一种FeSiBCr/SiO2纳米晶软磁复合铁芯的制备方法与流程

文档序号:19867869发布日期:2020-02-08 05:31阅读:475来源:国知局
一种FeSiBCr/SiO2纳米晶软磁复合铁芯的制备方法与流程

本发明涉及粉末冶金及软磁材料技领域,具体涉及一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法。



背景技术:

在功能材料和结构材料领域中,铁基纳米晶软磁复合材料因具有高饱和磁感应强度、高磁导率、低矫顽力和低剩磁等优异的软磁性能,加上其力学性能优异,成本低廉,应用前景非常广泛。目前,商业铁基软磁复合材料通常是由具有核壳结构的软磁复合粉末(以铁磁性粉末为核,绝缘包覆剂为壳)压制而成。因此软磁复合粉末的性能对铁基软磁复合材料性能具有重要影响,而绝缘包覆剂的种类和用量是调节软磁复合粉末性能的关键因素,因此绝缘包覆是纳米晶软磁复合铁芯生产制造过程中最为核心的工序。优化铁基软磁复合材料和磁芯元件性能的基础是保持软磁复合材料中核壳结构的均匀性、完整性和致密性。然而,目前绝大多数软磁复合粉末制备中存在反应过程不易控制、绝缘包覆不均匀等缺陷,且易引入较多的sio2非磁性相,大幅度降低软磁复合粉末及材料的电磁性能。

为了进一步满足未来电机变频控制技术的要求,需要研究开发既可以承受高能量密度输入,又能满足低铁损的纳米晶软磁复合铁芯。如l.xu等(xul,yanb.fe-6.5%si/sio2powdercorespreparedbysparkplasmasintering:magneticpropertiesandsinteringmechanism[j].internationaljournalofmodernphysicsb,2017,31(16-19):17440111-17440116.)采用简单机械球磨工艺制备了fe-si/sio2软磁复合粉末,其电阻率达到了1.7×10-5ω·m,并保持优异的软磁特性。s.wu(wus,sunaz,luzw,chenc,gaoxx.magneticpropertiesofiron-basedsoftmagneticcompositeswithsio2coatingobtainedbyreversemicroemulsionmethod[j],journalofmagnetismandmagneticmaterials,2015,381:451-456.)采用反相微乳液法制备了包覆有非晶sio2层的fe/sio2软磁复合粉末,150khz下的磁芯损耗仅为未包覆样品的10%。然而,目前绝大多数软磁复合粉末制备中存在反应过程不易控制、绝缘包覆不均匀等缺陷,且易引入较多的sio2非磁性相,大幅度降低软磁复合粉末及材料的电磁性能。



技术实现要素:

本发明的目的在于克服上述现有技术存在的不足,提供了一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,采用本发明的制备方法能够保证fesibcr/sio2纳米晶软磁复合铁芯中复合粒子能够达到sio2包覆层厚度可控的目的,在具有较高电阻率的同时,具有较高的频率稳定性,所得铁硅合金复合粉末的铁损耗较低,且具有较好的热稳定性。

为实现以上目的,本发明通过以下技术方案予以实现:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,包括以下步骤:

(1)以纯度为99.0wt%以上的fesibcr非晶粉末为原料;将fesibcr非晶粉末、无水乙醇置于反应瓶中,机械搅拌分散,加入乙醇/水溶液继续分散,升温至40-60℃,加入硅烷偶联剂/乙醇溶液,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液;

(2)将正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液同时边搅拌边滴加至fesibcr非晶粉末溶液中,机械搅拌后继续加入乙醇,继续机械搅拌使其充分反应,后用无水乙醇反复清洗,再进行真空干燥,得fesibcr/sio2非晶复合粉末;

(3)称取fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,烧结结束后随炉冷却至室温;切割,得铁芯环,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得。

优选地,所述步骤(1)中,所述fesibcr非晶粉末中:所述fesibcr非晶粉末中:fe的含量为86-87wt%,si的含量为7-8wt%,b的含量为2-3wt%,cr的含量为2-3wt%。

