具有腔内结构的纵腔式表面发射激光器的制作方法

文档序号:6804356阅读:303来源:国知局
专利名称:具有腔内结构的纵腔式表面发射激光器的制作方法
本申请与我们的序号为07/790964的在审申请有关,后者是1991年11月7日受理的,名称为“可见光表面发射半导体激光器”,在此引作参考。
本发明涉及半导体激光器,尤其是涉及纵腔式表面发射激光器,该激光器采用一种腔内结构,以实现低的串联电阻、高的功率效率、以及单横模运转。
纵腔式表面发射激光器(VCSELs)在垂直于pn结平面或衬底平面的方向上产生辐射,而不是象在通常的侧面发射二极管激光器中那样在平行于pn结平面的方向产生辐射。与通常的侧面发射激光器的散光特性相比,VCSELs能很好地发射圆对称高斯光,并且不需要失真校正。而且,VCSELs可被容易地制成两维激光器阵列,还可制成极小的尺寸。于是,两维的VCSELs阵列在光学互接、集成光电子电路和光学计算领域中具有各种应用。
为获得低的阈值电流,VCSELs通常采用厚度为λ/4n量级或更小的薄激活区,这里λ为所发射光的波长,n为激活区的折射系数。不过,由于采用薄激活区,VCSELs具有大约为1%或更低的单程光学增益,因而为产生激光需采用反射率大于99%的端镜。如此高的反射率通常是通过采用外延生长的半导体分配式布喇格反射(DBR)镜来实现的。
DBR镜包括折射系数高低交替的半导体层。为获得大于99%的反射率,一般需要20至30对这种交替排列的半导体层,这取决于各层的折射系数之间的差异。通过合适的掺杂物掺杂使得具有相反导电类型,DBR镜与激活区形成一个p-i-n结构。通过按下述方式对各个DBR镜进行电连接有利于电流发射,即电子和空穴横向通过各镜到达激活区,在此它们结合并产生辐射。
遗憾的是,VCSEL的适用性受到其低的光功率输出的严重限制。尤其是,VCSELs不能实现可与侧面发射激光器相比的光功率输出水平。VCSELs的总功率目前限于约10%以内,而侧面发射激光器通常呈现高于50%的功率效率。
VCSEL的低功率归因于两个决定因素(1)低电导率,和(2)低光量子效率。低电导率是由于激活区的小截面积,即小的传导面积,以及由于电子和空穴垂直穿过多层的DBR镜伴生的高电阻引起的。而VCSELs的光量子效率与激光谐振腔中和吸收材料重叠的光场有关。
到目前为止,所有公开的VCSELs的设计都在其光学特性和电子特性之间进行权衡。设计要么是优化光量子效率而降低电导率,要么反之。
在近来为解决高串联电阻问题所做的努力中,Kwon等人在名称为“前表面发射二极管”的美国专利No,5,034,958中描述了这样一种VCSEL,它包括一个设在高位镜和低位镜之间的激光谐振腔,并且在高位隔层和低位隔层之间夹有激活区。低位镜包括一个半导体DBR,而高位镜包括一个介质DBR。一个电接触层包括一对或两对P型掺杂的GaAs/AlAs半导体层,这些半导体层形成一个半导体DBR,该电接触层位于高位的介质镜和高位隔层之间,以便向激活区的上部注入电流。
Kwon等人的VCSEL设计进一步包括一个接触区,此接触区是通过向在激活层和高位镜之间围绕谐振腔的区域注入电导率增加的离子来确定的。在此结构中,电流仅穿过一对或两对GaAs/AlAs半导体层就到达高位隔层,并接着到达激活区,而不是在通常的VCSELs中那样一般要穿过20-30对半导体层。因此,对于这种VCSEL结构而言,串联电阻降低了。
尽管这是一种改进的设计,但与侧面发射激光器相比,串联电阻仍是高的,限制了其性能。虽然增加这些层中的掺杂浓度,例如从通常的1018/cm3增加到1020/cm3或1021/cm3,能进一步降低串联电阻,但这种掺杂浓度阻止提高吸收,使量子效率降低,并使功率特性变差。
