可压缩发泡热界面材料及其制备方法与流程

文档序号:18831814发布日期:2019-10-09 03:41阅读:225来源:国知局

本申请要求2017年1月17日提交的美国临时专利申请no.62/447,012的优先权和权益。上述申请的全部公开内容通过引用并入本文。

本公开涉及可压缩发泡热界面材料及其制备方法。



背景技术:

此部分提供与本公开相关的背景信息,其不一定是现有技术。

诸如半导体、集成电路封装、晶体管等的电气部件通常具有预先设计的温度,电气部件在该温度下最佳地操作。理想情况下,预先设计的温度接近周围空气的温度。但是电气部件的操作会产生热。如果不去除所述热,则电气部件可能在显著高于其正常的或期望的操作温度的温度下操作。这种过高的温度可能不利地影响电气部件的操作特性和相关联的装置的操作。

为了避免或至少减少热生成的不利操作特性,应该例如通过将操作电气部件的热传导到热沉来去除热。然后可以通过传统的对流和/或辐射技术来冷却热沉。在传导期间,热可以通过电气部件与热沉之间的直接表面接触和/或通过电气部件与热沉表面通过中间介质或热界面材料(tim)的接触而从操作电气部件传递到热沉。热界面材料可用于填充热传递表面之间的间隙,以便与间隙被空气(其为相对较差的热导体)填充的情况相比,提高热传递效率。

具体实施方式

现在将参考附图更充分地描述示例实施方式。

传统的热界面材料通常是不可压缩的。相反,在施加压力时,传统的热界面材料发生偏转,例如当夹在热源(例如,安装在pcb板上的部件等)与排热/散热结构(例如,散热器、热沉、热管、装置外壳或壳体等)之间时。尽管发生偏转而不是压缩的传统热界面材料可以很好地用于其预期目的,但是在一些系统中,可压缩热界面材料可以更好地工作。例如,在电动车(ev)的电池壁(batterywall)之间使用可偏转的不可压缩热界面材料可能不能特别好地工作。这是因为导致ev电池壁的膨胀和收缩的、不可压缩热界面材料的偏转和移动可能在热循环期间引起太大的压力。

本文公开了可压缩发泡热界面材料的示例性实施方式以及制备可真正压缩的热界面材料的方法。这与一些仅发生偏转而不发生压缩的传统热界面材料不同。

在示例性实施方式中,在分配现场固化(cure-in-place)热界面材料之前,将气体(例如,空气、氮气等)引入到该现场固化热界面材料中。例如,可以将预定量的氮气引入预定量的热固性双组分有机硅基热间隙填料中。热固性双组分有机硅基热间隙填料可包括第一组分a和第二组分b。组分a和组分b可各自包括有机硅、氧化铝和三聚氰胺。组分a或组分b也包括用于引发或开始固化过程的催化剂。

热固性双组分有机硅基热间隙填料的组分a和组分b可以从单独的筒通过入口单独引入或泵送到高速混合器中。然后,可以经由入口(通过该入口将组分a和组分b引入或泵送到高速混合器中)下游的入口将气体引入到组分a和组分b的混合物中。可以以高压和高的每分钟转速(rpm)(例如,等于或至少约2000rpm等)注入气体。

例如,可以紧接在分配现场固化热界面材料之前以2000rpm将气体注入到该现场固化热界面材料中。在充分地足够高的rpm(例如,2000rpm等)下,在现场固化热界面材料被分配之前,将气体切碎(chop)并混合到该现场固化热界面材料中。可以经由出口(现场固化热界面材料通过该出口被分配并暴露于大气)上游的入口注入气体。例如,气体可以经由这样的入口注入:该入口直接在将分配现场固化热界面材料的分配器的喷嘴的上游或恰好在该喷嘴前面。在该示例中,系统可以被配置成使得在气体入口与分配器喷嘴之间没有任何介于其间的入口或出口。

在暴露于或到达大气时,气体膨胀以留下发泡的热界面材料,该发泡的热界面材料随后在其被分配在的表面上现场固化。固化后,在施加压力时,发泡的热界面材料是可压缩的。代替仅能够发生偏转,可压缩发泡热界面材料能够膨胀和收缩,而不必物理地移动到界面(例如,可压缩发泡热界面材料与热源或排热/散热结构之间的界面等)或从该界面移动。