优选地,所述步骤(1)中,fesibcr非晶粉末的粒度为300-400目。

优选地,所述步骤(2)中,fesibcr非晶粉末与硅烷偶联剂的质量比为13-16:1。

优选地,所述步骤(2)中,制备fesibcr/sio2非晶复合粉末在40-60℃恒温水浴锅中进行。

优选地,所述步骤(2)中,正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液的体积比为1:1。

优选地,所述步骤(2)中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴加速率为5ml/h,机械搅拌速率为700-800r/min。

优选地,所述步骤(2)中,真空干燥温度为70℃,时间为4h。

优选地,所述步骤(3)中,fesibcr/sio2非晶复合粉末的烧结温度为580-680℃,烧结压力为50-70mpa,升温速率为30-60℃/min,保温时间为10min;所述保护性气体为氮气或氩气或氮氩混合气。

采用本发明提供的技术方案,与现有技术相比,具有如下显著效果:

(1)本发明采用化学液相原位沉积可以成功合成fesibcr/sio2非晶复合粉末,结合热压烧结成功制备出fesibcr/sio2纳米晶软磁复合铁芯,在制备的软磁铁芯中,fesibcr磁性颗粒被sio2绝缘壳层均匀、致密且连续的包覆,实现了磁性颗粒间绝缘的软磁复合铁芯的结构构想。

(2)本发明中的fesibcr/sio2纳米晶软磁复合铁芯表现出高磁感、高电阻率、良好的频率稳定性、低矫顽力、以及低铁损等优异的电磁特性。相比无sio2绝缘层的fesibcr软磁铁芯,电阻率得到显著,同时大幅度降低了铁损,且随着测试频率的增加,铁损下降幅度越大,当测试频率超过20khz,fesibcr/sio2纳米晶软磁复合铁芯在铁损上的优势更为突出。

(3)本发明的通过控制化学液相原位沉积工艺中硅源的滴加量、反应温度、水含量和氨水含量等工艺参数可以控制teos的水解缩聚反应速率,达到调控sio2绝缘壳层的均匀性、连续性和壳厚的目的。

(4)本发明制备工艺简单,提高了生产效率,且对环境无污染,原料成本较低,适于推广使用。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为实施例中不同teos滴加量下制备的fesibcr/sio2纳米晶软磁复合铁芯的磁滞回线。

图2为实施例中不同teos滴加量制备的fesibcr/sio2软磁复合铁芯的相对磁导率(μr)随测试频率的变化曲线图。

图3为实施例中fesibcr纳米晶软磁铁芯(fesibcr软磁铁芯)和fesibcr/sio2纳米晶软磁复合铁芯(fesibcr/sio2复合铁芯)磁滞回线和相对磁导率随测试频率的变化趋势图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下述实施例中,所使用的fesibcr非晶粉末购于河北秦皇岛市雅豪新材料科技公司。fesibcr非晶粉末为水雾化合金粉末,球形度好,纯度为99.90wt.%以上、粒度为300-400目。fesibcr非晶粉末中:fe质量分数为约86.50wt%,si质量分数为7.53wt%,b质量分数为2.48wt%,cr质量分数为2.57wt%,其余为杂质元素,杂质元素含量较低。

实施例1-6:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,该方法按以下步骤进行:

(1)将50gfesibcr非晶粉末、300ml无水乙醇加入到三口烧瓶中,室温下机械搅拌(750r/min)分散5min,加入50ml乙醇/水溶液(其中乙醇40ml,其余为去离子水)继续分散15min,将溶液置于恒温水浴锅中加热到40℃;将硅烷偶联剂(aptes)3.4g溶于无水乙醇中制取50ml溶液加入到三口烧瓶的溶液中,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液。

