多层电容器及其安装结构的制作方法

文档序号:83990阅读:315来源:国知局
专利名称:多层电容器及其安装结构的制作方法
技术领域
本发明涉及单片电容器以及单片电容器的安装结构。更具体地,本发明涉及适合用于高频电路的单片电容器以及单片电容器的安装结构。
背景技术
作为用于在例如约几GHz的高频范围内的微处理单元(MPU)等的电源电路的去耦合电容器,已知的有具有在日本未审查专利申请公开第11-144996号(专利文献1)中描述的结构的单片电容器。在该单片电容器中,多个端子设置成使相邻端子极性的相反。因此,从正端子到负端子的电流路径变短,并且电流以各种方式流动。此外,使电流以彼此相反的方向流动,以抵消磁通量,由此减小等效串联电感(ESL)。
然而,在上述专利文献1中描述的单片电容器中,等效串联电阻(ESR)也随着ESL的减小而减小。因此,产生了阻抗特性陡变的问题。
作为另一个例子,根据日本未审查专利申请公开第2001-284170号(专利文献2)中提出的技术,对于设置在主电容器单元中用于形成电容器的每一个内部电极,仅设置了一个向外延伸到主电容器单元的外表面并电连接到外部端子电极的引出部,因此增加了单片电容器的ESR。
然而,根据专利文献2所述的结构,虽然可增加ESR,但ESL也增加。这导致高频特性的劣化问题。
专利文献1日本未审查专利申请公开第11-144996号专利文献2日本未审查专利申请公开第2001-284170号
发明内容
本发明要解决的问题因此,本发明的一个目的是提供一种单片电容器,在这种电容器中在可减小ESL的同时可增加ESR。
本发明的另一个目的是提供一种单片电容器的安装结构,以便使单片电容器的低ESL特性得以充分地展现,其中ESL以如上所述的方式减小。
解决问题的手段根据本发明的单片电容器包括具有由多层介电层的叠层组成的单片结构的主电容器单元。根据本发明,为了解决上述的技术问题,单片电容器被构造成如下所述。
包含于单片电容器中的主电容器单元包括第一和第二电容器部。
第一电容器部包括经由诸介电层中的预定的一层彼此相对以形成电容的至少一对第一和第二内部电极。第一内部电极具有形成于其上、向外延伸到主电容器单元的外表面的多个第一引出部,而第二内部电极具有形成于其上、向外延伸到主电容器单元的外表面的多个第二引出部。
第二电容器部包括经由介电层中预定的一层彼此相对以形成电容的至少一对第三和第四内部电极,第三内部电极具有形成于其上、向外延伸到主电容器单元的外表面的至少一个第三引出部,而第四内部电极具有形成于其上、向外延伸到主电容器单元的外表面的至少一个第四引出部。
在主电容器单元的外表面上,形成有各自电连接到第一、第二、第三和第四引出部的第一、第二、第三和第四外部端子电极。
在上述条件下,根据本发明的第一实施例,一对第三和第四内部电极的第三和第四引出部的对数小于一对第一和第二内部电极的第一和第二引出部的对数。
在根据本发明的第一实施例的单片电容器中,通常,用于第三内部电极的第三引出部的数量和用于第四内部电极的第四引出部的的数量中的至少一个小于用于第一内部电极的第一引出部的数量和用于第二内部电极的第二引出部的数量。
在这种情况下,第三内部电极和第四内部电极中的任意一个可具有与第一内部电极和第二内部电极中的任意一个相同的图案。
在根据本发明的第一实施例的单片电容器中,较佳地是,第三内部电极的第三引出部的数量和第四内部电极的第四引出部的数量小于第一内部电极的第一引出部的数量和第二内部电极的第二引出部的数量。
根据本发明的第二实施例,第一电容器部的谐振频率高于第二电容器部的谐振频率,并且由包含于第二电容器部中的一对第三和第四内部电极以及介电层中插入的一层给出的每一层的等效串联电阻高于由包含于第一电容器部中的一对第一和第二内部电极以及介电层中插入的一层给出的每一层的等效串联电阻。
在根据本发明的第二实施例的单片电容器中,第三内部电极和第四内部电极中的任意一个可具有与第一内部电极和第二内部电极中的任意一个相同的图案。
第一和第二外部端子电极中的至少一个可以是第三和第四外部端子电极中的至少一个。
较佳地是,第一外部端子电极和第二外部端子电极交替地排列。
较佳地是,在主电容器单元中,第一电容器部和第二电容器部沿叠层的方向排列,且第一电容器部位于叠层方向上的至少一端上。在这种情况下,更佳地是,在主电容器单元中,第二电容器部在叠层方向上夹在两个第一电容器部之间。
本发明还涉及单片电容器的安装结构,其中根据关于上述沿叠层方向排列的第一和第二电容器部的较佳实施例的单片电容器被安装到预定的安装面上。在根据本发明的单片电容器的安装结构中,安装单片电容器,使主电容器单元排列成使得第一电容器部更接近安装面。
优点在根据本发明的第一实施例的单片电容器中,主电容器单元分为第一和第二电容器部,并且第一电容器部中的一对第三和第四外电极的第三和第四引出部的对数被选为小于第二电容器部中的一对第一和第二内部电极的第一和第二引出部的对数。因此,在第一电容器部中ESL可进一步减小,使得有可能使第一电容器部的谐振频率高于第二电容器部的谐振频率。因此,第一电容器部影响主电容器单元的组合特性中的较高频率范围的频率特性。因此,反映了第一电容器部的ESL特性,使得主电容器单元的ESL可减小。
此外,因为主电容器单元分为第一和第二电容器部,并且第一电容器部的谐振频率不同于第二电容器部的谐振频率,所以主电容器单元的ESR根据第一电容器部的ESR和第二电容器部的ESR的组合特性来确定。如上所述,因为第一电容器部中的一对第三和第四内部电极的第三和第四引出部的对数被选为小于第二电容器部中的一对第一和第二内部电极的第一和第二引出部的对数,所以在第二电容器部中ESR可进一步增加。因此第二电容器部用于增加主电容器单元的ESR。
因此,可获得同时满足低ESL和高ESR的单片电容器。
在根据本发明的第一实施例的单片电容器中,为了如上所述地使第三和第四引出部的对数小于第一和第二引出部的对数,通过使第三内部电极的第三引出部的数量和第四内部电极的第四引出部的数量小于第一内部电极的第一引出部的数量和第二内部电极的第二引出部的数量,即可必定无疑地实现因第一电容器部引起的ESL减小和因第二电容器部引起的ESR增加。
在根据本发明的第二实施例的单片电容器中,主电容器单元分为第一和第二电容器部,且第一电容器部的谐振频率高于第二电容器部的谐振频率。因此,第一电容器部影响主电容器单元的组合特性中较高频率范围的频率特性。因此,反映第一电容器部的ESL特性,使得主电容器单元的ESL可减小。
此外,因为主电容器单元分为第一和第二电容器部且第一电容器部的谐振频率不同于第二电容器部的谐振频率,所以主电容器单元的ESR根据第一电容器部的ESR和第二电容器部的ESR的组合特性来确定。这用于增加ESR。
因此,可获得既满足低ESL又满足高ESR的单片电容器。
在根据本发明的单片电容器中,当第一和第二外部端子电极交替地排列时,从正端子向负端子的电流路径变得短了,而且可更有效地抵消磁通量。因此,可进一步减小第一电容器部中的ESL。
在主电容器单元中,当第一电容器部和第二电容器部沿叠层方向排列、且第一电容器部位于叠层方向上的至少一端、且单片电容器安装的方式是排列主电容器单元使得第一电容器部更接近安装面时,可使从正外部端子电极通过内部电极流向负外部端子电极的电流路径更短。因此,可在安装结构中减小ESL。因此,可充分地表现可减小ESL的单片电容器的低ESL特性。
