薄膜晶体管及其制备方法与流程

文档序号:17424474发布日期:2019-04-17 02:40阅读:454来源:国知局
薄膜晶体管及其制备方法与流程

本发明涉及显示技术领域,尤其涉及一种薄膜晶体管及其制备方法。



背景技术:

现有的低温多晶硅薄膜晶体管(lowtemperaturepolysilicon-thin-filmtransistor,ltps-tft)中,为避免漏电流较大引起的显示不良,通常器件设计时使用顶栅结构,利用自对准特点制作轻掺杂漏(lightlydopeddrain,ldd)结构以降低沟道漏电流。如图1所示,在实际生产中,由于ltps-tft是通过干法刻蚀形成硅岛图案,因此利用化学气相沉积工艺在硅岛100上形成栅极绝缘层200时,所述硅岛100侧面区域形成的栅极绝缘层201较薄,所述硅岛100顶面区域形成的栅极绝缘层202较厚,薄膜晶体管(thin-filmtransistor,tft)工作时,所述栅极绝缘层202所在区域提前非故意开启形成弱沟道电流,引起驼峰(hump)效应,导致器件电学可靠性下降。

因此,提供一种可以缓解硅岛边界栅极绝缘层偏薄而导致hump效应的技术,是本领域技术人员亟待解决的技术问题。



技术实现要素:

本发明提供一种薄膜晶体管及其制备方法,以缓解现有硅岛边界栅极绝缘层偏薄而导致hump效应的技术问题。

为解决上述问题,本发明提供的技术方案如下:

本发明提供一种薄膜晶体管的制备方法,其包括

步骤s1、提供一玻璃基板,在所述基板上依次沉积形成缓冲层和多晶硅有源层;

步骤s2、在所述有源层上涂布光阻,以使得所述有源层上未被所述光阻覆盖的部分刻蚀掉;

步骤s3、对所述有源层侧面掺杂改性,使其成为高电阻区域;

步骤s4、在所述有源层侧面掺杂改性完成后,将掺杂改性后的有源层顶面的光阻剥离;

步骤s5、在所述有源层上制备栅极绝缘层。

在本发明的制备方法中,对所述有源层侧面掺杂改性,使其成为高电阻区域,包括:利用定向离子植入技术对所述有源层侧面掺杂改性,使其成为高电阻区域。

在本发明的制备方法中,所述薄膜晶体管为n型薄膜晶体管,所述步骤s3中所述有源层侧面掺杂的离子为v族化合物。

在本发明的制备方法中,所述步骤s3中所述有源层侧面掺杂的离子为三氢化磷(ph3)。

在本发明的制备方法中,所述薄膜晶体管为p型薄膜晶体管,所述步骤s3中所述有源层侧面掺杂的离子为iii族化合物。

在本发明的制备方法中,所述步骤s3中所述有源层侧面掺杂的离子为三氟化硼(bf3)。

在本发明的制备方法中,所述利用定向离子植入技术对所述有源层侧面掺杂改性的步骤中离子植入能量为10-15kev。

在本发明的制备方法中,所述步骤s2具体包括如下步骤:

步骤s21、在所述有源层远离所述基板的表面涂布光阻层,所述光阻层完全覆盖所述有源层;

步骤s22、采用半色调掩膜对所述光阻层进行曝光,并用显影液对曝光后的光阻层进行显影,以形成光阻图案;

步骤s23、以所述光阻图案作为掩膜层,对所述有源层进行干法刻蚀,将未被所述光阻图案覆盖的部分有源层移除。

同时,本发明提供一种薄膜晶体管,包括:

基板;

缓冲层,制备于所述基板上;

有源层,制备于所述缓冲层上,所述有源层侧面为高电阻区域;

栅极绝缘层,制备于所述有源层表面。

本发明的薄膜晶体管采用上述的薄膜晶体管的制备方法制备。

本发明的有益效果为:本发明提供一种薄膜晶体管及其制备方法,所述薄膜晶体管包括基板,缓冲层,有源层和栅极绝缘层,所述有源层形成硅岛图案后,利用离子植入掺杂技术对无光阻保护的所述有源层侧面区域掺杂改性,将其表层变为高电阻区域,再利用化学沉积工艺制备栅极绝缘层,由于干法刻蚀形成的所述有源层侧面具有一定倾斜角度,因此在其上沉积的所述栅极绝缘层较其他位置偏薄,将所述有源层侧面区域制作成高电阻结构,避免了因所述栅极绝缘层偏薄导致的工作时边缘非故意开启形成弱沟道电流,改善边界效应,提高了所述薄膜晶体管电学可靠性。

附图说明

为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为现有低温多晶硅薄膜晶体管的结构示意图;