与现有技术的VCSELs有关的另一个问题是,这些VCSELs试图产生次横模的激光,然而单横模基模(TEM00)激光通常是最佳的。
因此,本发明的一个目的是要降低VCSELs的串联电阻,并且在基本上不降低其光量子效率的情况下提高其功率效率。
本发明的另一目的是抑制VCSELs中高次横模激光的产生。
这些和其它目的是在根据本发明的纵腔式表面发射激光器(VCSELs)中实现的,该激光器采用腔内结构来降低串联电阻,并实现了单横模基模(TEM00)运转。腔内结构包括一个分层电极、一个带电流孔的分层电极、和/或一个光孔。
在本发明的一个优选实施例中,一个VCSEL包括一个位于高位和低位分配式布喇格反射(DBR)镜之间的激光谐振腔。此激光谐振腔包括围绕产生光辐射的激活区的高位和低位隔层。一个分层电极设置在高位镜和高位隔层之间,用以向激活区引导电流以产生激光。另外,分层电极也可置于高位镜中,最好在高位镜的大部分以下。
分层电极包括多个交替排列的相同导电类型的高的和低的掺杂半导体层,这些层相对于激活区纵向叠置。在产生激光期间,在激光谐振腔中建立起一个具有周期性的强度波峰和波谷的驻波。分层电极的高掺杂层靠近驻波波峰设置,并被靠近驻波波谷设置的低掺杂层分隔开。这种排列在分层电极中形成高的横向电导,而且基本上不增加光吸收,结果是,大大降低了串联电阻但不降低光学效率。
在另一实施例中,与分层电极相联合,采用了一个具有直径小于激光腔光孔的直径的电流孔来抑制高次横模激光的产生。此电流孔显著降低了激活区周边部分的电流聚集,并提高了激活区中心的电流密度。结果,高次横模激光被消除。
电流孔是水平设置于高位镜和激活区之间的一个盘形区域。它是通过将电导率降低的离子注入到环形周围区域来界定的。电流孔与高位镜的中心纵向对准,其直径与高位镜相同或更小。界定电流孔的注入区具有这样的电导率降低的离子浓度,即在注入区,低掺杂的P层具有高电阻率,而高掺杂的P+层保持导电。因此,当电流加至分层电极上时,它基本上平行于激活区流动,直至它到达电流孔,尔后垂直地且均匀地流入激活区。按这种方式,单横模基模运转就实现了。
在本发明的再一个实施例中,VCSEL包括一个设置于高位和低位DBR镜之间的激光谐振腔。此激光谐振腔包括围绕激活区的高位和低位隔层。高位和低位镜是由高和低折射系数层对顺序组成的DBR镜。激活区可进一步称为有增益区,它是在激活区中通过用导电率降低离子对环形周围区域进行离子注入来界定的。一个位于与激活区平行的平面中的金属层形成于高位DBR镜中。金属层最好仅设在形成高位DBR镜的多层中的几层中,此高位DBR镜位于隔层的顶部之上。金属层具有一个开口,此开口与增益区纵向对准,并具有等于或小于增益区的直径。这个开口起光孔作用,它以这样的方式阻挡光场,即,消除高次横模运转,从而形成单横模基模运转。此外,金属层还起欧姆-金属接触埋层的作用,从而通过减少电阻数量来降低串联电阻,载流子横穿所述电阻层而到达激活区。
本发明的这些和其它特征、目的和优点将从结合附图进行的详细说明中变得更为清楚,附图中

图1是根据本发明的带有腔内第一分层电极的VCSEL的剖面图;
图2是带有腔内第一和第二分层电极的VCSEL的剖面图;
图3是带有腔内分层电极和电流孔的VCSEL的剖面图;
图4是图3中示出的低位镜的放大剖面图;
图5(a)是图3中示出的激光谐振腔的放大剖面图;
图5(b)是在图5(a)示出的激光谐振腔中驻波强度与各层的纵向位置之间的关系;
图5(c)是图3的分层电极中的各层随它们在光腔中的纵向位置的带隙示意图;
图5(d)是图3的改进结构,它采用浅注入来降低接触电阻;
图5(e)是图3的另一种改进结构,它采用蚀刻台面来降低接触电阻;