当第二电容器部在主电容器单元中的叠层方向上夹在两个第一电容器部之间时,当获得如上所述的可减小ESL的安装结构时,主电容器单元的顶面和底面之间的差别并不重要。
附图简述图1示出根据本发明的第一实施例的单片电容器1的外表的立体图。
图2示出安装状态下图1所示的单片电容器1的截面图,其中示出了沿图3和4中的线II-II截取的单片电容器1横截面。
图3示出图2所示的第一电容器部11的内部结构的俯视图,其中(a)示出横过第一内部电极13的截面而(b)示出横过第二内部电极14的截面。
图4示出图2所示的第二电容器部12的内部结构的俯视图,其中(a)示出横过第三内部电极15的截面而(b)示出横过第四内部电极16的截面。
图5示出由图1所示的单片电容器1给出的等效电路的示意图。
图6示出一个在其中图1所示的单片电容器用作去耦合电容器的MPU电路构造图。
图7示出用于解释对应于图4的根据本发明的第二实施例的单片电容器1a的图。
图8示出用于解释对应于图4的根据本发明的第三实施例的单片电容器1b的图。
图9用于解释根据本发明的第四实施例的单片电容器1c,其中(a)和(b)分别对应于图3(a)和3(b),而(c)和(d)分别对应于图4(a)和4(b)。
图10用于解释根据本发明的第五实施例的单片电容器1d,其中(a)和(b)分别对应于图3(a)和3(b),而(c)和(d)分别对应于图4(a)和4(b)。
图11示出用于解释对应于图3的根据本发明的第六实施例的单片电容器1e的图。
图12示出用于解释对应于图4的根据本发明的第七实施例的单片电容器1f的图。
图13示出用于解释根据本发明的第八实施例的单片电容器1g的介电层9的俯视图。
图14示出用于解释对应于图3的根据本发明的第九实施例的单片电容器1h的图。
图15示出用于解释对应于图4的根据本发明的第十实施例的单片电容器1i的图。
图16示出用于解释对应于图3的根据本发明的第十一实施例的单片电容器1j的图。
图17示出用于解释对应于图4的根据本发明的第十二实施例的单片电容器1k的图。
图18示出根据本发明第十三实施例的单片电容器61的外表的立体图。
图19示出说明第一电容器部62和第二电容器部63在图18所示的单片电容器61中如何排列的侧视图。
图20示出介电层72的俯视图,示出图19所示的第一电容器部62的内部结构,其中(a)示出横过第一内部电极73的截面而(b)示出横过第二内部电极74的截面。
图21示出介电层72的俯视图,示出图19所示的第二电容器部63的内部结构,其中(a)示出横过第三内部电极75的截面而(b)示出横过第四内部电极76的截面。
图22示出用于解释对应于图19的根据本发明的第十四实施例的单片电容器61a的图。
图23示出用于解释对应于图19的根据本发明的第十五实施例的单片电容器61b的图。
图24示出说明在为了确认本发明的优点而实施的第一和第二实验中对第一和第二电容器部如何层叠和排列的一些例子的图。
图25示出在第一实验中制造的试样11的第一电容器部中的内部电极的图案的俯视图。
图26示出在第一实验中制造的试样11的第二电容器部中的内部电极的图案的俯视图。
图27示出在第一实验中制造的试样12的第一电容器部中的内部电极的图案的俯视图。
图28示出在第一实验中制造的试样12的第二电容器部中的内部电极的图案的俯视图。
图29示出分别在第一和第二实验中制造的试样13和29中的第二电容器部中的内部电极的图案的俯视图。
图30示出在实验2中生产的试样21、25和29的频率-阻抗特性的图。
附图标记1、1a、1b、1c、1d、1e、1f、1g、1h、1i、1j、1k、61、61a、61b单片电容器2、3、65、66主表面4至7、67至70侧表面8、71主电容器单元9、72介电层11、62第一电容器部12、63第二电容器部13、73第一内部电极14、74第二内部电极15、75第三内部电极16、76第四内部电极
17、77第一引出部18、78第二引出部19、79第一外部端子电极20、80第二外部端子电极21、81第三引出部22、82第四引出部25、64安装面31第三外部端子电极32第四外部端子电极实现本发明的最佳方式图1至4示出根据本发明的第一实施例的单片电容器,图1示出单片电容器1的外表的立体图,而图2示出单片电容器1的安装结构的截面图。在图2中,示出是的沿稍后描述的图3和4中的线II-II截取的单片电容器1横截面。
单片电容器1包括具有两个彼此相对的主表面2和3以及连接主面2和3的四个侧面4、5、6和7的长方体形主电容器单元8。主电容器单元8具有由平行于主面2和3的多个介电层9的叠层形成、并由例如介电陶瓷材料组成的单片结构。
如图2所示,主电容器单元8包括第一电容器部11和第二电容器部12。在该实施例中,第一电容器部11和第二电容器部12沿叠层的方向排列,且第二电容器部12在叠层的方向上夹在两个第一电容器部11之间。因此,第一电容器部11在主电容器单元8的叠层的方向上的两端。
第一电容器部11中的每一个具有至少一对经由预定的介电层9彼此相对以形成电容器的第一内部电极13和第二内部电极14。第二电容器部12具有至少一对经由预定的介电层9彼此相对以形成电容器的第三内部电极15和第四内部电极16。
在该实施例中,为了实现较大的容抗值,第一内部电极13和第二内部电极14组成的电极的对数以及第三内部电极15和第四内部电极16组成的电极的对数是大于1的数。
图3示出第一电容器部11的内部结构的俯视图,其中(a)示出横过第一内部电极13的截面而(b)示出横过第二内部电极14的截面。
如图3(a)所示,第一内部电极13具有形成于其上、向外延伸到主电容器单元8的外表面-即侧面4至7-的多个-例如七个-第一引出部17。此外,如图3(b)所示,第二内部电极14具有形成于其上、向外延伸到主电容器单元8的外表面-即侧面4至7-的多个-例如七个-第二引出部18。因此,多于一个第一内部电极13和第二内部电极14的电极对的第一引出部17和第二引出部18的对数是七。
在主电容器单元8的侧面4至7上,形成有各自电连接到第一引出部17的多个(例如七个)第一外部端子电极19以及各自电连接到第二引出部18的多个(例如七个)第二外部端子电极20。形成第一外部端子电极19和第二外部端子电极20的方式是使它们从侧面4至7延伸到主面2和3上的部件,如图1和2所示。
侧面4至7上一个个的第一引出部17向外延伸所至的位置不同于一个个的第二引出部18向外延伸所至的位置。因此,一个个的第一外部端子电极19形成于侧面4至7之上的位置不同于一个个的第二外部端子电极20的位置。第一外部端子电极19和第二外部端子电极20在侧面4至7上交替地排列。
图4示出第二电容器部12的内部结构的俯视图,其中(a)示出横过第三内部电极15的截面而(b)示出横过第四内部电极16的截面。
如图4(a)所示,第三内部电极15具有形成于其上、向外延伸到主电容器单元8的外表面(即,侧面5和7)的至少一个(例如,二个)第三引出部21。此外,如图4(b)所示,第四内部电极16具有形成于其上、向外延伸到主电容器单元8的外表面(即,侧面5和7)的至少一个(例如,二个)第四引出部22。因此,多于一个第三和第四内部电极15和16的电极对的第三和第四引出部21和22的对数是二。
