一种具有量子阱结构隧穿结的多结太阳电池及制作方法与流程

文档序号:18469675发布日期:2019-08-20 20:08阅读:252来源:国知局
一种具有量子阱结构隧穿结的多结太阳电池及制作方法与流程

本发明涉及太阳电池技术领域,更具体地说,涉及一种具有量子阱结构隧穿结的多结太阳电池及制作方法。



背景技术:

太阳电池可将太阳能直接转换为电能,是一种最有效的清洁能源形势。砷化镓三结太阳电池凭借其较高的转换效率(约为si太阳电池的2倍)、优良的抗辐射性能、稳定的温度特性以及易于规模化生产等优势,已全面取代si太阳电池成为空间飞行器的主电源。其中,以gainp/ingaas/ge为代表的砷化镓三结太阳电池在空间光谱(amo)下转换效率已超过30%,在地面高倍聚光条件下转换效率已超过40%,成为了太阳电池转换效率的领跑者。

在砷化镓多结太阳电池结构中,引入隧穿结可实现子电池间的串联,解决子电池直接相连导致的电池反偏,实现光生载流子的良好运输,提高了多结电池的转换效率。

理想隧穿结应具有高晶体质量、高掺杂浓度和薄隧穿结构厚度等特点,具有至少比下一结子电池更宽的带隙,降低隧穿结对入射光吸收造成的光辐照电流损失;具有高峰值的隧穿电流,满足聚光砷化镓多结太阳电池大电流输运的要求;具有较低的串联电阻,以减小其对电池开路电压的损耗等。

1980年美国北卡罗来纳州大学的研究人员第一次将隧穿结在砷化镓多结太阳电池中应用,采用的是n-algaas/p-algaas结构。由于减少隧穿结吸光的要求,同样在1993年发明了n-gainp/p-algaas这种宽带隙的隧穿结结构,被广泛应用在商业化的砷化镓多结太阳电池结构中。

宽禁带材料隧穿结,可显著降低对光的吸收,有更高的隧穿电流。但是,随着材料带隙的增加,材料的有效掺杂浓度和载流子隧穿几率都会下降,导致隧穿结的隧穿电流急剧降低。特别对于高倍聚光电池应用,其要求隧穿结的峰值隧穿电流密度不能小于高倍聚光下的光电流。



技术实现要素:

有鉴于此,为解决上述问题,本发明提供一种具有量子阱结构隧穿结的多结太阳电池及制作方法,技术方案如下:

一种具有量子阱结构隧穿结的多结太阳电池,所述多结太阳电池包括:

衬底;

依次设置在所述衬底上的第一子电池、第一隧穿结、dbr反射层、第二子电池、第二隧穿结和第三子电池;

其中,所述第一隧穿结和所述第二隧穿结的结构相同,所述第一隧穿结包括在第一方向上依次设置的p型功能层和n型功能层,所述第一方向垂直于所述衬底,且由所述衬底指向所述第一子电池;

所述p型功能层包括在所述第一方向上交叠设置的多层p型势垒层和p型势阱层,且所述p型功能层的底层和顶层均为所述p型势垒层;

所述n型功能层包括在所述第一方向上交叠设置的多层n型势垒层和n型势阱层,且所述n型功能层的底层和顶层均为所述n型势垒层。

优选的,所述p型势垒层为p型alxgaas势垒层或p型inalxgaas势垒层,其中,0<x<1。

优选的,所述p型势阱层为p型alygaas势阱层或p型inalygaas势阱层,其中,0<y<x<1。

优选的,所述n型势垒层为n型alxgainp势垒层,其中,0<x<1。

优选的,所述n型势阱层为n型alygainp势阱层,其中,0<y<x<1。

优选的,所述p型势垒层和所述p型势阱层的厚度为3nm-10nm,包括端点值。

优选的,所述n型势垒层和所述n型势阱层的厚度为3nm-10nm,包括端点值。

优选的,所述p型功能层中p型势阱层的层数为1层-5层;