(2)配制正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液,分别吸取到50ml规格的注射器a、b中(注射器a:正硅酸乙酯xml,无水乙醇余量;注射器b:氨水2.4ml,去离子水6.4ml,无水乙醇41.2ml),在40℃恒温下,同时边搅拌边滴加至fesibcr非晶粉末溶液中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴入速率均为5ml/h;滴加完毕后,机械搅拌(750r/min)1h后加入100ml乙醇,机械搅拌(750r/min)使其充分反应,后用无水乙醇反复清洗,在70℃下真空干燥4h,得fesibcr/sio2非晶复合粉末。

(3)称取制备得到的fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,对石墨模具施加纵向压力为50mpa,升温速率为50℃/min,烧结温度为630℃,保温10min,烧结结束后随炉冷却至室温,将圆柱状样品切割成环状,尺寸为:外径30mm,内径20mm,高度6mm,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得fesibcr/sio2纳米晶软磁复合铁芯。

在实施例1-6中,正硅酸乙酯(teos)的加入量x依次为0、6、8、10、12、15ml,对不同teos滴加量制备的fesibcr/sio2非晶复合粉末进行饱和磁化强度(ms)、剩余磁化强度(mr)和矫顽力(hc)进行测试,具体结果如表1所示。对不同teos滴加量制备的种fesibcr/sio2纳米晶软磁复合铁芯进行饱和磁化强度(ms)、剩余磁化强度(mr)和矫顽力(hc)进行测试,具体结果如表2所示。其中,当x为0ml,制备得到的产品为fesibcr软磁铁芯。

表1不同teos滴加量制备的fesibcr/sio2非晶复合粉末的饱和磁化强度(ms)、剩余磁化强度(mr)和矫顽力(hc)

表2不同teos滴加量制备的fesibcr/sio2纳米晶软磁复合铁芯的饱和磁化强度(ms)、剩余磁化强度(mr)和矫顽力(hc)

不同teos滴加量下制备的fesibcr/sio2纳米晶软磁复合铁芯的磁滞回线如图1所示。所有制备铁芯样品在外加磁场强度达到8000oe时磁感均达到饱和,具有高ms,低hc和低mr。

实施例7-12:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,该方法按以下步骤进行:

(1)将50gfesibcr非晶粉末、300ml无水乙醇加入到三口烧瓶中,室温下机械搅拌(750r/min)分散5min,加入50ml乙醇/水溶液(其中乙醇40ml,其余为去离子水)继续分散15min,将溶液置于恒温水浴锅中加热到50℃;将硅烷偶联剂(aptes)3.4g溶于无水乙醇中制取50ml溶液加入到三口烧瓶的溶液中,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液。

(2)配制正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液,分别吸取到50ml规格的注射器a、b中(注射器a:正硅酸乙酯xml,无水乙醇余量;注射器b:氨水1.3ml,去离子水6.4ml,无水乙醇42.3ml),在60℃恒温下,同时边搅拌边滴加至fesibcr非晶粉末溶液中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴入速率均为5ml/h;滴加完毕后,机械搅拌(750r/min)1h后加入100ml乙醇,机械搅拌(750r/min)使其充分反应,后用无水乙醇反复清洗,在70℃下真空干燥4h,得fesibcr/sio2非晶复合粉末。

(3)称取制备得到的fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,对石墨模具施加纵向压力为50mpa,升温速率为50℃/min,烧结温度为630℃,保温10min,烧结结束后随炉冷却至室温,将圆柱状样品切割成环状,尺寸为:外径30mm,内径20mm,高度6mm,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得fesibcr/sio2纳米晶软磁复合铁芯。

在实施例7-12中,正硅酸乙酯(teos)的加入量x依次为0、6、8、10、12、15ml,对不同teos滴加量制备的fesibcr/sio2纳米晶软磁复合铁芯的电阻率及不同频率下的铁损进行测试,具体结果如表3所示。其中,当x为0ml,制备得到的产品相当于fesibcr软磁铁芯。

