MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用与流程

文档序号:23621009发布日期:2021-01-12 10:31阅读:404来源:国知局
MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用与流程

本发明属于复合电极材料技术领域,涉及复合电极,尤其涉及一种mof衍生的ni-co-s纳米颗粒生长在碳布上(cc@coni-s)的复合电极制备方法及其应用。



背景技术:

21世纪以来,由于过度使用化石燃料导致的环境污染以及能源紧缺问题日趋严重,开发无污染新型能源以及设计新型环保的储能装置是目前面临重大挑战之一。超级电容器是介于静电电容器和传统化学电源的新型储能器件,因其具有较高的功率密度、优异的倍率性能、快速的充放电速度及极长的循环寿命等优点而被广泛应用于电子设备、混合动力汽车、备用电源系统等领域。电极材料是超级电容器的核心部分,开发新型电极材料是研究新型储能装置至关重要的一步。

最近,金属有机骨架(mofs)作为一种具有高表面积,可调节的孔径分布、结构可定制性等优越特征的新型材料,被认为是制备多孔纳米结构电极的有效前驱体。其中,mofs衍生的过渡金属硫化物和多孔碳材料等,已被广泛应用于包括气体分离及吸附、催化、传感和药物输送等诸多方面。

据了解,coni-mof衍生的金属硫化物,特别是coni-s对于高性能超级电容器(sc)和锂离子电池(lib)是最受欢迎的电极材料之一,这归因于它们具有高比表面积和可调的孔隙结构等优点,能有效地增强电子/离子传输动力学,进一步获得更高的电化学性能。但是,若单独使用coni-mof衍生物纳米粉末作为电极材料,由于它的导电性和循环稳定性极差等缺点使其难以获得理想的电化学性能。近年来,构建coni-mof衍生的金属硫化物coni-s和碳布(cc)的复合电极材料是一种提高导电性、实际比容量和循环稳定性的有效方法。另一方面,碳布(cc)是一种具有超高导电性的双电层碳基材料,能够形成独特的网状结构,可有效地提高复合材料的导电性进而提高材料比容量。

此外,coni-mof衍生的coni-s纳米颗粒生长在碳布上,避免了粘合剂的使用,降低了材料的阻抗,从而极大地提高了材料整体的导电性能和最大化膜的比表面积,有利于电子的传导和溶液中离子的传输。迄今为止,还没有将coni-mof衍生的coni-s纳米颗粒在碳布上生长用来制备复合电极材料及应用在超级电容器方面的报道。



技术实现要素:

针对上述现有技术中存在的不足,本发明的一个目的是在于公开一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极制备方法。

技术方案:以六水合硝酸钴(co(no3)2·6h2o),六水合硝酸镍(ni(no3)2·6h2o),聚乙二醇(peg-200),乙酸钠(c2h9nao5),2-甲基咪唑(c4h6n2),硫代乙酰胺(taa)和碳布(cc)为原料,先通过简单快速的化学反应法得到碳布(cc)表面负载coni-mof材料,再经水热硫化法合成碳布cc@coni-s复合电极材料。

一种mof衍生的coni-s纳米颗粒生长在碳布上(cc@coni-s)的复合电极制备方法,包括以下步骤:

a、配制摩尔浓度为0.25mol/l的ni(no3)2、0.5mol/lco(no3)2和0.1mol/l乙酸钠的聚乙二醇溶液,后加入超声均匀,其中所述co(no3)2、ni(no3)2和乙酸钠在聚乙二醇溶液中以体积比1:1:0.4~1.2:1.2:0.4混合搅拌均匀,优选1:1:0.4,将混合液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

b、将浸渍后的碳布(cc)浸入经超声分散均匀的0.4mol/l2-甲基咪唑溶液中0.5h~6h,得到生长有coni-mof的碳布(cc),即cc@coni-mof复合材料,其中所述碳布(cc)浸入时间优选2h;

c、硫代乙酰胺(taa)与无水乙醇以固液比为1~2mg:1~3ml,优选2mg:3ml超声分散均匀,转移至反应釜并浸入cc@coni-mof复合材料,90℃~120℃恒温1~3h,优选120℃恒温2h,自然冷却至室温,取出,用去离子水和乙醇交替洗净,真空60℃干燥24h得到cc@coni-s复合电极。

根据本发明所述方法,制得的cc@coni-s复合材料的尺寸约为1cm×2cm,尺寸可以根据实际情况随意裁剪,其微观状态下表面负载有线状纳米阵列中附着中空多面体结构。