图6是图3所示的激光器结构的激活区以及高位和低位隔层的剖面图;
图7是图3所示的高位介质DBR镜的放大的剖面图;
图8是带有分层电极和蚀刻界定的电流孔的VCSEL的剖面图;
图9是具有内光孔和由环形注入区围绕的光增益区的VCSEL的剖面图;
图10是带有腔光孔和蚀刻界定的光增益区的VCSEL的剖面图;
图11是带有腔内光孔和由再生材料围绕的光增益区的VCSEL的剖面图。
本发明涉及一种具有腔内结构的纵腔式表面发射激光器(VCSELs)。此腔内结构包括一个分层电极、一个带电流孔的分层电极、和/或一个光孔。具有上述腔内结构的这些VCSELs明显地降低了串联电阻,显著地改善了功率效率和单横模基模(TEM00)运转。
在图1-10中示出了根据本发明的原理提出的各种VCSEL结构。为参照方便起见,在上述各图中相同的元件用相同的参考符号表示。
在图1中示出的是根据本发明的带有分层电极的VCSEL。此VCSEL包括一个低位镜20、一个低位隔层30、一个激活区40、一个高位隔层50、一个第一分层电极60、以及一个高位镜70。下列技术在本领域是公知的并描绘于(例如)名称为“表面发射半导体激光器”的美国专利4,949,350中,即层20、30、40和50是外延形成于衬底10上。第一分层电极60也是外延形成于高位隔层50上。还构成两个电接触层,即用于电接触第一分层电极60的顶部电接触层80和用于电接触衬底10的底部电接触层90。
电流从电接触层80流至第一分层电极60,尔后流至隔层50、激活区40、隔层30、镜20、衬底10,并最后流至底部电接触层90。由于电流穿过分层电极流入激活区,因此高位镜70不需要是导电的。有利的是,这允许VCSEL采用一个高位介质DBR镜。介质层可以制成在折射系数方面与半导体层相比具有更大差异。结果,只需不多的介质就可形成一个有效的DBR镜,例如,4或5对而不是20至30对半导体层。这省去了外延生长高位半导体DBR镜的费时工序,并制出更为平面化的VCSEL。
第一分层电极60包括两个高掺杂层63和两个低掺杂层62、64。层62、63和64与高位隔层50具有相同电导类型的杂质,以便将导电流传至激活区40。通过对激活区进行环形注入形成的电流阻挡区44是用于水平地限制电流。由实线箭头100指示的电流水平流动,尔后垂直流入激活区,从而不生光辐射。正如图1中所示的,由于在高掺杂层中的高电导率,在高掺杂层63中流动的主要是横向电流。
图2中示出的实施例还采用了一个第二分层电极。此第二分层电极25设置在低位隔层30和低位镜20之间。第二分层电极包括两个高掺杂层24和两个低掺杂层22、23。层22、23和24与低位隔层30具有相同电导类型的杂质,但与第一分层电极60具有相反电导类型的杂质。电接触层95电连接至第二分层电极25。另外,电接触层95也可以与图1中的电接触层相同的方式构成。
通过采用第二分层电极25,VCSE的串联电阻和光吸收进一步降低。有益的是,它允许外延生长的半导体低位镜20是非掺杂的。从而,降低了低位镜中的光吸收。采用电接触层95的一个主要优点是,衬底10可由半绝缘材料制成,例如半绝缘的GaAs。那些需要将VCSELs与其它电子器件或电光器件单片集成形成光电子集成电路的应用将从半绝缘材料的采用中获得很大益处。高速度和高频率应用也将从半绝缘衬底的采用中获益。
上述VCSEL结构容易与(例如)异质结双极晶体管(HBTs)、异质结场效应晶体管(HFETs)、异质结光电晶体管(HPTs)和光电探测器集成于一体,集成方式与我们的序号为NO,07/823,496的在审申请中描述的方式相似,所述申请是1992年1月21日受理的,名称为“晶体管与纵腔式表面发射激光器的集成”,在此被引作参考。这种集成预计会在本发明的实施中采用。