表3不同teos滴加量制备的fesibcr/sio2纳米晶软磁复合铁芯的电阻率及不同频率下的铁损

上述不同teos滴加量制备的fesibcr/sio2纳米晶软磁复合铁芯的相对磁导率(μr)随测试频率的变化曲线图如图2所示。所有铁芯样品的初始μr值都比较大,随着teos滴加量的增加,初始μr值先降低后增大,随着teos的滴加量从6ml增加到12ml,fesibcr/sio2软磁复合铁芯中sio2绝缘层的厚度增加,μr的值有所下降;当teos的滴加量继续增加到15ml,由于游离态sio2的聚集,包覆不均匀,fesibcr磁性粒子间sio2绝缘壳层厚度降低,样品的μr值反而有所增加。同时所有样品的μr均随测试频率的增加先大幅度降低后趋于平稳。

实施例13:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,该方法按以下步骤进行:

(1)将50gfesibcr非晶粉末、300ml无水乙醇加入到三口烧瓶中,室温下机械搅拌(750r/min)分散5min,加入50ml乙醇/水溶液(其中乙醇40ml,其余为去离子水)继续分散15min,将溶液置于恒温水浴锅中加热到50℃;将硅烷偶联剂(aptes)3.4g溶于无水乙醇中制取50ml溶液加入到三口烧瓶的溶液中,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液。

(2)配制正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液,分别吸取到50ml规格的注射器a、b中(注射器a:正硅酸乙酯10ml,无水乙醇40ml;注射器b:氨水1.8ml,去离子水6.4ml,无水乙醇41.8ml),在50℃恒温下,同时边搅拌边滴加至fesibcr非晶粉末溶液中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴入速率均为5ml/h;滴加完毕后,机械搅拌(750r/min)1h后加入100ml乙醇,机械搅拌(750r/min)使其充分反应,后用无水乙醇反复清洗,在70℃下真空干燥4h,得fesibcr/sio2非晶复合粉末。

(3)称取制备得到的fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,对石墨模具施加纵向压力为50mpa,升温速率为50℃/min,烧结温度为630℃,保温10min,烧结结束后随炉冷却至室温,将圆柱状样品切割成环状,尺寸为:外径30mm,内径20mm,高度6mm,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得fesibcr/sio2纳米晶软磁复合铁芯。

在实施例13中,当正硅酸乙酯的加入量为0ml时,可制备得到fesibcr软磁铁芯。将实施例13中的fesibcr/sio2纳米晶软磁复合铁芯和相应的fesibcr软磁铁芯进行测试,其中fesibcr纳米晶软磁铁芯和fesibcr/sio2纳米晶软磁复合铁芯磁滞回线如图3中的(a)所示,相对磁导率随测试频率的变化趋势图如图3中的(b)所示。

图(a)两种软磁铁芯均当外加磁场强度达到8000oe时磁感达到饱和,具有高的饱和磁感应强度ms、低的矫顽力hc和低剩磁(mr)。fesibcr纳米晶软磁铁芯相比fesibcr/sio2纳米晶软磁复合铁芯的ms从164.2emu/g降低到155.3emu/g;hc的值略有升高从13.9a/m升高到19.8a/m,两种软磁铁芯的剩磁从0.9emu/g升高到1.4emu/g。图(b)包覆具有绝缘作用的非磁性相sio2后,铁芯中磁性相相对含量降低,同时增大了磁性粒子fesibcr的间距,从而减弱了磁性粒子间的交互耦合作用,致使在较低频率(<3khz)下,fesibcr软磁铁芯比fesibcr/sio2软磁复合铁芯的相对磁导率要大,fesibcr/sio2纳米晶软磁复合铁芯的有效磁导率当测试频率超过50khz后才会下降,且下降趋势较缓,而fesibcr纳米晶软磁铁芯有效磁导率则在1khz后就急剧下降,说明fesibcr/sio2纳米晶软磁复合铁芯的频率稳定性要比无sio2包覆fesibcr纳米晶软磁铁芯的好很多。

实施例14:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,该方法按以下步骤进行:

(1)将50gfesibcr非晶粉末、300ml无水乙醇加入到三口烧瓶中,室温下机械搅拌(750r/min)分散5min,加入50ml乙醇/水溶液(其中乙醇40ml,其余为去离子水)继续分散15min,将溶液置于恒温水浴锅中加热到50℃;将硅烷偶联剂(aptes)3.4g溶于无水乙醇中制取50ml溶液加入到三口烧瓶的溶液中,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液。

(2)配制正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液,分别吸取到50ml规格的注射器a、b中(注射器a:正硅酸乙酯6ml,无水乙醇44ml;注射器b:氨水6.4ml,去离子水6.4ml,无水乙醇37.2ml),在50℃恒温下,同时边搅拌边滴加至fesibcr非晶粉末溶液中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴入速率均为5ml/h;滴加完毕后,机械搅拌(750r/min)1h后加入100ml乙醇,机械搅拌(750r/min)使其充分反应,后用无水乙醇反复清洗,在70℃下真空干燥4h,得fesibcr/sio2非晶复合粉末。

(3)称取制备得到的fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,对石墨模具施加纵向压力为65mpa,升温速率为60℃/min,烧结温度为680℃,保温10min,烧结结束后随炉冷却至室温,将圆柱状样品切割成环状,尺寸为:外径30mm,内径20mm,高度6mm,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得fesibcr/sio2纳米晶软磁复合铁芯。

实施例15:

一种fesibcr/sio2纳米晶软磁复合铁芯的制备方法,该方法按以下步骤进行:

(1)将50gfesibcr非晶粉末、300ml无水乙醇加入到三口烧瓶中,室温下机械搅拌(750r/min)分散5min,加入50ml乙醇/水溶液(其中乙醇40ml,其余为去离子水)继续分散15min,将溶液置于恒温水浴锅中加热到50℃;将硅烷偶联剂(aptes)3.4g溶于无水乙醇中制取50ml溶液加入到三口烧瓶的溶液中,对fesibcr非晶粉末进行表面修饰,得fesibcr非晶粉末溶液。

(2)配制正硅酸乙酯/乙醇溶液和氨水/水/乙醇溶液,分别吸取到50ml规格的注射器a、b中(注射器a:正硅酸乙酯8ml,无水乙醇42ml;注射器b:氨水6.4ml,去离子水6.4ml,无水乙醇37.2ml),在50℃恒温下,同时边搅拌边滴加至fesibcr非晶粉末溶液中,正硅酸乙酯/乙醇溶液和氨水/水乙醇溶液的滴入速率均为5ml/h;滴加完毕后,机械搅拌(750r/min)1h后加入100ml乙醇,机械搅拌(750r/min)使其充分反应,后用无水乙醇反复清洗,在70℃下真空干燥4h,得fesibcr/sio2非晶复合粉末。

(3)称取制备得到的fesibcr/sio2非晶复合粉末置于特定的石墨模具中进行热压烧结,对石墨模具施加纵向压力为70mpa,升温速率为30℃/min,烧结温度为580℃,保温10min,烧结结束后随炉冷却至室温,将圆柱状样品切割成环状,尺寸为:外径30mm,内径20mm,高度6mm,将铁芯环在保护性气体中进行去应力退火,消除残余应力,即得fesibcr/sio2纳米晶软磁复合铁芯。

结合实施例1-15可知,制备得到的fesibcr纳米晶软磁复合铁芯中fesibcr磁性颗粒被sio2绝缘壳层均匀、致密且连续的包覆,并能通过控制化学液相原位沉积工艺中工艺参数调控sio2绝缘壳层的厚度、均匀性和连续性,表现出高电阻率、良好的频率稳定性、低矫顽力、以及低铁损等优异的电磁特性,与同类软磁复合铁芯比优势明显。采用本发明的方法制备得到的铁硅合金复合粉末的电阻率高、损耗低、热稳定性好,且其制备工艺简单,提高了生产效率,对环境无污染,原料成本较低,同时所得fesibcr纳米晶软磁复合铁芯具有良好的频率稳定性、低矫顽力,能够满足电磁转换装备向高频化发展的使用需求,适于推广使用。

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1