在该实施例中,第三引出部21电连到前面所描述的第一外部端子电极19上,而第四引出部22电连接到前面所描述的第二外部端子电极20。即,部分的第一外部端子电极19是将要电连接到第三引出部21的第三外部端子电极,而部分的第二外部端子电极20是将要电连接到第四引出部22的第四外部端子电极。
当第三和第四引出部21和22如上所述地电连接到第一和第二引出部17和18电连接于其上的第一和第二外部端子电极19和20时,第一电容器部11和第二电容器部12在单片电容器1之中即处于并联连接。
或者,如在稍后描述的实施例中那样,将要连接到第三和第四引出部21和22的第三和第四外部端子电极可在第一和第二外部端子电极之外单独设置。
在上述的第一实施例中,用于一对第三和第四内部电极15和16的第三和第四引出部21和22的对数小于用于一对第一和第二内部电极13和14的第一和第二引出部17和18的对数。更具体地,前者是2而后者是2。
特别地,在第一实施例中,用于第三内部电极15中的每一个的第三引出部21的数量和用于第四内部电极16中的每一个的第四引出部22的数量小于用于第一内部电极13中的每一个的第一引出部17数量和用于第二内部电极14中的每一个的第二引出部18的数量。更具体地,前者是2而后者是7。
因此,有可能使电流在第一和第二内部电极13和14中以各种方向流动。因此,通过磁通量抵消,有可能使第一电容器部11的ESL低于第二电容器部12的ESL。
另一方面,在第三和第四内部电极15和16中,如上所述,用于第三内部电极15中的每一个的第三引出部21的数量和用于第四内部电极16中的每一个的第四引出部22的数量小于用于第一内部电极13中的每一个的第一引出部17的数量和用于第二内部电极14中的每一个的第二引出部18的数量。因此,假设内部电极13至16或引出部17、18、21和22对ESR的影响在第一电容器部11和第二电容器部12之间并无差异,并且诸如内部电极13至16的材料之类的其它条件相同,则在第三和第四内部电极15和16中电流方向的数量小于在第一和第二内部电极13和14中的。因此,能使第二电容器部12的ESR高于第一电容器部11的ESR。
从另一个角度看,在第一实施例中,用于第三内部电极15中的每一个的第三引出部21的数量和用于第四内部电极16中的每一个的第四引出部22的数量小于用于第一内部电极13中的每一个的第一引出部17的数量和用于第二内部电极14中的每一个的第二引出部18的数量。更具体地,前者是2而后者是7。因此,假设诸如内部电极13至16的材料之类的其它条件是相同的,则能使第一电容器部11的ESL低于第二电容器部12的ESL。因此,能使第一电容器部11的谐振频率高于第二电容器部12的谐振频率。
另一方面,因为第三引出部21的数量和第四引出部22的数量小于第一引出部17的数量和第二引出部18的数量,假设内部电极13至16或引出部17、18、21和22对ESR的影响在第一电容器部11和第二电容器部12之间并无差异,则能使由包含于第二电容器部12中的一对第三和第四内部电极15和16以及插入的介电层9给出的每一层的ESR高于由包含于第一电容器部11中的一对第一和第二内部电极13和14以及插入的介电层9给出的每一层的ESR。
根据上述内容,在单片电容器1的特性中,归功于第一电容器部11的低ESL特性有效地发挥作用,而且表现出高ESR特性,这反映了第一电容器部11的ESR特性和第二电容器部12的ESR特性。因此,以单片电容器1可同时实现低ESL和高ESR。
图2示出其中单片电容器安装在由电路板24给出的安装面25上的结构。在电路板24的安装面25上,设置了一些导电焊区26和27,并且第一和第二外部端子电极19和20例如通过焊接(未示出)分别电连接到导电焊区26和27。
在上述的安装结构中,单片电容器1的安装方式是主电容器单元8被排列成使得第一电容器部11更接近安装面25。
在如上所述地安装的单片电容器1中,在第一外部端子电极变为正端而第二外部端子电极20变为负端的时间点上,考虑从正端通过内部电极13至16流向负端流动电流环路,通过最底层的两个内部电极13(a)和14(a)流动的电流随着频率升高对ESL值的影响更加显著,如图2中的虚线箭头所指示的。因此,当如上所述地使第一电容器部11更接近安装面25时,在安装状态中的单片电容器1中ESL可进一步减小。
当第二电容器部12如第一实施例中那样沿叠层方向夹在两个第一电容器部之间时,主电容器单元8的顶面和底面之间的差别不重要。因此,无论如图2所示的主面3面向安装面25还是未示出的主面2面向安装面25,ESL都可如上所述地减小。
图5示意性地示出由上述单片电容器1给出的等效电路。为了显示图5所示元件和图1至4所示元件之间的对应关系,在图5中,对应于图1至4中所示的元件的元件用相同的附图标记来指示。
在图5中,对于第一内部电极13至第四内部电极16中的每一个,一个内部电极由一条线指示。在第一电容器部11中,示出两对第一和第二内部电极13和14,并且通过在两对第一和第二内部电极13和14之间示出虚线,表明可设置更大数量的第一和第二内部电极13和14。类似地,在第二电容器部12中,示出了两对第三和第四内部电极15和16,并且通过在两对第三和第四内部电极15和16之间示出虚线,表明可设置更大数量的第三和第四内部电极15和16。
当图5与之前描述的图2比较时,第一电容器部11中的第一和第二内部电极13和14的数量不一致。应该理解这是因为图2中仅示出了第一和第二内部电极13和14的代表。
如图5所示,对于引出部17、18、21和22中的每一个,ESR 29和ESR 30与每一个引出部相关联地形成。
图6示出用于解释根据该实施例的单片电容器1的较佳应用。更具体地,图6示出单片电容器在其中被用作去耦合电容的MPU的电路构造图。
MPU包括MPU芯片101和存储器102。电源103用于向MPU芯片101提供电能。在电源103和MPU芯片101之间的电源电路上,连接有单片电容器1,用作去耦合电容器。此外,在存储器102对MPU芯片101的一侧上形成有信号电路,尽管未示出。
用作上述的MPU的去耦合电容器的单片电容器1的作用是作为快速电源以及吸收噪声或使电源变化平滑。因此,在用作去耦合电容器的单片电容器1中,期望ESL最小化。在这方面,根据本实施例的单片电容器可有利地用作去耦合电容器。
图7示出用于解释对应于图4的根据本发明的第二实施例的单片电容器1a的图。在图7中,对应于图4所示元件的元件由相同的附图标记指示,并将省略其描述。
与上述的第一实施例相比,在第二实施例中,第三内部电极15仅在其上形成一个第三引出部21,且第四内部电极16仅在其上形成一个第四引出部22。其它方面的构造与第一实施例相同。
根据第二实施例,包含于第二电容器部12中的用于一对第三和第四内部电极15和16的第三和第四引出部21和22的对数仅为1。因此,与第一实施例相比,在第二电容器部12中的ESR可进一步增加。
图8示出用于解释对应于图4的根据本发明的第三实施例的单片电容器1b。在图8中,对应于图4所示元件的元件由相同的附图标记指示,并省略了其描述。