图2为本发明实施例提供的薄膜晶体管的制备方法流程图;

图3a-图3i为本发明实施例提供的薄膜晶体管的制备过程中的不同阶段的结构示意图;

图4为本发明实施例提供的薄膜晶体管的结构示意图。

具体实施方式

以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。

本发明针对现有薄膜晶体管硅岛边界栅绝缘层偏薄而导致hump效应;本实施例能够缓解该缺陷。

如图2所示,本发明具体实施例提供了一种薄膜晶体管的制备方法,所述方法包括以下步骤;

步骤s1、提供一玻璃基板,在所述基板上依次沉积形成缓冲层和多晶硅有源层;

步骤s2、在所述有源层上涂布光阻,以使得所述有源层上未被所述光阻覆盖的部分刻蚀掉;

步骤s3、对所述有源层侧面掺杂改性,使其成为高电阻区域;

步骤s4、在所述有源层侧面掺杂改性完成后,将掺杂改性后的有源层顶面的光阻剥离;

步骤s5、在所述有源层上制备栅极绝缘层。

下面结合附图详细介绍本发明具体实施例提供的薄膜晶体管的制备过程。

优选地,该薄膜晶体管可以为顶栅型低温多晶硅薄膜晶体管。

如图3a所示,先提供一基板10,在所述基板10上制备一层缓冲层20,在所述缓冲层20上制备一非晶硅膜层,通过低温结晶工艺将所述非晶硅膜层转化为多晶硅有源层30。

所述基板10多采用玻璃材质,为了防止所述基板10中有害物质对所述有源层30的性能产生不良影响,需要先采用化学气相沉积或者溅射等方法在基板10上形成一层缓冲层20,用于阻挡玻璃中所含的杂质扩散进入所述有源层30。此外,在沉积所述缓冲层20之前需要进行所述基板10的预清洗,提高所述基板10的清洁度。

所述缓冲层20材料可选用氧化物、氮化物或者氮氧化物等,所述缓冲层20可以为单层、双层或者多层结构。具体地,所述缓冲层31可以是sinx,siox或si(on)x。

所述有源层30中非晶硅转化为多晶硅可以通过准分子激光退火的方法得到。采用准分子激光退火晶化法时,一般用的准分子激光有氯化氙(xecl)激光、arf激光、krf激光和xef激光等,这类准分子激光器产生紫外波段的激光束,通过紫外波段的短脉冲激光束照射所述有源层30中的非晶硅,非晶硅会快速吸收激光能量而融化和再结晶。

在利用准分子激光退火将非晶硅转变为多晶硅以形成有源层30时,所述缓冲层20可以减小多晶硅有源层30和基板10之间的热扩散,降低退火时温度上升对基板10的影响。

当然,本发明中低温结晶工艺还可以采用其他方法,例如金属诱导横向晶化法、固相晶化、准分子激光晶化和快速热退火法等。

如图3b所示,在所述有源层30远离所述基板10的表面涂布厚度均匀的光阻层40,所述光阻层40完全覆盖所述有源层30。具体地,所述光阻层40可以为光刻胶。

如图3c、3d所示,采用半色调掩膜对所述光阻层40进行曝光,用显影剂将曝光部分的光阻层41溶解掉,然后用去离子水将溶解的光阻层41冲走,从而形成光阻图案42。

如图3e、3f所示,所述有源层30包括被所述光阻图案42遮挡的第一区域31,和未被所述光阻图案遮挡的第二区域32,采用干法刻蚀工艺将所述有源层30上的所述第一区域31刻蚀掉,留下所述第二区域32。

如图3g所示,由于使用干法刻蚀,所述第二区域32的侧面321具有一定倾斜角度,利用定向离子植入技术对所述侧面321掺杂改性,使其表层3211成为高电阻区域。

由于本征多晶硅不具备导电能力,通过特定离子掺杂可以使其成为具有特定导电类型的半导体,现有的低温多晶硅薄膜晶体管根据沟道载流子的类型不同可以分为n型薄膜晶体管和p型薄膜晶体管,所述n型薄膜晶体管对应的掺杂物质为iii族化合物,比如bf3,所述p型薄膜晶体管对应的掺杂物质为v族化合物,比如ph3。

因此,如果所述低温多晶硅薄膜晶体管为n型薄膜晶体管,需使用ph3或其他v族化合物对所述第二区域32的所述表层3211掺杂改性形成高电阻区域,如果所述低温多晶硅薄膜晶体管为p型薄膜晶体管,需使用bh3或其他iii族化合物对所述第二区域32的所述表层3211掺杂改性形成高电阻区域。由于磷离子、三氢化磷等n型离子与硼离子、三氟化硼等p型离子相对于多晶硅基底具有电位能差异,将使得电子传递时,需要克服其n型离子、p型离子在多晶硅基底间所建立的势垒差,使得电子传导时的困难度大为增加,从而达到增加所述表层3211电阻值的目的。