可压缩发泡热界面材料具有封闭气孔,使得基质相对良好地连接。尽管与基本的未发泡的热界面材料相比,被截留在可压缩发泡热界面材料内的气体的体积将降低热导率,但热导率的降低相对较低。因此,对于可压缩发泡热界面材料,热导率保持足够高(例如,至少约1.5瓦每米开尔文(w/mk)等)。

可压缩发泡热界面材料的孔密度可以在从约20%至约50%的范围内(例如,20%、25%、50%等)、小于20%、大于50%等。可压缩发泡热界面材料可以被分配到各种表面、结构、装置等上。举例来说,可压缩发泡热界面材料可以被分配到板级屏蔽件(bls)的盖上、装置壳体上、pcb上的部件或热源上、排热/散热结构(例如,散热器、热沉、热管、装置外壳或壳体等)上,等等。

在示例性实施方式中,可压缩发泡热界面材料可包括可分配热界面材料,例如现场固化热界面材料、导热油灰、热间隙填料、热相变材料、导热emi吸收材料(absorber)或混合热/emi吸收材料、导热垫、导热油脂、导热糊剂等。举例来说,可以使用laird公司的可分配热界面材料,例如tflextmcr200、tputtytm403、tputtytm504和/或tputtytm506可分配热间隙填料中的一种或更多种。例如,可压缩发泡热界面材料可以包括双组分现场固化陶瓷填充的有机硅基热间隙填料,其在室温下可固化、具有低粘度(例如,在混合之前不超过约260,000cps等)、良好的热导率(例如,至少约2w/mk等)并且柔软且适形(例如,3秒不超过约45的硬度(肖氏00)等)。作为另一示例,可压缩发泡热界面材料可以包括单组分有机硅基热间隙填料,其柔软、适形、低磨损并且具有良好的热导率(例如,至少约2.3w/mk等)。作为另一示例,可压缩发泡热界面材料可包括软的有机硅基热间隙填料,其为陶瓷填充的可分配硅凝胶,该可分配硅凝胶柔软且适形、具有良好的热导率(例如,至少约1.8w/mk等)、可以像油脂一样使用并且很容易从诸如丝网印刷、注射器和自动化设备之类的设备中分配出来。作为又一示例,可压缩发泡热界面材料可包括软的单组分有机硅油灰热间隙填料,其中不需要固化,其具有良好的热导率(例如,至少约3.5w/mk等)并且柔软、适形、非磨蚀以及可分配。

可压缩发泡热界面材料可包括各种不同的导热填料。导热填料可具有至少1w/mk或更高的热导率。示例填料包括氧化铝、铜、氧化锌、氮化硼、矾土、铝、石墨、陶瓷及其组合等。另外,示例性实施方式还可包括相同(或不同)导热填料的不同等级(例如,不同尺寸、不同纯度、不同形状等)。例如,可压缩发泡热界面材料可包括两种不同尺寸的氮化硼。通过改变导热填料的类型和等级,可根据需要变化可压缩发泡热界面材料的最终特性(例如,热导率、成本、硬度等)。

还可以添加其它合适的填料和/或添加剂以获得各种期望的结果。可以添加的其它填料的示例包括颜料、增塑剂、加工助剂、阻燃剂、增量剂等。例如,可以添加增粘剂等以增加热界面材料的粘性等。

作为另一示例,可以添加电磁干扰(emi)或微波吸收材料、导电填料和/或磁性颗粒,使得可压缩发泡热界面材料可以作为emi和/或rfi屏蔽材料来操作或使用。根据示例性实施方式,可以将各种材料添加到可压缩发泡热界面材料,例如羰基铁、硅化铁、铁颗粒、铁铬化合物、金属银、羰基铁粉、sendust(含85%铁、9.5%硅和5.5%铝的合金)、坡莫合金(含约20%铁和80%镍的合金)、铁氧体、磁合金、磁粉、磁性薄片、磁性颗粒、镍基合金和粉末、铬合金及其任何组合。其它实施方式可包括由上述材料中的一种或更多种形成的一种或更多种emi吸收材料,其中emi吸收材料包括颗粒、球状体、微球体、椭球体、不规则球状体、绞股(strand)、薄片、粉末中的一种或更多种和/或这些形状中的任一种或全部的组合。