在第三实施例中,第三内部电极15和第四内部电极16中的任意一个具有与图3所示的第一内部电极13和第二内部电极14中的任意一个相同的图案。更具体地,如图8(b)所示,第四内部电极16具有与图3(b)所示的第二内部电极14相同的图案。因此,第四内部电极16具有形成于其上的七个第四引出部22。其它方面的构造与第一实施例的相同。
在第三实施例中,一个第四内部电极16具有七个第四引出部22,但一个第三内部电极15仅具有两个第三引出部21。因此,第三引出部21和第四引出部22的对数是2,它小于第一引出部17和第二引出部18的对数7。因此,能使第二电容器部12的ESR高于第一电容器部11的ESR。
从另一个角度看,第三实施例满足用于第三内部电极15中的每一个的第三引出部21的数量和用于第四内部电极16中的每一个的第四引出部22的数量中的至少一个小于用于第一内部电极13中的每一个的第一引出部17的数量和用于第二内部电极14中的每一个的第二引出部18的数量。因此,由包含于第二电容器部12中的一对第三和第四内部电极15和16以及插入的介电层9所给出的每一层的ESR比第一实施例中的低,能使每一层的ESR高于由包含于第一电容器部11中的一对第一和第二内部电极13和14以及插入的介电层9所给出的每一层的ESR。
图9用于解释根据本发明的第四实施例的单片电容器1c。图9(a)和9(b)分别对应于图3(a)和3(b),图9(c)和9(d)分别对应于图4(a)和4(b)。在图9中,对应于图3和4所示的元件的元件由相同的附图标记指示,并省略了其描述。
在第四实施例中,第三和第四外部端子电极31和32单独形成。更具体地,形成于侧面5和7上、与主电容器单元8的短侧相关联的外部端子电极是第三和第四外部端子电极31和32而不是第一和第二外部端子电极19和20。如图9(c)和9(d)所示,第三内部电极15的第三引出部21和第四内部电极16的第四引出部22分别电连接到第三和第四外部端子电极31和32。
另一方面,如图9(a)所示,第一内部电极13在其上仅形成五个第一引出部17,并且这些第一引出部17仅向外延伸到与主电容器单元8的长侧相关联的侧面4和6并电连接到第一外部端子电极19。此外,如图9(b)所示,第二内部电极14在其上仅形成五个第二引出部18,并且这些第二引出部18仅向外延伸到与主电容器单元8的长侧相关联的侧面4和6并电连接到第二外部端子电极20。
其它方面的构造基本与第一实施例的相同。
根据第四实施例,与第一实施例相比,假设除第一引出部17的数量和第二引出部18的数量外的条件是相同的,第一电容器部11的谐振频率变得更小了。此外,估计第一电容器部11的ESL将更加高。
图10用于解释根据本发明的第五实施例的单片电容器。图10(a)和10(b)分别对应于图3(a)和3(b),图10(c)和10(d)分别对应于图4(a)和4(b)。在图10中,对应于图3和4所示元件的元件由相同的附图标记指示,并省略了其描述。
在第五实施例中,没有外部端子电极形成于与主电容器单元8的短侧相关联的侧面5和7上。即,第一和第二外部端子电极19和20仅形成于与主电容器单元8的长侧相关联的侧面4和6上。
此外,在第五实施例中,如图10(c)部所示,第三内部电极15在其上形成一个第三引出部21,并且该第三引出部21电连接到第一外部端子电极19中的一个上。此外,如图10(d)所示,第四内部电极16在其上形成一个第四引出部22,并且第四引出部22电连接到第二外部端子电极20中的一个上。
其它方面的构造基本与第一实施例相同。
第五实施例的重要性在于澄清本发明适用于单片电容器1d,其中在与主电容器单元8的短侧相关联的侧面5和7上无外部端子电极形成。
图11示出用于解释对应于图3的根据本发明的第六实施例的单片电容器1e的图。在图11中,对应于图3所示元件的元件由相同的附图标记指示,并省略了其描述。
在第六实施例中,如图11(a)所示,假引出部38形成于其中形成了第一内部电极13的介电层9上。此外,如图11(b)所示,假引出部39形成于其中形成了第二内部电极14的介电层9上。
假引出部38和39位于介电层9的外围。假引出部38位于多个第一引出部17之间并电连接到第二外部端子电极20。假引出部39位于多个第二引出部18之间并电连接到第一外部端子电极19。
有了如上所述地形成的假引出部38和39,可减小在主电容器单元8中由于内部电极13和14的厚度引起的高度差,并且可增强外部端子电极19和20与主电容器单元8结合强度。
图12示出用于解释对应于图4的根据本发明的第七实施例的单片电容器1f的图。在图12中对应于图4所示元件的元件由相同的附图标记指示,并将省略其描述。
在第七实施例中,如图12(a)所示,假引出部40形成于其中形成了第三内部电极15的介电层9上。此外,如图12(b)所示,假引出部41形成于其中形成了第四内部电极16的介电层9上。
假引出部40和41沿介电层9的短侧设置。假引出部40电连接到形成于与主电容器单元8的短侧相关联的侧面5和7上的第二外部端子电极20。假引出部41电连接到形成于与主电容器单元8的短侧相关联的侧面5和7上的第一外部端子电极19。
如上所述的假引出部40和41基本表现出与前面描述并示于图11中的假引出部38和39相同的作用和优点。
作为图12所示的第七实施例的修改,假引出部还可沿介电层9的长侧设置。同样在该情况下,假引出部各自电连接到形成于与主电容器单元8的长侧相关联的侧面4和6上的第一和第二外部端子电极19和20上。
图13示出用于解释根据本发明的第八实施例的单片电容器1g的图。在图13中,显示了许多类似于图3或图4中所示元件的元件。因此,在图13中,对应于图3或图4所示元件的元件由相同的附图标记指示,并省略了其描述。
图13示出介电层9,其中没有内部电极形成于包含于主电容器单元8中的介电层9中。其中没有形成内部电极的这种介电层9位于沿叠层方向的主电容器单元8的末端或者在第一电容器部11和第二电容器部12的边界处。
在第八实施例中,如图13所示,多个假引出部42沿其中没有内部电极形成的介电层9的外围形成。假引出部42电连接到外部端子电极19或20。将假引出部42的尺寸选为与前面描述的假引出部38至41基本相同,并较佳地将其排列成不与内部电极13至16的主要部分交叠。
假引出部42也表现出与前面描述的假引出部38至41基本相同的作用和优点。
上述的包括假引出部的第六至第八实施例可单独实施。然而,较佳地是,两个或多个实施例可组合实施,更佳地是,三个实施例组合起来实施。
图14示出用于解释对应于图3的根据本发明的第九实施例的单片电容器1h的图。在图14中,对应于图3所示的元件的元件由相同的附图标记指示,并省略了其描述。
图14(a)和14(b)分别示出图3(a)和3(b)所示的第一和第二内部电极13和14。图14(c)示出一假内部电极45。在该实施例中,假内部电极45具有与图14(b)所示的第二内部电极14相同的图案。即,假内部电极45具有形成于其上、向外延伸到主电容器单元8的侧面4至7的引出部46,并且引出部46电连接到第二外部端子电极20。
