温度调控器件的制作方法

文档序号:16032619发布日期:2018-11-23 20:54阅读:206来源:国知局

本实用新型属于人工智能技术领域,尤其涉及一种温度调控器件。



背景技术:

随着人工智能技术的发展,在工业、技术和数字革命这几个层面上在不断地改变着我们的社会。人工智能可用于模拟、延伸和扩展人的意识、思维、动作和功能,如目标物体为电子皮肤时可以模仿人类皮肤的功能,对外界信号进行感知和调控,使电子皮肤是当今国际研究的热点问题之一,其在仿生智能机器人、人体假肢、可穿戴设备等多个领域有非常重要的应用前景。但是,人类皮肤不仅可以保护人体内部器官运行免受外界干扰,还是重要的信息获取来源,主要包括对压力、拉力、振动的感知的力的传感和对热量散失、冷、热的温度传感方面。然而,目前电子皮肤的研究主要集中在力的触觉传感方面,并取得了显著进展,但温度传感的研究相对较少。而环境温度的变化常常会对收集刺激感应器的信号带来额外的干扰,因此,在电子皮肤中集成相应的温度感应器和温控系统、模拟人类皮肤的恒温自适应反馈调节功能,即电子皮肤实现对外界环境热的适应性调控,集感触、温度传感,自适应性调控等多功能一体化设计,将是未来电子皮肤发展的重要趋势。

目前兼顾多功能的电子皮肤设计还不健全,亟待需要解决电子皮肤真实模拟人体皮肤多功能化设计和制备。



技术实现要素:

本实用新型的目的在于克服上述现有技术的不足,首先提供了一种温度调控器件,旨在解决目标物体兼顾感触、温度传感、自适应调控等智能化特性。

本实用新型提供的温度调控器件,包括:

热电阵列,包括多个按照设计电路规则排布、用以实现自适应温度感触功能的N型半导体热电单元和P型半导体热电单元;

第一基板,其中一表面具有与各所述N型半导体热电单元和所述P型半导体热电单元对应的第一电极,所述第一电极与各所述N型半导体热电单元和所述P型半导体热电单元的一端面对应连接;

第二基板,其中一表面具有与各所述N型半导体热电单元和所述P型半导体热电单元对应的第二电极,所述第二电极与各所述N型半导体热电单元和所述P型半导体热电单元的另一端面连接而使各所述N型半导体热电单元和所述 P型半导体热电单元夹设于所述第一基板和所述第二基板之间且构成所述设计电路规则排布结构;

相变材料层,用以实现相变温度点附近的相变储热与潜热的释放,覆设于所述第一基板或/和所述第二基板向外的表面。

作为本实用新型温度调控器件可选的结构,还可包括封装层,所述封装层覆设于所述相变材料层上且包覆组合后的所述热电阵列、所述第一基板和所述第二基板的两侧。

作为本实用新型温度调控器件可选的结构,所述N型半导体热电单元和所述P型半导体热电单元采用Bi2Te3、MgSi2、Mg3Sb2、GeSi、PbTe或CoSb3制成的片状构件;或者是采用half-hesuler或有机热电材料制成的片状构件。

作为本实用新型温度调控器件可选的结构,所述N型和所述P型半导体热电单元尺寸为长0.1-5mm,宽0.1-5mm,高0.05-5mm。

作为本实用新型温度调控器件可选的结构,所述第一基板和所述第二基板是采用聚酰亚胺柔性材料制成的板状构件;或者是采用氧化铝或氮化铝陶瓷刚性材料制成的板状构件。

作为实用新型温度调控器件可选的结构,各所述N型半导体热电单元和所述P型半导体热电单元与所述第一电极和所述第二电极连接的表面设有隔离层。

作为实用新型温度调控器件可选的结构,所述隔离层为Ni、Co、Fe、In、 Pt、Ag、Au、Ti或Zn中任一种单质的金属层,或上述两种及两种以上金属组成的合金层。

