去胶、剥离、清洗,然后用异丙酮、去离子水清洗,高纯氮气吹干,在显微镜下查看去胶是否干净。

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1