如前所述,为了形成第一电容器部11(参考图2),图14(a)所示的第一内部电极13和图14(b)所示的第二内部电极层叠起来以便彼此相对。在该实施例中,在上述的单片结构中,至少一个假内部电极45邻近第二内部电极14层叠在沿叠层方向的末端和/或中间。
通过如上所述地在单片结构中引入假内部电极45,虽然容抗值不增加,但第二外部端子电极20与主电容器单元8的结合强度可增强。因此,该实施例在不需要大的容抗值但要确保外部端子电极20的结合强度同时允许一定数量的介电层9的层叠的情况下是有其优势的。
作为第九实施例的修改,可形成具有与第一内部电极13相同图案的假内部电极。
图15示出用于解释根据本发明的第十实施例的单片电容器1i的图。在图15中,对应于图4所示元件的元件由相同的附图标记指示,并省略了其描述。
图15(a)和15(b)分别示出图4(a)和4(b)所示的第三和第四内部电极15和16。图15(c)示出一假内部电极49。在该实施例中,假内部电极49具有与图15(b)所示的第四内部电极16相同的图案。即,假内部电极49具有向外延伸到与主电容器单元8的短侧相关联的侧面5和7的引出部50,并且引出部50电连接到第二外部端子电极20。
如前所述,当图15(a)所示的第三内部电极15和图15(b)所示的第四内部电极16层叠以便彼此相对,来形成第二电容器部12(参考图2)时,至少一个假内部电极49邻近第四内部电极16层叠在在沿叠层方向的末端和/或中间。上述的假内部电极49表现出与图14(c)所示的假内部电极45基本相同的作用和优点。
作为第十实施例的修改,可形成具有与第三内部电极15相同图案的假内部电极。
图16示出用于解释对应于图3的根据本发明的第十一实施例的单片电容1j的图。在图16中,对应于图3所示元件的元件由相同的附图标记指示,并省略了其描述。
图16(a)和16(b)分别示出图3(a)和3(b)中所示的第一和第二内部电极13和14。图16(c)示出一假内部电极53。在该实施例中,假内部电极53具有与图4(b)所示的第四内部电极相同的图案。即,假内部电极53具有形成于其上、向外延伸到与主电容器单元8的短侧相关联的侧面5和7的引出部54,并且引出部54电连接到第二外部端子电极20。
当图16(a)所示的第一内部电极13和图16(b)所示的第二内部电极14如前所述地层叠以便彼此相对,来形成第一电容器部11(参考图2)时,至少一个假内部电极53邻近第二内部电极14层叠在沿叠层方向的末端和/或中间。
上述的假内部电极53表现出分别与图14和15所示的假内部电极45和49基本相同的作用和优点。
作为第十一实施例的修改,可形成具有与图4(a)所示的第三内部电极15相同图案的假内部电极。
图17示出用于解释对应于图4、根据本发明的第十二实施例的单片电容器1k的图。在图17中,对应于图4所示元件的元件由相同的附图标记指示,并省略了其描述。
图17(a)和17(b)分别示出图4(a)和4(b)中所示的第三和第四内部电极15和16。图17(c)示出一假内部电极57。假内部电极57具有与图3(b)所示的第二内部电极14相同的图案。即,假内部电极57具有形成于其上的向外延伸到主电容器单元8的侧面4至7的引出部58,并且引出部58电连接到第二外部端子电极20。
当图17(a)所示的第三内部电极15和图17(b)所示的第四内部电极16如前所述地层叠以便彼此相对,来形成第二电容器部12(参考图2)时,至少一个假内部电极57邻近单片结构中的第四内部电极16层叠在沿叠层方向的末端和/或中间。
上述的假内部电极57表现出分别与图14至16所示的假内部电极45、49和53基本相同的作用和优点。
作为第十二实施例的修改,可形成具有与图3(a)所示的第一内部电极13相同图案的假内部电极。
上术第九至十二实施例在适当时可组结合实施。更具体地,因为第九和第十一实施例涉及第一电容器部11而第十和第十二实施例涉及第二电容器部12,第九和第十一实施例中的每一个可与第十和第十二实施例中的每一个任意地组合实施。
图18至21示出根据本发明的第十三实施例的单片电容器61。
图18示出单片电容器61的外表的立体图,而图19示出说明第一电容器部62和第二电容器部63在单片电容器61中如何排列的侧视图。在图18和19中示出了安装面64,当处于安装状态时,单片电容器61具有平行于安装面64的叠层方向。
单片电容器61包括具有两个彼此相对的主面65和66以及连接主面65和66的四个侧面67、68、69和70的长方体形主电容器单元71。主电容器单元71具有由平行于主面65和66的多个介电层72(参考图20和21)叠层形成、并由例如介电陶瓷材料组成的单片结构。
如图19所示,主电容器单元71包括第一电容器部62和第二电容器部63。第一电容器部62和第二电容器部63沿平行于安装面64的叠层方向排列,且第二电容器部63夹在两个第一电容器部62之间。因此,第一电容器部62在主电容器单元71的两端。
图20示出介电层72的俯视图,示出第一电容器部62的内部结构,其中(a)示出横过第一内部电极73的截面而(b)示出横过第二内部电极74的截面。图21示出介电层72的俯视图,示出第二电容器部63的内部结构,其中(a)示出横过第三内部电极75的截面而(b)示出横过第四内部电极76的截面。
如图20所示,在第一电容器部62中,第一内部电极73和第二内部电极74中的至少一对经由预定的介电层72彼此相对以形成电容器。此外,如图21所示,在第二电容器部63中,第三和第四内部电极75和76中的至少一对经由预定的介电层72彼此相对以形成电容器。
如图20(a)所示,第一内部电极73具有形成于其上的、各自向外延伸到主电容器单元71的两个彼此相对的侧面67和69的两个第一引出部77。此外,如图20(b)所示,第二内部电极74具有形成于其上、各自向外延伸到主电容器单元71的彼此相对的侧面67和69的两个第二引出部77。
在主电容器单元71的侧面67和69中的每一个上,形成有各自电连接到第一引出部77的两个第一外部端子电极79以及各自电连接到第二引出部78的两个第二外部端子电极80。形成第一外部端子电极79和第二外部端子电极80的方式是使它们从侧面67至69延伸到主面65和66上的部件,如同它们中的一部分在图18中所示。此外,第一外部端子电极79和第二外部端子电极80在侧面67至69上交替地排列。
如图21(a)所示,第三内部电极75具有形成于其上、向外延伸到主电容器单元71的彼此相对的侧面67和69的第三引出部81,侧面67上一个,侧面69上一个。同样,如图21(b)所示,第四内部电极76具有形成于其上、向外延伸到主电容器单元71的彼此相对的侧面67和69的两个第四引出部82,侧面67和69上各有一个。
在该实施例中,第三引出部81电连接到前面描述的第一外部端子电极79,而第四引出部82电连接到前面描述的第二外部端子电极80。
在上述的第十三实施例中,类似于第一实施例等,用于一对第三内部电极75和第四内部电极76的第三引出部81和第四引出部82的对数小于用于一对第一内部电极73和第二内部电极74的第一引出部77和第二引出部78的对数。更具体地,前者是2而后者是4。