作为实用新型温度调控器件可选的结构,所述N型半导体热电单元和所述 P型半导体热电单元通过焊接方式与所述第一基板和所述第二基板连接固定。

本实用新型提供的温度调控器件,采用基板、热电阵列以及相变材料储热模块组合构成,其中热电阵列由较小片状的热电材料单元按规则电路排布组合构成,由温度变化而产生的热应力小,无复杂的整体加工,简化了器件的加工制备工艺,且大大提高了器件工作的稳定性,结合相变材料层可在目标物体(如电子皮肤或其他目标物)感应面感触温度高的时候,将热量收集到相变材料层,在目标物体感应面感触温度低的时候,实现集热相变层放热。即可利用温度变化时相变储热或释放潜热,温差发电储能,将热量转变为电能,缓冲调节温度变化且可利用电流方向转换实现制冷与加热,从而实现热电阵列储能、加热、制冷功能模式的转变。

本实用新型既可采用刚性基底,也可采用的柔性基底,可按照目标面的形状预成型各种需要的形状,以适应工业化的需要,还可根据目标物体的需要即时弯曲或变形,与目标物体的结合较好,便于各种不同形式的目标面的利用,同时作为热电阵列的载体,还可有效保护热电阵列,防止了工作过程中的污染与机械损坏,延长了器件的使用寿命。进一步地,本申请还可通过封装层封装,有效保护基板、热电阵列以及相变材料储热模块,在采用柔弹性的聚二甲基硅氧烷PDMS封装时,可使整个器件也具有柔性的特征,以适用于各种复杂的形状的应用。

附图说明

为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本实用新型提供的温度调控器件的结构实施例一示意图;

图2为本实用新型提供的温度调控器件的结构实施例二示意图;

图3为本实用新型提供的温度调控器件的结构实施例三示意图;

图4为本实用新型器件与无相变器件参照温度变化对比图。

具体实施方式

为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。

还需要说明的是,本实用新型实施例中的“长度方向”、“宽度方向”、“上”、“下”、“内”、“外”、“一表(端)面”或“另一表(端)面”等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,或者是基于附图展示的位置而参考的,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不应该认为是具有限制性的。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

下面结合附图对本实用新型结构实施例做进一步详述。

实施例一:

参见图1,本实用新型提供了一种温度调控器件实施例一结构,包括第一基板1、第二基板3和热电阵列5,所述热电阵列5包括多个采用热电材料切割形成的统一规格尺寸的N型半导体热电单元51和P型半导体热电单元52,所述N型半导体热电单元51和P型半导体热电单元52可按设计电路相互交错通过间隙53间隔排列,排布后组合构成热电阵列5,且沿其长度或宽度方向形成间隔相对的第一端面54和第二端面55;所述第一基板1采用柔性基板,可为聚酰亚胺柔性材料制成的板状构件,其中的一表面11具有多个形成区域,可形成图形化区域布局的多个具有一定间隔的第一电极2,各所述第一电极2与N 型半导体热电单元51和P型半导体热电单元52的排列方式相适配,且略大于 N型半导体热电单元51和P型半导体热电单元52尺寸。所述第一电极2固定于第一基板1后,其具有向外的表面21,该表面21与N型半导体热电单元51 和P型半导体热电单元52上的第一端面54对位连接固定,即排列后的N型半导体热电单元51和P型半导体热电单元52分别贴合固定在各第一电极2之表面21上。同时设置一与目标物体表面形状相同的模型底座(未图示),然后将第一基板1上之可与目标物体表面相适配的感应面12(不具有第一电极2的表面)与该模型底座外表面贴合固定。由于第一基板1具有可塑的柔性,因此,第一基板1之感应面12便可预成型为与目标物体表面相吻合的形状,相应地,载有多个N型半导体热电单元51和P型半导体热电单元52第一基板1亦同时形成与目标物体表面一致的形状。同时,所述第二基板3亦采用柔性基板,亦可为聚酰亚胺柔性材料制成的板状构件,其表面31上亦具有多个形成区域,可形成图形化区域布局的多个具有一定间隔的第二电极4,用以连接热电阵列5 的第二端面55。同样地,各第二电极4与N型半导体热电单元51和P型半导体热电单元52的排列方式一致,且略大于N型半导体热电单元51和P型半导体热电单元52尺寸,但相对第一电极2错位设置,连接时,使所述第二电极4 上与热电阵列5相对的表面41与热电阵列5上的第二端面55对位固定连接。由于第二基板3也具有可塑之柔性,故与热电阵列5连接后,也形成了与第一基板1一致的形状,且由于第二电极4相对于第一电极2错位排列,故可使各 N型半导体热电单元51和P型半导体热电单元52之间形成电串联、热并联连接结构,从而使本实用新型夹设有热电阵列5的第一基板1和第二基板3成型为可与目标物体表面形状适配的结构。