作为背景技术,emi吸收材料通过通常称为损耗的过程将电磁能转换成另一种形式的能量。电损耗机制包括电导率损耗、介电损耗和磁化损耗。电导率损耗是指由于电磁能转换为热能而导致的emi降低。电磁能引起在具有有限电导率的emi吸收材料内流动的电流。有限电导率导致一部分感应电流通过电阻产生热。介电损耗是指由于电磁能转换成分子在具有非归一化相对介电常量的emi吸收材料内的机械位移而导致的emi降低。磁损耗是指由于电磁能转换为磁矩在emi吸收材料内的重新排列而导致的emi降低。

在示例性实施方式中,可压缩发泡热界面材料可以被分配到盖或盖子上和/或被分配到板级屏蔽件(bls)。bls盖可以与bls的栅栏(fence)、框架或侧壁成为一体或可拆卸地附接到bls的栅栏、框架或侧壁。例如,bls可以包括与bls的上表面、盖、盖子或顶部一体形成(例如,冲压然后折叠等)的侧壁。另选地,侧壁可以单独制造,而不是与bls的上表面一体形成。在一些示例性实施方式中,bls可包括两件式屏蔽件,其中上表面、盖、盖子或顶部可从侧壁拆卸并可重新附接到侧壁。在一些示例性实施方式中,bls可包括附接到bls和/或与bls一体形成的一个或更多个内壁、分隔物或隔离物。在这样的示例性实施方式中,bls的盖、侧壁和内壁可以共同限定多个单独的emi屏蔽隔室。在一些示例性实施方式中,bls框架可包括从侧壁的顶部向内延伸的周边凸缘。另选地,在其它示例性实施方式中,框架可以是无凸缘的(没有向内延伸的凸缘)。因此,本公开的各方面不应限于任何特定的板级屏蔽件配置。

在示例性实施方式中,bls的盖或盖子以及框架、栅栏或侧壁可由各种材料制成。举例来说,可以制造bls或其部分的示例性材料的非详尽列表包括冷轧钢、镍-银合金、铜-镍合金、不锈钢、镀锡冷轧钢、镀锡铜合金、碳钢、黄铜、铜、铝、铜-铍合金、磷青铜、钢以及它们的合金、涂有导电材料的塑料材料、或任何其它合适的导电和/或磁性材料。本申请中公开的材料仅出于说明的目的而提供于此,因为可以取决于例如特定的应用而使用不同的材料。

本文公开的示例实施方式可与各种热源、电子装置和/或排热/散热结构或部件(例如,散热器、热沉、热管、装置外壳或壳体等)一起使用。例如,热源可包括一个或更多个热生成部件或器件(例如,cpu、底部填充剂内晶片、半导体器件、倒装芯片器件、图形处理单元(gpu)、数字信号处理器(dsp)、多处理器系统、集成电路、多核处理器等)。通常,热源可包括如下任何部件或器件:该部件或器件的温度高于热界面材料或者以其它方式向热界面材料提供或传递热,而不管热是由热源生成的还是仅仅通过或经由热源传递的。因此,本公开的各方面不应限于与任何单一类型的热源、电子装置、排热/散热结构等一起的任何特定使用。

提供示例实施方式,使得本公开透彻,并将范围充分传达给本领域技术人员。陈述诸如特定部件、装置和方法的示例这样的许多具体细节,来提供本公开的实施方式的透彻理解。对本领域技术人员显而易见的是,不必采用具体细节,示例实施方式可按照许多不同形式来实施,且示例实施方式不应解释为限制公开的范围。在一些示例实施方式中,不对已知工艺、已知装置结构和已知技术进行详细描述。另外,可凭借本公开的一个或更多个示例性实施方式实现的优点和改进仅是为了例示的目的而提供的,并且不限制本公开的范围,这是因为本文所公开的示例性实施方式可提供所有上述优点和改进或都不提供,并且仍然落在本公开的范围内。