此外,在第十三实施例中,用于第三内部电极75中的每一个的第三引出部81的数量和用于第四内部电极76中的每一个的第四引出部82的数量小于用于第一内部电极73中的每一个的第一引出部77数量和用于第二内部电极74中的每一个的第二引出部78的数量。更具体地,前者是2而后者是4。
因此,能使电流在第一和第二内部电极73和74中沿各种方向流动。因此,通过磁通量抵消,可使第一电容器部62的ESL低于第二电容器部63的ESL。另一方面,在第三和第四内部电极75和76中,电流流动的方向数目较少。因此,假设诸如内部电极73至76的材料之类的其它条件相同,则可使第二电容器部63的ESR高于第一电容器部62的ESR。
从另一个角度看,同样在第十三实施例中,用于第三内部电极75中的每一个的第三引出部81的数量和用于第四内部电极76中的每一个的第四引出部82的数量小于用于第一内部电极73中的每一个的第一引出部77的数量和用于第二内部电极74中的每一个的第二引出部78的数量。因此,假设诸如内部电极73至76的材料之类的其它条件是相同的,则可使第一电容器部62的ESL低于第二电容器部63的ESL。因此,可使第一电容器部62的谐振频率高于第二电容器部63的谐振频率。
同时,如前所述,因为第三引出部81的数量和第四引出部82的数量小于第一引出部77的数量和第二引出部78的数量,假设内部电极73至76或引出部77、78、81和82对ESR的影响在第一电容器部62和第二电容器部63之间并无差异,则可使由包含于第二电容器部63中的一对第三和第四内部电极75和76以及插入的介电层72所给出的每一层的ESR高于由包含于第一电容器部62中的一对第一和第二内部电极73和74以及插入的介电层72所给出的每一层的ESR。
根据上述内容,类似于根据第一实施例的单片电容器1,单片电容器61所表现出的是归功于第一电容器部62的低ESL特性和归功于第二电容器部63的高ESR特性的组合。因此,用单片电容器61即可同时实现低ESL和高ESR。
图22和23是用于解释对应于图19、根据本发明的第十四和十五实施例的单片电容器61a和61b图。在图22和23中,对应于图19所示元件的元件由相同的附图标记表示,并省略了其重复描述。
在根据上述的第十三实施例的单片电容器61的情形中,介电层72和内部电极73至76垂直于安装面64,所以,与根据本发明的第一实施例的单片电容器1对比,不需要考虑安装面64和内部电极之间的距离对ESL的影响。因此,可将第一和第二电容器部62和63排列为图22和图23所示而不是图19所示,而不会引起问题。
虽然在附图所示实施例的环境中描述了本发明,但在本发明的范围内的各种修改也是可能的。
例如,形成于内部电极上的引出部的位置或数量或外部端子电极的位置或数量可以不同的方式改变。
此外,除附图所示的实施例外,主电容器单元中的第一和第二电容器部可以不同的方式排列,这将从后面描述的实验中得到理解。
此外,例如,在第一实施例中,虽然设置的第一和第二内部电极13和14仅用于形成第一电容器部11并且在第一实施例中设置的第三和第四内部电极15和16仅用于形成第二电容器部12,但可将位于第一和第二电容器部之间的边界处的内部电极设置为用于第一和第二电容器部的内部电极,即,作为同时起到第一内部电极或第二内部电极以及第三内部电极或第四内部电极作用的内部电极。
此外,例如,在第一实施例中,虽然第一引出部17的数量和第二引出部18的数量(或它们的对数)被选择为大于第三引出部21的数量和第四引出部22的数量(或它们的对数),使得第一电容器部11的谐振频率变得高于第二电容器部12的谐振频率,或者或除此之外,可改变内部电极13至16的材料或图案和/或层叠的数量。
此外,例如,在第一实施例中,虽然第三引出部21的数量和第四引出部22的数量被选择为小于第一引出部17的数量和第二引出部18的数量,使得在第二电容器部12中的每一层的ESR将高于第一电容器部11中的每一层的ESR,或者或除此之外,可为第三内部电极15和/或第四内部电极16选择具有较大电阻率的材料、可减小第三内部电极15和/或第四内部电极16的厚度、或者可减小第三引出部21和/或第四引出部22的宽度或厚度。
接下来,将描述用于确认本发明的优点所进行的实验。
1.第一实验在该实验中,利用已知的技术,准备多个陶瓷生料基板,通过印刷导电膏来在特定陶瓷生料基板上形成具有引出部的内部电极,将包括其上形成有内部电极的陶瓷生料基板在内的这些个陶瓷生料基板层叠起来,并且烧结所得的叠层以获得主电容器单元,外部端子电极通过烘焙导电膏的方式来形成于主电容器单元的外表面之上。通过这些步骤,制造出表1所示试样的单片电容器。
在试样的单片电容器的每一个中,主电容器单元的尺寸是2.0mm×1.25mm×0.5mm,内部电极的叠层总数是64,容抗值是0.68μF,并且作为图1和其它附图所示的实施例,外部端子电极的数量是14。此外,内部电极的厚度是1μm,引出部的厚度是1μm,且引出部的宽度是150μm。
在表1中,在“层叠和排列方式”一栏中所示的A至E分别对应于图24中的(A)至(E)。图24显示了第一和第二电容器部在叠层方向上是如何排列的。在图24中,用附图标记“35”指示的部分指示没有内部电极形成于其上的外层。此外,在图24中,所示的叠层结构的底表面面向安装面。
在表1中的“第一电容器部”一栏中,示出了“内部电极图案”、“叠层数量”、“第一引出部的数量”、“第二引出部的数量”以及“引出部的对数”。在“第二电容器部”一栏中,示出了“内部电极图案”、“叠层数量”、“第三引出部的数量”、“第四引出部的数量”以及“引出部的对数”。
在每一个“内部电极图案”区中,引用了示出在每一个试样所采用的内部电极图案的附图编号。在试样11的“第一电容器部”中的“内部电极图案”区中引用的“图25”、在试样11的“第二电容器部”中的“内部电极图案”区中引用的“图26”、在试样12的“第一电容器部”中的“内部电极图案”区中引用的“图27”、在试样12的“第二电容器部”中的“内部电极图案”区中引用的“图28”、以及在试样13的“第二电容器部”中的“内部电极图案”区中引用的“图29”指示分别采用了图25、26、27、28和29所示的内部电极图案。
图25(a)示出具有七个第一引出部17的第一内部电极13,而图25(b)示出具有两个第二引出部18的第二内部电极14。
图26(a)示出具有两个第三引出部21的第三内部电极15,而图26(b)示出具有七个第四引出部22的第四内部电极16。
图27示出具有两个第一引出部17的第一内部电极13和具有两个第二引出部18的第二内部电极14。在图27中,(1)至(14)表示叠层的次序。
图28示出具有一个第三引出部21的第三内部电极15和具有一个第四引出部22的第四内部电极16。在图28中,(1)至(14)表示叠层的次序。
图29示出具有一个第三引出部21的第三内部电极15和具有一个第四引出部22的第四内部电极16,并且外部端子电极31和32分别电连接到第三和第四引出部21和22。在图29中,(1)至(14)表示叠层的次序。
回到表1,“叠层的数量”在“第一电容器部”中表示第一和第二内部电极的叠层的总数,并且在“第二电容器部”中表示第三和第四内部电极的叠层的总数。在“第一电容器部”中的“叠层的数量”一栏中“上”和“下”分别对应于图24(b)中“第一电容器部(上)”和“第一电容器部(下)”。