需要说明的是,上述描述中,热电阵列5中按设计电路相互交错通过间隙 53间隔排列的N型半导体热电单元51和P型半导体热电单元52之间形成电串联、热并联连接结构,仅是本实用新型热电阵列5的实施例而已,实际使用中,也可以根据需要将N型半导体热电单元51和P型半导体热电单元52组合形成串、并组合电路结构或按照设计电路要求进行各种不同的排布,均属于本实用新型热电阵列5的保护范围。

可以理解地,基于第一基板1和第二基板3的可塑性,夹设有热电阵列5 的第一基板1和第二基板3还可以成型为其他所需要的形状,可以理解地,上述热电阵列,也可为无基底的柔性感触阵列,可随意弯曲为所需形状,皆是本实用新型的保护范围。

进一步参见图1,弯曲成型后,在所述第二基板3上,涂覆有相变材料,使第二基板3向外的表面32上附有相变材料层6。所述相变材料可采用新戊二醇(NPG)、氨基一2一甲基一1,3一丙二醇(AMP)、三羟甲基乙烷(PG)、三羟甲基氨基甲烷(TAM)、季戊四醇(PE)或三羟甲基丙烷(TMP)中的一种,也可以为上述材料中的任意两种或两种以上的组合。根据相变材料储能、控温之特性,在外界温度变化时,通过内部结构的转变,当温度升高时,相变材料储存热量;当温度降低时,相变材料释放热量。因而相变材料的设置可有效缓解器件温度的变化,实现温度的调控功能。而热电阵列产生的开路电压与两端的温差成比例,通过热电阵列5采用比较电压控制系统,可实现器件模块的温度调控,在目标物体表面感触温度高的时候,实现热量收集到相变材料集热模块,在目标物体表面感应温度低的时候,实现集热相变层放热。

从上述温度调控器件结构可以看到,本实用新型热电阵列5材料为热电半导体p-n材料,可根据Seebeck效应,当两端存在温差时,产生电压。由热电材料制成的热电阵列可利用温差发电,当外接负载时,通过由温差产生的电压对负载做功,或将温差产生的电能利用电池储存,可实现能量的转移,即可实现温度的调控功能。也可利用Peltier效应,当施加电流时,可将热量由一端转移到另一端,因而实现一端制冷,另一端加热的效果,转移热量的效率与施加的电流成正比。由热电材料制成的温度传感阵列,对其施加电流时,可实现两端分别制冷、加热的效果。而当施加的电流反向时,与之对应的加热和制冷面反向转换。因而,可以通过调节与温度传感阵列连接的电路中的电流大小与电流的方向,实现由电调节控温面的制冷或加热,以及温度调节的效率。即:通过热电阵列两端产生的电压与所施加的温差成正比,再根据监控热电器件产生的电压值,即可便捷的得到器件两端的温差值,实现温度监控的功能。由于热电阵列是采用是由多个较小的片状热电单元组合连接构成,只需将热电材料片切割加工成规格统一的结构尺寸即可,不需要采用复杂的热电阵列成型设备加工或是将热电阵列加工制成与目标面匹配的形状,使器件的加工制备工艺大大简化,成本低廉,且由于热电单元结构简单,由温度变化而产生的热应力小,从而大大提高了器件工作的稳定性。进一步地,由于热电单元单片的规格尺寸小,可根据需要设计排列组合即可,方便第一基板1和第二基板3的连接,有利于第一基板1和第二基板3的成型。同时,第一基板1和第二基板3采用柔性材料制成,与目标面外表面适配性非常强,还可作为热电阵列的载体,有效固定热电阵列,还可有效保护热电阵列,防止工作过程中的污染与机械损坏,延长了器件的使用寿命。