本发明的另外一个目的,将所制得cc@coni-s复合材料作为超级电容器电极材料。

将所制得的cc@coni-s复合材料作为正极电极材料,以摩尔浓度6mol/l的koh为电解液,将活性炭与导电炭黑、粘结剂以质量比为8:1:1均匀混合分散在溶剂中,然后涂覆在泡沫镍上,干燥、压片,制备成电极片作为电容器的负极材料在两电极体系中进行循环伏安(cv)和恒电流充放电等电化学性能测试,并计算其相应的能量密度和功率密度,以评估所制得cc@coni-s复合薄膜的电化学性能。其中所述的循环伏安(cv)测试的电压范围为0~1.7v,扫描速度为2、5、10、20、50和100mv/s,恒电流充放电测试的电压范围为0~1.7v,电流密度为1、2、3、5、8和10a/g。

本发明所制得的cc@coni-s复合薄膜电极材料利用x射线衍射仪(xrd)、chi760e电化学工作站等仪器对产物进行结构分析以及性能分析,以评估其电化学活性。

因碳布凭借其良好的柔韧性可以广泛的应用于便携式电子器件,相较于其他柔性材料,碳布更加的不易破损,其表面负载的线状纳米阵列和以mof作为骨架的中空多面体结构更加有利于电荷的储存以及移动。

本发明所用反应物试剂,均为市售,六水硝酸钴(co(no3)2·6h2o)、六水硝酸镍(ni(no3)2·6h2o)、硫代乙酰胺(taa)、乙酸钠(c2h9nao5)、无水乙醇(c2h5oh)、氢氧化钾(koh),国药集团化学试剂有限公司;2-甲基咪唑(c4h6n2),98%,阿拉丁;碳布(cc),台湾碳能。

有益效果

本发明通过非常简易的热溶剂法、化学浸泡反应法和水热硫化法三个步骤合成cc@coni-s复合电极材料。以碳布为基底很大程度上增强了材料的柔韧性和导电性,同时coni-mof衍生的coni-s纳米颗粒直接在碳布上原位生长,避免了粘合剂的使用,降低了材料的阻抗,还可以最大化离子可接触比表面积,提供了大量反应的活性位点。

附图说明

图1.实施例2所制备的cc@coni-s复合电极材料的xrd衍射谱图。

图2.实施例2所制备cc@coni-s复合电极材料扫描电子显微镜图。

图3.实施例2所制备cc@coni-s复合电极材料的透射电镜照片。

图4.实施例2所制备cc@coni-s复合电极材料的能量密度-功率密度图。

图5.实施例2所制备cc@coni-s复合电极材料的循环稳定性图。

具体实施方式

下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。

除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。

实施例1

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为0.5h;

步骤3、称取硫代乙酰胺(taa)20mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例2

一种mof衍生的cc@coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将3.492gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌6h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为2h;

步骤3、称取硫代乙酰胺(taa)20mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

cc@coni-s复合电极材料表征分析

如图1所示,从图中可以看出有nico2s4和co9s8的衍射峰,并无其他杂相,说明成功制备出了cc@coni-s复合薄膜

如图2所示,从图中可以看到coni-s纳米颗粒均匀的原位生长在碳布上形成复合结构。

如图3所示,从图中可以看到coni-s纳米颗粒是纳米线组成的纳米空心颗粒且成功附着在碳布上,形成复合纳米结构。

如图4所示,为本实施例所制备的cc@coni-s复合材料作为超级电容器电极材料用于两电极体系的应用,从能量密度-功率密度图图中可以看出合成的cc@coni-s复合电极材料有着良好的功率密度和能量密度,当最大的能量密度达到48.308wh/kg时其功率密度为1275w/kg。

如图5所示,为本实施例所制备的cc/coni-s//acasc复合材料用作电极材料进行循环稳定性测试结果,循环8000次后其比电容保持了初始容量的84.091%。

实施例3

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和6.984gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌6h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为6h;

步骤3、称取硫代乙酰胺(taa)20mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例4

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为0.5h;

步骤3、称取硫代乙酰胺(taa)10mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例5

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为2h;

步骤3、称取硫代乙酰胺(taa)10mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于105℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例6

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为6h;

步骤3、称取硫代乙酰胺(taa)10mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例7

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为1h;

步骤3、称取硫代乙酰胺(taa)15mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例8

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为2h;

步骤3、称取硫代乙酰胺(taa)15mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于105℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例9

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为6h;

步骤3、称取硫代乙酰胺(taa)15mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

实施例10

一种mof衍生的coni-s纳米颗粒生长在碳布上的复合电极材料制备方法:

步骤1、将2.91gni(no3)2和5.82gco(no3)2加入40ml聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(cc)200℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;

步骤2、将碳布(cc)浸入经超声分散均匀40ml的0.4mol/l2-甲基咪唑溶液中,得到生长有coni-mof碳布(cc),其中所述碳布(cc)浸入时间为2h;

步骤3、称取硫代乙酰胺(taa)20mg溶于30ml乙醇中,经过超声15min后,将所得溶液转移到50ml反应釜中并将cc@coni-mof复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到cc@coni-s复合材料。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1