此外,“第一电容器部”中的“第一引出部的数量”、“第二引出部的数量”以及“引出部的对数”表示用于一个第一内部电极的引出部的数量、用于一个第二内部电极的引出部的数量以及用于一对第一和第二内部电极的第一和第二引出部的对数。
另一方面,“第二电容器部”中的“第三引出部的数量”、“第四引出部的数量”以及“引出部的对数”表示用于一个第三内部电极的引出部的数量、用于一个第四内部电极的引出部的数量以及用于一对第三和第四内部电极的第三和第四引出部的对数。
表2示出从如表1所示设计的试样1至13中的每一个获得的“ESL值”和“ESR值”。
在表1和表2中,带*的试样编号表示不在本发明的范围内的比较例。
在作为比较例的试样1中,如表1所示,没有设置有助于增加ESR的第二电容器部。因此,如表2所示,虽然可减小ESL,但不可能增加ESR。
在作为与试样1对比的比较例的试样9中,如表1所示,没有设置有助于减小ESL的第一电容器部。因此,如表2所示,虽然可增加ESR,但不可能减小ESL。
在作为比较例的试样11中,如表1所示,“第二电容器部”中的“引出部的对数”等于“第一电容器部”中的“引出部的对数”,使得第一电容器部和第二电容器部具有相同的构造。因此,ESL值约是46pH,这基本与试样12相同,试样12在本发明的实施例中具有最少数量的引出部,而ESR值约是13.3mΩ,这基本与在本发明的实施例中具有最低ESR值的试样2的ESR值相同。这是因为以下原因。
关于ESL,ESL值基本与试样12的ESL值相同,因为在第一电容器部中引出部的对数和在第二电容器部中引出部的对数是2。这是因为虽然第一引出部的数量是7,但的对数仅为2。
关于ESR,因为第一电容器部和第二电容器部中的内部电极的数量增加,所以每一层的ESR显著地低于试样13。此外,通过层的叠置,ESR并联,使得ESR进一步减小。
如上所述,当第一电容器部和第二电容器部具有相同的构造时,是不能有效地增加ESR的。
此外,除在高频特性方面的改善之外,在作为本发明范围内的实施例的试样2至10和12中,如表1所示,同时设置有第一和第二两个电容器部,并且在“第二电容器部”中的“引出部的对数”小于在“第一电容器部”中的“引出部的对数”。因此,如表2所示,可在减小ESL的同时增加ESR。
此外,在试样2至9中,ESL值基本与试样1的相同。这是因为,在高频时,电场集中在安装面的一侧,并且有关由虚线箭头28所指示的环路的特性受到最强烈地影响,使得在试样2至9中第一电容器部的低ESL值变成优势因素,其中具有较大数量的引出部的第一电容器部层叠并安排在安装面的这一侧。
相反,在试样10中,其中第二电容器部位于安装面的这一侧,与试样2至9相比,ESL值较高。即使在试样10的构造中,由于第一电容器部的存在,与试样13相比ESL值也较低。
在试样2至5中,其中在第一电容器部中的叠层数量在相同非层叠和排列方式下发生改变,ESL的值基本相同。因此,可以理解,在第一电容器部中叠层数量对ESL值的影响很小。这也适用于具有不同于试样2至5的层叠和排列方式的试样6至9。
对于ESR值,ESR值随着第二电容器部中叠层数量相对于整个单片电容器中叠层总数的增加而增加。此外,根据试样5、9、10和12的比较,其中第二电容器部中叠层的数量是相同的,试样9、10和12(其中第三引出部的数量和第四引出部的数量是1)的ESR值与试样5(其中第三引出部的数量和第四引出部的数量是2)相比是较高的。此外,在试样9和10中,与试样13相比ESR值较高。这是因为第一电容器部的ESR值和第二电容器部的ESR值都高于试样13,结果,第一电容器部和第二电容器部之间的谐振频率不同,使得单片电容器的ESR值变得高于试样13。
当比较试样9和10时,ESR值是基本相同的。因此,可以理解,即使层叠和排列方式不同,但当第二电容器部中的叠层数量相同时,ESR值具有基本维持相同的趋势。
2.第二实验在该实验中,通过与第一实验相同的步骤,制造出表3所示的试样的单片电容器。
类似于第一实验,在试样的单片电容器的每一个中,主电容器单元的尺寸是2.0mm×1.25mm×0.5mm,内部电极的叠层总数是64,容抗值是0.68μF,并且类似于图1和其它附图所示的实施例,外部端子电极的数量是14。此外,内部电极的厚度是1μm,引出部的厚度是1μm,且引出部的宽度是100μm。
在表3中,在“层叠和排列方式”一栏中所示的A至E分别对应于前面描述的图24的(A)至(E)。
在表3中的“第一电容器部”一栏和“第二电容器部”一栏的每一个中,示出了“内部电极图案”、“叠层数量”、“谐振频率”和“每一层的ESR”。
电容器的ESR可由以下等式表示电容器的ESR=R(4N-2)/N2式中R表示每个电极层的电阻而N表示叠层的数量。这里每个电极层的电阻R利用整个第一电容器部的ESR作为电容器的ESR的逆运算来计算出来,而“每一层的ESR”通过将R的值和N=2(因为一层电容器由两个相对的内部电极形成)代入以上等式来计算。
在“内部电极图案”的每一个区中,引用了示出每一个试样所采用的内部电极图案的附图编号。
回到表3,“叠层的数量”在“第一电容器部”中表示第一和第二内部电极的叠层的总数,而在“第二电容器部”中表示第三和第四内部电极的叠层的总数。在“第一电容器部”中的“叠层的数量”一栏中“上”和“下”分别对应于图24(b)中的“第一电容器部(上)”和“第一电容器部(下)”。
此外,“第一引出部的数量”、“第二引出部的数量”、“第三引出部的数量”以及“第四引出部的数量”中的每一个表示用于每一个相关的内部电极的引出部的数量。
表4示出从如表3所示设计的试样21至29中的每一个获得的“ESL值”和“ESR值”。
表4
在表3和表4中,带*的试样编号表示不在本发明的范围内的比较例。
在作为比较例的试样21中,如表3所示,没有设置有助于增加ESR的第二电容器部。因此,如表4所示,虽然可减小ESL,但不能增加ESR。
在作为另一个比较例的试样29中,如表3所示,没有设置有助于减小ESL的第一电容器部。因此,如表4所示,虽然可增加ESR,但不能减小ESL。
相反,在作为本发明范围内的实施例的试样22至28中,如表3所示,同时设置有第一电容器部和第二电容器部。因此,如表4所示,可在减小ESL同时增加ESR。
对于试样22至27中,ESL值基本与试样21的相同。这是因为,在高频时,电场集中在安装面的一侧,所以有关由虚线箭头28所指示的环路的特性受到的影响最大,使得在试样22至27中第一电容器部的低ESL值变成优势因素,其中具有较大数量的引出部的第一电容器部层叠并安排在安装面的这一侧。
相反,在试样28中,其中第二电容器部位于安装面的这一侧,与试样22至27相比,ESL值较高。即使在试样28的构造中,由于第一电容器部的存在,与试样29相比,ESL值也较低。
在试样22至25中,其中在第一电容器部中的叠层的数量在层叠和排列方式相同的情况下发生改变,ESL的值基本相同。因此,可以理解,在第一电容器部中叠层数量对ESL值的影响很小。