进一步地,本实用新型器件将相变材料层6与热电感触传感阵列5结合,可产生更多的电能。由于相变材料的相变储热与潜热释放的温度节点并不同步,即潜热释放的温度要低于热量储存时的温度。利用这一效应,热电感触传感阵列5在温度变化时,可产生更多的电能,即当外界温度升高时,热电感触传感阵列5两侧产生温差而发电,相变材料储存热量;当温度降低时,相变材料释放潜热,从而在两端再次产生一个温差,使器件再次发电。因此可将热电阵列两端与电压比较电路、电池连接组成电路系统(可参考现有技术中常规的电路),实现超过或降低某个温度点时,电路自动开关或电流转向功能。即热电感触传感阵列5产生的电压与所处于的温差成正比。因此,本实用新型利用热电感触传感阵列两端的电压与电压比较电路连接,当热电感触传感阵列两端的温差超过或低于设定值时,实现电路的自动切换制冷与加热功能,可自反馈调节温度,实现开关功能。这种模式可应用于实际场景,如在户外时,由于太阳光照或室外温度较高,相变材料储热,器件发电;而当返回室内时,温度降低,可利用相变材料的释放的潜热产生的温差,再次发电,从而实现热电阵列储能、加热、制冷功能模式的转变,使目标物体在温度变化的环境中的根据自身温度反馈,实现调控功能。

而且,由于本实用新型与目标物体的结合度较高,便于各种不同形式的目标物体的利用,能显著提高热电器件和目标物体的热交换效率。由于热电阵列排布结构简单,与现有的器件制备工艺契合度较高,易于现有的加工技术改进革新。

请再参见图1,本实用新型实施例一还包括封装层7,所述封装层7覆设于相变材料层6向外的表面上,且包覆组合后的热电阵列5、所述第一基板1和第二基板3的两侧,图示所示分别包覆上述三者组合后的左侧9和右侧8。所述封装层7可采用具有柔弹性的聚二甲基硅氧烷PDMS封装,组合形成器件整体结构。封装层7的设置可有效保护热电阵列5、所述第一基板1和第二基板3,还可避免第一基板1和第二基板3柔性变形时产生的开裂现象,且由于第一基板1、第二基板3、相变材料层6、封装层7各部分都具有柔性,因而可使组成的器件整体具有柔性,可适用于各种复杂曲面的应用。

本实用新型实施例一结构中,所述第一基板1和第二基板3均采用聚酰亚胺柔性材料制成,具有可弯曲性,热塑性好,高温达400℃以上不变形,且具有较高的绝缘性能,非常适于制作热电器件的柔性衬底。可以理解地,所述的第一基板1和第二基板3也可采用其他柔性材料制作,只要能够很好地承载热电阵列5且能够具有良好的热塑性及热传导性能,皆是本实用新型的保护范围。

本实用新型实施例一结构中,所述N型半导体热电单元51和P型半导体热电单元52均选用下述热电材料中的一种:Bi2Te3、MgSi2、Mg3Sb2、GeSi、CoSb3或PbTe;或者是采用half-hesuler或有机热电材料制成。将上述材料制成片状构件,然后切割成长0.1-5mm,宽0.1-5mm,高0.05-5mm的片状热电单元即可。所切割的N型半导体热电单元51和P型半导体热电单元52为最简单片状结构,规格尺寸小,便于加工,即使是在弯曲的第一基板1和第二基板3上排布时,都能够达到较小的曲率半径,可适用于各种不同热源外形尺寸。

本实用新型实施例一结构中,所述N型半导体热电单元51和P型半导体热电单元52之与第一电极2连接的第一端面54和与第二电极4连接的第二端面 55设有隔离层(未图示)。该隔离层可为Ni、Co、Fe、In、Pt、Ag、Au、Ti 或Zn中任一种单质的金属层,或上述两种及两种以上金属组成的合金层,优选镍层,其可通过喷涂、电镀或磁控溅射方式加工。镍金属的热导率和电导率都很高,性质稳定,有利于热传递,且热电材料热膨胀系数相匹配,还适用于滴加焊料,便于与第一电极2和第二电极4固定连接,还可有效保护热电阵列5,可防止焊料在高温下扩散进入热电阵列5。可以理解地,所述的隔离层并不限于上述列出的,也可以采用其他方式形成,只要能够有利于N型半导体热电单元51和P型半导体热电单元52与第一电极2和第二电极4连接、能够与热电材料热膨胀系数匹配且有利于电和热传导即可。

上述温度调控器件实施例制备方法包括下述步骤:

S1选取n/p型Bi2Te3、MgSi2、Mg3Sb2、GeSi、PbTe或CoSb3材料片;或者选用half-hesuler或有机热电材料片,然后根据目标物体外形尺寸按照长 0.1-5mm,宽0.1-5mm,高0.05-5mm的尺寸切割形成片状的N型半导体热电单元51和P型半导体热电单元52。