具体地,掺杂使用的方法为定向离子植入,离子植入能量为10-15kev。

如图3h所示,离子植入完成后将所述光阻图案42剥离。

如图3i所示,在所述第二区域32上制备栅极绝缘层50。

由于所述第二区域32与所述栅极绝缘层50之间的界面将形成tft沟道通路,界面的清洁处理有利于降低界面能从而提高tft的性能,因此对所述第二区域32进行界面清理后再沉积所述栅极绝缘层50。

该制备方法还包括在所述栅极绝缘层50上自下而上依次形成栅极层、层间绝缘层、以及源漏极层。

根据上述结构,由于干法刻蚀后,所述第二区域32的侧面321具有一定倾斜角度,后序制备的所述栅极绝缘层50的厚度不均匀,在所述第二区域32顶面所述栅极绝缘层50较厚,在所述第二区域32侧面所述栅极绝缘层50较薄,则在栅极施加电压之后,所述栅极绝缘层50较薄的侧面区域先导通,所述栅极绝缘层50较厚的顶面区域后导通,使位于所述栅极绝缘层50下方的沟道不是同时反型,则引起器件的id-vg特性曲线存在斜率不同的情况,导致该特性曲线存在拐点,即所谓的hump效应(驼峰效应),从而降低了器件工作特性稳定性。

通过上述设计,将所述第二区域32表层3211变为高电阻区域,后序再制备所述栅极绝缘层50,则在栅极施加电压后,所述顶面和所述侧面上的所述栅极绝缘层50同时导通,位于所述栅极绝缘层50下方的沟道同时反型,改善了边界效应,提高器件电学可靠性。

如图4所示,本发明实施例还提供一种薄膜晶体管,包括基板10、设于所述基板10上的缓冲层20、设于所述缓冲层20上的多晶硅有源层30、覆盖所述多晶硅有源层30的栅极绝缘层50、设于所述栅极绝缘层50上的栅极60、在所述栅极绝缘层50上覆盖所述栅极60的层间绝缘层70及设于所述层间绝缘层70上的源极80和漏极90,源极80和漏极90分别通过栅极绝缘层50和层间绝缘层70的过孔连接到所述有源层30。

在所述基板10上依次沉积缓冲层20和非晶硅有源层30,通过低温结晶工艺将所述非晶硅转化成多晶硅,在所述有源层30上涂布光阻40(图中未标出),通过黄光工艺对所述光阻40进行曝光、显影,然后采用刻蚀工艺将所述有源层30上未被所述光阻40保护的部分刻蚀掉,利用离子植入掺杂技术对所述有源层30侧面301掺杂改性,使其表面3011成为高电阻区域,离子植入完成后将所述有源层30顶面的所述光阻40剥离,然后依次在所述有源层30上制备栅极绝缘层50、栅极60、层间绝缘层70、以及源极80和漏极90,形成所述薄膜晶体管。

具体的,在上述的薄膜晶体管中,由于干法刻蚀后,所述第二区域32的侧面321具有一定倾斜角度,后序制备的所述栅极绝缘层50的厚度不均匀,在所述第二区域32顶面所述栅极绝缘层50较厚,在所述第二区域32侧面所述栅极绝缘层50较薄,利用离子植入掺杂技术对所述有源层30侧面301掺杂改性,使其表面3011成为高电阻区域,后序再制备所述栅极绝缘层50,则在栅极60施加电压后,所述顶面和所述侧面上的所述栅极绝缘层50同时导通,位于所述栅极绝缘层50下方的沟道同时反型,改善了边界效应,提高器件电学可靠性。

根据上述实施例可知:

本发明实施例提供一种薄膜晶体管及其制备方法,所述薄膜晶体管包括基板,缓冲层,有源层和栅极绝缘层,所述有源层形成硅岛图案后,利用离子植入掺杂技术对无光阻保护的所述有源层侧面区域掺杂改性,将其表层变为高电阻区域,再利用化学沉积工艺制备栅极绝缘层,由于干法刻蚀形成的所述有源层侧面具有一定倾斜角度,因此在其上沉积的所述栅极绝缘层较其他位置偏薄,将所述有源层侧面区域制作成高电阻结构,避免了因所述栅极绝缘层偏薄导致的工作时边缘非故意开启形成弱沟道电流,改善边界效应,提高了所述薄膜晶体管电学可靠性。

综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1