对于ESR值,ESR值随着第二电容器部中叠层数量相对于整个单片电容器中叠层总数的增加而增加。此外,根据试样25、27和28的比较,其中第二电容器部中叠层的数量是相同的,试样27和28(其中第三引出部的数量和第四引出部的数量是一)的ESR值与试样25(其中第三引出部的数量和第四引出部的数量是二)相比是较高的。此外,在试样27和28中,与试样29相比,ESR值较高。这是因为第一电容器部的ESR值和第二电容器部的ESR值都高于试样29,结果,第一电容器部和第二电容器部之间的谐振频率不同,使得单片电容器的ESR值变得高于试样29。
当比较试样27和28时,ESR值是基本相同的。因此,可以理解,即使层叠和排列方式不同,但当第二电容器部中的叠层数量相同时,ESR值具有维持基本相同的趋势。
此外,当比较试样22至28时,谐振频率随着第一和第二电容器部中的叠层数量的增加倾向于减小。此外,正如从试样25、27和28中的第一电容器部的谐振频率理解的,即使层叠和排列方式不同,但当叠层数量相同时,谐振频率维持基本相同。
此外,在试样22至27中,第一电容器部的谐振频率被选择为高于第二电容器部的谐振频率。例如,在试样22中,在第一电容器部中叠层的总数是40,谐振频率是38MHz,而在第二电容器部中叠层的数量是24,谐振频率是26MHz。尽管在第二电容器部中叠层的数量较小,但谐振频率低于第一电容器部。这是由于引出部的数量不同。当在试样22中第一电容器部中的叠层数量增加而第二电容器部中的叠层数量减小时,第一和第二电容器部的谐振频率之间的差减小,最后谐振频率变为相同。此时,当第一和第二电容器部的谐振频率相同时,可假设第一和第二电容器部的ESR是并联的,使得ESR减小。因此,不能获得所期望的高ESR。
根据以上所述内容,必须将第一电容器部的谐振频率选择为高于第二电容器部的谐振频率。
图30示出表3和4所示的作为实施例的试样25以及作为比较例的试样21和29的频率-阻抗特性。
参考图30,在试样21中,如表4所示,ESR值随着ESL值减小而减小,使得阻抗特性陡变。
在试样29中,如表4所示,虽然可增加ESR值,但ESL值也增加,使得高频处的阻抗特性劣化。
相反,在试样25中,如表4所示,可降低ESL而增加ESR,故而可得到直到高频处都优良的特性。
权利要求
1.一种单片电容器,包括具有由多层介电层的叠层组成的单片结构的主电容器单元,其中所述主电容器单元包括第一电容器部和第二电容器部,其中所述第一电容器部包括经由所述介电层中预定的一层彼此相对以形成电容的至少一对第一和第二内部电极,其中所述第一内部电极在其上形成向外延伸到所述主电容器单元的外表面的多个第一引出部,而所述第二内部电极在其上形成向外延伸到所述主电容器单元的外表面的多个第二引出部,其中所述第二电容器部包括经由所述介电层中预定的一层彼此相对以形成电容的至少一对第三和第四内部电极,其中所述第三内部电极在其上形成向外延伸到所述主电容器单元的外表面的至少一个第三引出部,而所述第四内部电极在其上形成向外延伸到所述主电容器单元的外表面的至少一个第四引出部,其中各自电连接到所述第一、第二、第三和第四引出部的第一、第二、第三和第四外部端子电极形成于所述主电容器单元的外表面上,且其中用于一对第三和第四内部电极的第三和第四引出部的对数小于用于一对第一和第二内部电极的第一和第二引出部的对数。
2.如权利要求
1所述的单片电容器,其特征在于,用于所述第三内部电极中的每一个的所述第三引出部的数量和用于所述第四内部电极中的每一个的所述第四引出部的数量中的至少一个小于用于所述第一内部电极中的每一个所述第一引出部的数量和用于所述第二内部电极中的每一个的所述第二引出部的数量。
3.如权利要求
2所述的单片电容器,其特征在于,所述第三内部电极或者所述第四内部电极具有与所述第一内部电极或者所述第二内部电极相同的图案。
4.如权利要求
1所述的单片电容器,其特征在于,用于所述第三内部电极中的每一个的所述第三引出部的数量和用于所述第四内部电极中的每一个的所述第四引出部的数量小于用于所述第一内部电极中的每一个的所述第一引出部的数量和用于所述第二内部电极中的每一个的所述第二引出部的数量。
5.一种单片电容器,包括具有由多层介电层的叠层组成的单片结构的主电容器单元,其中所述主电容器单元包括第一电容器部和第二电容器部,其中所述第一电容器部包括经由所述介电层中预定的一层彼此相对以形成电容的至少一对第一和第二内部电极,其中所述第一内部电极在其上形成向外延伸到所述主电容器单元的外表面的多个第一引出部,而所述第二内部电极在其上形成向外延伸到所述主电容器单元的外表面的多个第二引出部,其中所述第二电容器部包括经由所述介电层中预定的一层彼此相对以形成电容的至少一对第三和第四内部电极,其中所述第三内部电极在其上形成向外延伸到所述主电容器单元的外表面的至少一个第三引出部,而所述第四内部电极在其上形成向外延伸到所述主电容器单元的外表面的至少一个第四引出部,其中各自电连接到所述第一、第二、第三和第四引出部的第一、第二、第三和第四外部端子电极形成于所述主电容器单元的外表面上,其中所述第一电容器部的谐振频率高于所述第二电容器部的谐振频率,且其中由包含于所述第二电容器部中的一对所述第三和第四内部电极以及所述介电层中插入的一层所给出的每一层的等效串联电阻高于由包含于所述第一电容器部中的一对所述第一和第二内部电极以及所述介电层中插入的一层所给出的每一层的等效串联电阻。
6.如权利要求
6所述的单片电容器,其特征在于,所述第三内部电极或者所述第四内部电极具有与所述第一内部电极或者所述第二内部电极相同的图案。
7.如权利要求
1至6中的任一项所述的单片电容器,其特征在于,所述第一和第二外部端子电极中的至少一个是所述第三和第四外部端子电极中的至少一个。
8.如权利要求
1至6中的任一项所述的单片电容器,其特征在于,所述第一和第二外部端子电极交替地排列。
9.如权利要求
1至6中的任一项所述的单片电容器,其特征在于,在所述主电容器单元中,所述第一电容器部和所述第二电容器部沿叠层的方向排列,并且所述第一电容器部位于叠层方向上的至少一端。
10.如权利要求
9所述的单片电容器,其特征在于,在所述主电容器单元中,所述第二电容器部沿叠层方向夹在两个所述第一电容器部之间。
11.一种单片电容器的安装结构,其中如权利要求
9所述的单片电容器安装于预定的安装面上,所述单片电容器被安装成使得所述主电容器单元的所述第一电容器部更接近所述安装面。
专利摘要
一种多层电容器,其中ESL减小ESR增加。在电容器主体(8)中,在第一电容器部(11)和第二电容器部(12)沿重叠的方向排列的同时,第一电容器部(11)位于层叠方向上的至少一端,并且第一电容器部(11)位于更接近于安装面(25)的一侧上。组成第一电容器部(11)的第一和第二内部电极(13,14)的第一和第二引出部(17,18)的对数可小于组成第二电容器部(12)的第三和第四内部电极(15,16)的第三和第四引出部的对数。因此,在允许第一电容器部(11)促进ESL减小的同时,允许第二电容器部(12)促进ESR的增加。
文档编号H01G4/30GK1993783SQ200580025711
公开日2007年7月4日 申请日期2005年12月1日
发明者高岛宽和, 上冈浩, 高木义一 申请人:株式会社村田制作所导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1