本文所公开的具体尺寸、具体材料和/或具体形状实质上是示例,并且不限制本公开的范围。本文所公开的给定参数的具体值和值的具体范围不排除可在本文所公开的一个或更多个示例中使用的其它值和值的范围。而且,可想到,本文所描述的具体参数的任意两个具体值可限定可适合于给定参数的值的范围的端点(即,公开给定参数的第一值和第二值可被解释为公开给定值也可采用介于第一值与第二值之间的任何值)。例如,如果本文中参数x被例示为具有值a并且还被例示为具有值z,则可想到,参数x可具有从约a至约z的值范围。类似地,可想到,公开参数的两个或更多个值范围(无论这些范围是嵌套的、交叠的还是相异的)包含了可利用所公开的范围的端点主张的值范围的所有可能组合。例如,如果本文中参数x被示例为具有在1–10或者2–9或者3–8范围内的值,则也可想到,参数x可具有其它值范围,包括1–9、1–8、1–3、1–2、2–10、2–8、2–3、3–10以及3–9。

本文所使用的用语仅仅是为了描述特定示例实施方式,并非旨在限制。如本文所使用的,除非上下文中以其它方式明确指示,否则单数形式“一”、“一个”、“所述”也旨在包括复数形式。用语“包括”、“包含”和“具有”可兼用,因此指定存在所述特征、整体、步骤、操作、元件和/或部件,但是不排除存在或添加一个或更多个其它特征、整体、步骤、操作、元件、部件和/或其群组。本文所描述的方法步骤、处理和操作不应被解释为必须要求它们按照所讨论或者示出的特定顺序来执行,除非明确地标识了执行顺序。还应理解,可采用附加或另选步骤。

当元件或层被称作“在”另一元件或层“上”、“接合到”另一元件或层、“连接到”另一元件或层或者“联接到”另一元件或层时,它可直接在另一元件或层上、接合到另一元件或层、连接到另一元件或层或者联接到另一元件或层,或者可存在中间元件或层。相比之下,当元件被称作“直接在”另一元件或层“上”、“直接接合到”另一元件或层、“直接连接到”另一元件或层或者“直接联接到”另一元件或层时,可能不存在中间元件或层。用于描述元件之间的关系的其它词应该按照类似方式来解释(例如,“在……之间”与“直接在……之间”、“相邻”与“直接相邻”等)。如本文所使用的,用语“和/或”包括一个或更多个相关所列项的任何以及所有组合。

用语“约”在应用于值时指示计算或测量允许值的一些轻微的不精确(与值的精确值有某些接近;近似或者合理地接近该值;差不多)。如果出于某些原因,“约”所提供的不精确在本领域中无法利用此普通含义来理解,则本文所使用的“约”至少指示可能由于普通测量方法或者使用这些参数而产生的变化。例如,本文中用语“通常”、“约”和“大致”可用于表示在制造容差内。无论是否由用语“约”修饰,权利要求包括数量的等同物。

尽管本文中可使用用语第一、第二、第三等来描述各种元件、部件、区域、层和/或部分,但这些元件、部件、区域、层和/或部分不应受这些用语限制。这些用语可仅用于将一个元件、部件、区域、层或部分与另一区域、层或部分区分开。诸如“第一”、“第二”的用语以及其它数值用语在用于本文时并不暗示顺序或次序,除非上下文明确指示。因此,在不脱离示例实施方式的教导的情况下,下面讨论的第一元件、第一部件、第一区域、第一层或第一部分可被称作第二元件、第二部件、第二区域、第二层或第二部分。

为了便于描述,本文中可使用诸如“内”、“外”、“下方”、“下面”、“下”、“上面”、“上”等的空间相对用语来描述一个元件或特征与另一元件或特征的如图所示的关系。空间相对用语可旨在除了图中所描绘的取向之外还涵盖装置在使用或操作中的不同取向。例如,如果图中的装置被翻转,则被描述为在其它元件或特征“下面”或“下方”的元件将被定向成在其它元件或特征“上面”。因此,示例用语“下面”可涵盖上面和下面的两种取向。装置可按照其它方式定向(旋转90度或者处于其它取向),并且相应地解释本文所使用的空间相对描述词。

对实施方式的上述说明是为了例示和说明的目的而提供的。并非旨在对本公开进行穷尽或者限制。具体实施方式的独立元件、所预期或所描述的用途或特征通常不限于该具体实施方式,而在适用情况下可互换,并且可用于所选实施方式中(即使没有具体示出或描述)。实施方式还可按照许多方式来改变。这种变型不被认为偏离公开,并且所有这种修改旨在包括在本公开的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1