所述n型功能层中n型势阱层的层数为1层-5层。

优选的,所述n型势阱层和所述n型势垒层的掺杂元素为si或se或te,掺杂浓度为5e18-5e19;

所述p型势阱层和所述p型势垒层的掺杂元素为c或zn或mg,掺杂浓度为1e19-2e20。

一种具有量子阱结构隧穿结的多结太阳电池的制作方法,所述制作方法包括:

提供一衬底;

在所述衬底上依次设置第一子电池、第一隧穿结、dbr反射层、第二子电池、第二隧穿结和第三子电池;

其中,所述第一隧穿结和所述第二隧穿结的结构相同,所述第一隧穿结包括在第一方向上依次设置的p型功能层和n型功能层,所述第一方向垂直于所述衬底,且由所述衬底指向所述第一子电池;

所述p型功能层包括在所述第一方向上交叠设置的多层p型势垒层和p型势阱层,且所述p型功能层的底层和顶层均为所述p型势垒层;

所述n型功能层包括在所述第一方向上交叠设置的多层n型势垒层和n型势阱层,且所述n型功能层的底层和顶层均为所述n型势垒层。

相较于现有技术,本发明实现的有益效果为:

该多结太阳电池的第一隧穿结和第二隧穿结为量子阱结构,且该量子阱结构的数量可以为单个也可以为多个,量子阱结构具有量子限制效应,产生分立的量子能级,局域化电子和空穴。在隧穿结中设计量子阱结构,使得电子和空穴可以通过量子阱结构产生的局域化能级增加隧穿几率,进而极大程度的提高隧穿电流。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。

图1为本发明实施例提供的一种具有量子阱结构隧穿结的多结太阳电池的结构示意图;

图2为本发明实施例提供的第一子电池的结构示意图;

图3为本发明实施例提供的第二子电池的结构示意图;

图4为本发明实施例提供的第三子电池的结构示意图;

图5为本发明实施例提供的一种p型功能层的结构示意图;

图6为本发明实施例提供的一种具有量子阱结构隧穿结的多结太阳电池的制作方法的流程示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

参考图1,图1为本发明实施例提供的一种具有量子阱结构隧穿结的多结太阳电池的结构示意图,所述多结太阳电池包括:

衬底11;

依次设置在所述衬底11上的第一子电池12、第一隧穿结13、dbr反射层14、第二子电池15、第二隧穿结16和第三子电池17;

其中,所述第一隧穿结13和所述第二隧穿结16的结构相同,所述第一隧穿结13包括在第一方向上依次设置的p型功能层131和n型功能层134,所述第一方向垂直于所述衬底11,且由所述衬底11指向所述第一子电池12;

所述p型功能层131包括在所述第一方向上交叠设置的多层p型势垒层132和p型势阱层133,且所述p型功能层131的底层和顶层均为所述p型势垒层132;

所述n型功能层134包括在所述第一方向上交叠设置的多层n型势垒层135和n型势阱层136,且所述n型功能层134的底层和顶层均为所述n型势垒层135。

在该实施例中,该p型功能层131主要是由多层的p型势垒层132和p型势阱层133交叠组成的量子阱结构;n型功能层134主要由多层的n型势垒层135和n型势阱层136交叠组成的量子阱结构。

并且该多结太阳电池的第一隧穿结13和第二隧穿结16为量子阱结构,且该量子阱结构的数量可以为单个也可以为多个,量子阱结构具有量子限制效应,产生分立的量子能级,局域化电子和空穴。在隧穿结中设计量子阱结构,使得电子和空穴可以通过量子阱结构产生的局域化能级增加隧穿几率,进而极大程度的提高隧穿电流。

进一步的,所述第一子电池12为ge底电池。

参考图2,图2为本发明实施例提供的第一子电池的结构示意图,所述第一子电池12包括:

在所述第一方向上依次设置在所述衬底11上的第一发射区21和成核区22。

在该实施例中,所述第一子电池12的结构仅仅以举例的形式进行说明,在本发明实施例中并不作限定。

进一步的,所述第二子电池15为ingaas中电池。

参考图3,图3为本发明实施例提供的第二子电池的结构示意图,所述第二子电池15包括:

在所述第一方向上依次设置在所述dbr反射层14上的第一背场层31、第一基区32、第二发射区33和第一窗口层34。

在该实施例中,所述第二子电池15的结构仅仅以举例的形式进行说明,在本发明实施例中并不作限定。

进一步的,所述第三子电池17为(al)gainp顶电池。

参考图4,图4为本发明实施例提供的第三子电池的结构示意图,所述第三子电池17包括:

在所述第一方向上依次设置在所述第二隧穿结16上的第二背场层41、第二基区42、第三发射区43、第二窗口层44和接触层45。

在该实施例中,所述第三子电池17的结构仅仅以举例的形式进行说明,在本发明实施例中并不作限定。

进一步的,所述p型势垒层132为p型alxgaas势垒层或p型inalxgaas势垒层,其中,0<x<1。所述p型势阱层133为p型alygaas势阱层或p型inalygaas势阱层,其中,0<y<x<1。

在该实施例中,所述p型势垒层132和所述p型势阱层133的厚度为3nm-10nm,包括端点值。

需要说明的是,所述p型势垒层132和所述p型势阱层133的厚度可以相同也可以不相同。

进一步的,所述n型势垒层135为n型alxgainp势垒层,其中,0<x<1。所述n型势阱层136为n型alygainp势阱层,其中,0<y<x<1。

在该实施例中,所述n型势垒层135和所述n型势阱层136的厚度为3nm-10nm,包括端点值。

需要说明的是,所述n型势垒层135和所述n型势阱层136的厚度可以相同也可以不相同。

进一步的,所述p型功能层131中p型势阱层133的层数为1层-5层;

所述n型功能层134中n型势阱层136的层数为1层-5层。

需要说明的是,所述p型势阱层133的层数表征所述p型功能层131的量子阱周期数;所述n型势阱层136的层数表征所述n型功能层134的量子阱周期数。

参考图5,图5为本发明实施例提供的一种p型功能层的结构示意图,其中,p型势阱层133的层数为3层,n型势阱层136的层数为1层。

进一步的,所述n型势阱层136和所述n型势垒层135的掺杂元素为si或se或te,掺杂浓度为5e18-5e19;所述p型势阱层133和所述p型势垒层132的掺杂元素为c或zn或mg,掺杂浓度为1e19-2e20。

基于本发明上述全部实施例,在本发明另一实施例中还提供了一种具有量子阱结构隧穿结的多结太阳电池的制作方法,参考图6,图6为本发明实施例提供的一种具有量子阱结构隧穿结的多结太阳电池的制作方法的流程示意图,所述制作方法包括:

s601:提供一衬底;

s602:在所述衬底上依次设置第一子电池、第一隧穿结、dbr反射层、第二子电池、第二隧穿结和第三子电池;其中,所述第一隧穿结和所述第二隧穿结的结构相同,所述第一隧穿结包括在第一方向上依次设置的p型功能层和n型功能层,所述第一方向垂直于所述衬底,且由所述衬底指向所述第一子电池;所述p型功能层包括在所述第一方向上交叠设置的多层p型势垒层和p型势阱层,且所述p型功能层的底层和顶层均为所述p型势垒层;所述n型功能层包括在所述第一方向上交叠设置的多层n型势垒层和n型势阱层,且所述n型功能层的底层和顶层均为所述n型势垒层。

在该实施例中,通过该制作方法形成的具有量子阱结构隧穿结的多结太阳电池,第一隧穿结和第二隧穿结为量子阱结构,且该量子阱结构的数量可以为单个也可以为多个,量子阱结构具有量子限制效应,产生分立的量子能级,局域化电子和空穴。在隧穿结中设计量子阱结构,使得电子和空穴可以通过量子阱结构产生的局域化能级增加隧穿几率,进而极大程度的提高隧穿电流。

以上对本发明所提供的一种具有量子阱结构隧穿结的多结太阳电池及制作方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1