该步骤可在电镀后进行,可在热电材料片上镀0.04-0.6mm厚的镍层,然后再切割成热电单元。

S2根据热电阵列5的尺寸和目标物体的尺寸设计相应的第一基板1或第二基板3尺寸,并在第一基板1和第二基板3上加工图形化第一电极2和第二电极4。

该步骤中,第一电极2和第二电极4尺寸应略大于N型半导体热电单元51 和P型半导体热电单元52尺寸,以保证完全覆盖。同时,第一基板1和第二基板3上图形化的第一电极2和第二电极4需根据设计电路规则排布,使之后续与N型半导体热电单元51和P型半导体热电单元52固接时适配。

具体实施时,如器件结构为图示所示的弯曲结构(本实用新型图示实施例选择第一基板1与目标物体接触),可先设定第一电极2和第二电极4的断面长度相同,其长度尺寸不变,可根据目标物体的弯曲半径先计算相应的第一基板1对应的变形角度及长度尺寸,再根据N型半导体热电单元51和P型半导体热电单元52的厚度及间隙计算第二基板3长度尺寸。

S3根据第一基板1尺寸和加工一与第一电极2尺寸排列尺寸适配的不锈钢多孔钢网,然后将网格覆盖于第一基板1之第一电极2的表面21上,并在各小孔内滴加连接料(本实施例选用熔点为138℃的Sn42/Bi58焊料)于第一电极2 上,然后将多个N型半导体热电单元51和P型半导体热电单元52按设计电路排布放置于上述网格内,并使各N型半导体热电单元51和P型半导体热电单元 52之第一端面54与所述第一电极2贴合,利用红外加热器,加热至170℃— 180℃进行焊接,使各N型半导体热电单元51和P型半导体热电单元52与所述第一电极2之表面21对应连接。当各N型半导体热电单元51和P型半导体热电单元52牢牢固定于第一基板1上后,将网格移除。

该步骤主要是通过回流焊接方式使第一基板1与N型半导体热电单元51 和P型半导体热电单元52的第一端面54连接。可以理解地,第一基板1与N 型半导体热电单元51和P型半导体热电单元52的连接方式不仅仅限于焊接一种方式,只要能够保证第一基板1与N型半导体热电单元51和P型半导体热电单元52可靠地连接且能够保证电、热传递性能即可。

S4制作一与目标物体外表面相同的模型底座,然后将第一基板1上的不含有N型半导体热电单元51和P型半导体热电单元52的另一表面12与模型底座上与目标物体外表面相同的表面贴合,通过高温胶带或胶水粘接,使第一基板 1弯曲,预成型为与模型底座之贴合面相同的形状。

本步骤中,只要能够保证第一基板1能够可靠地贴合模型底座后预成型而不回弹,两者之间的任何连接方式皆可。

S5将网格覆设在第二基板3上,然后在所述第二电极4上滴加熔点为 138℃的Sn42/Bi58焊料,再将第二基板3弯曲后使第二电极4与N型半导体热电单元51和P型半导体热电单元52之第二端面55贴合,然后利用红外加热器,将焊料加热至170℃—180℃,使第二基板3与各N型半导体热电单元51和P 型半导体热电单元52第二端面55焊接连接。连接后,N型半导体热电单元51 和P型半导体热电单元52组合排列后夹设在第二基板3和第一基板1之间,且按设计电路连接,形成热电阵列5。

同样地,本步骤中,第二基板3与N型半导体热电单元51和P型半导体热电单元52的连接方式不仅仅限于焊接一种方式,只要能够保证第二基板3与N 型半导体热电单元51和P型半导体热电单元52可靠地连接且能够保证电、热传递性能即可。

S6当第二基板3形成与第一基板1一致的形状后,将模型底座移除,热电阵列5即稳定地夹设于弯曲的第一基板1和第二基板3之间。

S7涂覆相变材料:将相变转变温度与室温较接近的新戊二醇(NPG),与 5%的柠檬酸水溶液,混合成胶状,涂覆在第二基板3之向外的表面,烘干固化,形成相变材料层6。

S8、选用聚二甲基硅氧烷(PDMS)封装。可选用道康宁DC184,将主剂(硅弹性体)与硬化剂(硅弹性体固化剂)以质量比10:1比例混合均匀后,抽真空除去混合液中的气泡,浇注在覆有相变材料层6外表层以及组合后的相变材料层6、第一基板1、热电阵列5和第二基板3的左侧8右侧9,70-80℃加热1 小时,固化成型,即制备成温度调控器件。

