一种化合物半导体异质接面双极晶体管的制作方法

文档序号:11101862阅读:614来源:国知局
一种化合物半导体异质接面双极晶体管的制造方法与工艺

本发明涉及半导体技术,特别是涉及一种化合物半导体异质接面双极晶体管。



背景技术:

一般异质接面双极晶体管外延结构在集电极层设计上,均是选择与基极层同质或异质材料形成所谓单异质接面或双异质接面晶体管,再以高掺杂浓度方式或较厚厚度方式设计次集电极层用以形成集电极欧姆金属接触。故其集电极之杂散电阻值决定于次集电极层高掺杂浓度值与厚度值,及后续工艺制程中的金属退火程序;另外集电极至基极间距离的器件布局的设计,亦对其杂散电阻有所影响。杂散电阻的存在影响了异质接面双极晶体管的性能。

常见降低杂散集电极电阻方法包括:(1)集电极至基极间距离的器件布局的优化设计,但该方式有一定的距离限制,此距离最小为1~1.8微米,应用受限;(2)增加次集电极层之厚度与高掺杂浓度,但该方法在增加次集电极层厚度时,于芯片工艺阶段会增加困难,包括在湿式蚀刻过程中,对器件形貌易有明显侧壁刻蚀过头情形;或离子布植过程中需以更大能量或浓度做植入才可使器件作有效隔离等缺点;(3)工艺制程中的金属退火程序优化,如退火时间与温度,但该方法不易控制,容易出现金属表面过于粗糙化纹理,或像豹纹斑状块状、节结状或水泡状缺陷;或由传输线量测(transmission line measurement;TLM)方式会得到非线性的杂散电阻特性结果等。



技术实现要素:

本发明提供了一种化合物半导体异质接面双极晶体管,其克服了现有技术所存在的不足之处。

本发明解决其技术问题所采用的技术方案是:一种化合物半导体异质接面双极晶体管,包括集电极层、次集电极层以及设置于集电极层和次集电极层之间的中间层;所述集电极层和次集电极层分别由GaAs构成,所述中间层包括能隙小于GaAs的材料。

优选的,所述中间层由InxGaAs构成,其中0<x≤0.4。

优选的,所述中间层的厚度为所述集电极层厚度的0.5%~1%。

优选的,所述中间层由InxGaAs/GaAs超晶格结构构成,其中0<x≤0.4。

优选的,所述超晶格结构的周期范围是1~100。

优选的,所述次集电极层的掺杂浓度高于所述集电极层,或所述次集电极层的厚度大于所述集电极层;所述次集电极层上形成有集电极电极。

优选的,还包括设于所述集电极层之上,并由GaAs构成的基极层;设于所述基极层之上,并由InGaP构成的发射极层;设于所述发射极层之上,并由GaAs构成的发射极接触间隙层;以及设于所述发射极接触间隙层之上,并由InGaAs构成的发射极接触层。

本发明将低能隙材料导入集电极层和次集电极层之间形成中间层,在次集电极的厚度和掺杂浓度为一普通条件下,可降低集电极之杂散阻值,改善基于化合物半导体异质接面双极晶体管功率的放大器件的直流功耗,提高器件的附加功率效率。基于上述结构的功率放大器应用于移动电话等手持式装置时,可增加待机时间。

附图说明

图1是本发明实施例1的外延结构示意图;

图2是本发明实施例2的局部外延结构示意图。

具体实施方式

以下结合附图及实施例对本发明作进一步详细说明。本发明的各附图仅为示意以更容易了解本发明,其具体比例可依照设计需求进行调整。文中所描述的图形中相对元件的上下关系,在本领域技术人员应能理解是指构件的相对位置而言,因此皆可以翻转而呈现相同的构件,此皆应同属本说明书所揭露的范围。此外,图中所示的元件及结构的个数、层的厚度及层间的厚度对比,均仅为示例,并不以此进行限制,实际可依照设计需求进行调整。

参考图1,一实施例的一种化合物半导体异质接面双极晶体管(HBT)的外延结构,包括由下至上依次层叠的衬底1、次集电极层2、中间层3、集电极层4、基极层5、发射极层6、发射极接触间隙层7和发射极接触层8。以InGaP/GaAs型HBT为例,衬底1为半绝缘GaAs;次集电极层2和集电极层4为n型GaAs,且次集电极层2的掺杂浓度高于集电极层4;中间层3为InxGaAs,其中0<x≤0.4;基极层5为p型GaAs,发射极层6为InGaP,两者之间形成异质结;发射极接触间隙层7为n型GaAs,发射极接触层8为InGaAs。上述外延结构通过MOCVD(有机金属化学气相生长法)或MBE(分子束外延生长法)等方式结晶生长形成,并通过蚀刻、金属沉积等分别在次集电极层2上形成集电极电极、基极层5上形成基极电极以及发射极接触层8上形成发射极电极。

本实施例中,中间层3为能隙小于GaAs的InxGaAs,厚度为集电极层4的0.5%~1%,具体,中间层3厚度为应力补偿后不超过依据Mattews and Blakeslee模型所计算之临界厚度,藉由半导体技术中能带工程势垒层的改变,可降低集电极杂散电阻与集电极金属欧姆接触阻值,而无需增加次集电极层2的厚度或者掺杂浓度,也仅需依常规退火条件即可。举例来说,常规的次集电极层厚度为0.3~0.8μm,集电极层的厚度为0.5~1.2μm,在此前提下,于两者之间形成厚度为3~15nm的InxGaAs中间层,可显著降低势垒而实现降低电阻的目的,且随着In组分的增加(x值变大)其势垒层变低,效果更为明显。

本实施例的HBT可应用于3G/4G功率放大器。对于功率放大器,附加功率效率(PAE)是一个重要的参数。PAE定义为输出功率Pout与输入功率Pin之差与直流输入功率Pdc的比:(Pout-Pin)/Pdc。PAE是表示效率质量的指针,该值越大就越能够抑制功率放大器的功率耗损。通过中间层3的设置降低集电极层的杂散电阻值,亦即降低器件直流功率,提高了PAE,改善了整体性能。上述3G/4G功率放大器应用于移动电话等手持式装置时,可增加待机时间。

参考图2,实施例2与实施例1的HBT外延结构差别在于,其中间层9是由InxGaAs/GaAs超晶格结构构成,其中0<x≤0.4。具体,InxGaAs/GaAs超晶格结构是由InxGaAs薄层91和GaAs薄层92交替生长并保持严格周期性的多层膜,各薄层的厚度均在几个纳米到几十纳米之间。该超晶格结构中InxGaAs薄层91厚度为应力补偿后不超过依据Mattews and Blakeslee模型所计算之临界厚度。中间层9的超晶格结构,其两端最末层均为InxGaAs薄层91,周期范围是1~100。借由InxGaAs/GaAs超晶格结构形成量子阱,且通过In组分增加使量子阱中的载子浓度提高,从而降低了集电极杂散电阻与集电极金属欧姆接触阻值。具体,InxGaAs/GaAs超晶格结构中间层9中,各InxGaAs薄层91的x数值可相同或不同。

上述实施例仅用来进一步说明本发明的一种化合物半导体异质接面双极晶体管,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1