该步骤中,利用具有柔弹性的聚二甲基硅氧烷封装,整合形成器件结构。因各部分都具有柔性,因而使组成的器件整体具有柔性,可适用于各种复杂曲面的应用。

需要说明的是,本实施例为预成型弧段的温度调控器件制备过程,实际使用时,可根据目标物体结构选择多段温度调控器件组合设置,非常方便。且由于本实用新型热电阵列5采用尺寸规格较小的片状热电单元构成,组合后可形成各种形状,故本实用新型温度调控器件的形状不局限于该实施例所述的圆弧形,也可以是直角形、多边形、圆锥形或其他异形等,不仅可以根据需要在生产和加工过程中预成型为目标物体所需要的形状,以实现工业化批量生产的需要,而且还可根据现场需要即时成型和组合成各种不同的形状,因而具有非常广泛的使用范围,能够满足各种不同目标物体的需要,对人工智能技术的发展有着十分重要的意义。

图4展示了本实施例与无相变材料的器件相比的温度变化图。在外加光照作为热源下,利用有无涂覆相变材料的两组器件,分别测量热电阵列与相变材料中间的温度,整体器件上表面与下表面的温度。其中,T上(TE+PCM)、T中(TE+PCM)、T 下(TE+PCM)分别表示本实用新型已封装器件上表面温度、相变材料与热电阵列之间温度、器件下表面的温度;t上(TE)、t中(TE)、t下(TE)分别表示参照器件封装上表面温度、PMMS封装层和热电阵列之间的温度、器件下表面的温度。

由图4对比分析,可明显观察到,本实用新型之覆有相变材料层的热电阵列对外输出电能时,器件整体达到平衡时的温度更低,达到平衡温度需要的时间更长;且在升温时在相变材料的相变点附近,可明显观察到温度曲线的斜率变缓,升温速度降低;在温度下降时,由于相变潜热的释放,温度有明显的上升。因此当温度上升时,相变材料储存热量,热电阵列将热量转变为电能,从而有效减缓了温度的上升;当温度下降时,释放相变潜热,同时可有效遏制温度的下降。故本实用新型器件可有效自适应感触、调控温度的变化。

实施例二:

参见图2,作为本申请温度调控器件实施例二结构,与实施例一不同的是,所述第一基板1和第二基板3是采用氧化铝或氮化铝陶瓷等刚性材料制成的板状构件,在第一基板1和第二基板3之间夹设热电阵列5,可不需要通过弯曲成型而直接形成类似“三明治”的平面形状。

进一步地,本实施例二图示的结构中所述相变材料层6可覆设在第一基板 1向外的表面上,通过利用热电感触传感阵列两端的电压与电压比较电路连接,当热电感触传感阵列两端的温差超过或低于设定值时,实现电路的自动切换制冷与加热功能,可自反馈调节温度,实现开关功能。可以理解地,由于本实施例为平面形结构,故所述的相变材料层6可以覆设在图示所示的第一基板1向外的表面上,也可以覆设在第二基板3向外的表面上,或者,分别覆设在第一基板1和第二基板3向外的表面。同样地,在相变材料层6上以及热电阵列5、所述第一基板1和所述第二基板3的左侧8和右侧9,均设有封装层7,可采用具有柔弹性的聚二甲基硅氧烷PDMS封装,包覆形成器件整体结构。当然,也可采用其他封装材料包覆形成器件整体结构。

本实施例二其他结构及功能与实施例一相同,在此不再赘述。

实施例三:

参见图3,作为本申请温度调控器件实施例三结构,与实施例一所不同的是,本实施例分别在第一基板1向外的表面设置相变材料层10,在第二基板3 向外的表面设置相变材料层6,即在第一基板1和所述第二基板3向外的表面分别覆盖了相变材料。进一步地,所述相变材料在覆设于第一基板1和第二基板3向外的表面时,可根据需要采用同种相变材料,也可以采用不同相变材料。

同样地,在相变材料层6、10上以及热电阵列5、所述第一基板1和所述第二基板3的左侧8和右侧9,均设有封装层7,通过封装材料将整个器件包覆而形成整体结构。这种结构,可实现更好的温控效果,温度调节的效率更快更高。

以上仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1