在另一实施例中,如图3所示,带有分层电极和离子注入的电流孔的VCSEL是用作基本上消除高次横模激光的一种手段。高次横模激光主要起因于两个因素(1)由于低电阻,激活层的外侧部分常有较高密度电流流过;(2)由于在激活区中缺乏好的横向导电性,激活层的中心部分的增益很快为最低次模消弱并且不能足够快地补充。带有腔内电流孔的分层电极提供了好的横向导电性以及射向激活区的均匀电流,从而基本上消除高次横模激光。
此器件的制造工艺由n+掺杂的GaAs衬底10开始,接着依次通过外延生长形成低位半导体DBR镜20、低位隔层30、激活区40、高位隔层50和分层电极60。两个质子注入区,即用于界定电流孔47的深注入区48和用于使此器件与同衬底上的其它器件绝缘的浅注入区35,是通过公知的技术形成的。此器件还要进一步高温热退火,以减少注入造成的损坏。
用于接触分层电极的顶部欧姆接触层80通过光刻和金属淀积形成。高位介质镜70尔后淀积形成并通过光刻和介质淀积界定。然后在形成用于接触n+掺杂的GaAs衬底的底部欧姆接触层90之前,将衬底10抛光至所希望的厚度。
电流孔47由环形的质子注入区48界定。有益的是,电流孔47被设计成具有小于高位镜70的直径。在形成此孔时,注入能量这样选择是知宜的,即将注入质子基本垂直地限制在分层电极60和高位隔层50中。另外,注入质子的浓度这样选择,即,在注入区P型低掺杂层变为高阻的,而P+型高掺杂层保持导电。这种构形将由实线箭头标示的电流110限制为垂直均匀地流入激活区,从而减轻激活区周边处的电流聚集,并形成单横模基模(TEM00)运转。相似地,电流孔47也可与图2的第二分层电极25和/或电接触层95联合。
如图4所示,低位镜20包括分别为n+掺杂的AlAs和AlGaAs的交替排列层21、22。各层均为λ/4厚,这里λ为所发射的辐射波长。关于外延生长半导体DBR镜的详细说明参见(例如)J.Jewell等人写的名称为“纵腔式表面发射激光器设计、生长制造、特性”的文章,此文刊载于IEEE Journal of Quantum Electronics(量子电子学杂志)第27卷第6期1332-1346页(1991年6月),在此被引作参考。
如图5(a)所示,夹在高位和低位镜间的光学谐振腔包括低位隔层30、激活区40、高位隔层50和分层电极60。分层电极60包括P型高掺杂AlGaAs层63和低掺杂InGaP层62和64。在此分层电极中,高掺杂层63具有等于或小于λ/4n的厚度,低掺杂层64具有等于或大于λ/4n的厚度,而层63和64的总厚度基本为λ/2n,这里λ为各层的折射系数。低掺杂层62具有λ/8n的厚度。高掺杂层和低掺层的P型掺杂浓度分别约为1020/cm3和1018/cm3。采用如此高的掺杂浓度,高掺杂层63变成良好导电的。
图5(b)示出了VCSEL的驻波强度与光腔中的纵向位置的关系,其中高掺杂层63定中心于驻波波谷,而低掺杂层64定中心于驻波波峰。驻波强度与光腔中的光强相对应。因此,驻波波峰是在光最强的位置,而驻波波谷是在光最弱的位置。光较容易为高掺杂材料吸收而不易为低掺杂材料吸收。有利的是,将高掺杂层置于强度最小处而将低掺杂层置于强度最大处,这样在分层电极60中的光吸收是最小的。
分层电极60的低掺杂层62具有λ/8n的厚度,以使高位镜和分层电极的界面位于驻波波峰。通过适当地设计高位隔层50、激活层40和低位隔层50,可获得长度为mλ/2neff的激光谐振腔,这里m是一个整数,λ是辐射波长,neff是激光谐振腔的有效折射系数。
图5(c)示出分层电极60中各层的价带与各层在激光腔中的纵向位置的关系图。由于在AlGaAs/InGaP界面上存在的能垒,来自各高掺杂AlGaAs层的空穴61被限于此。这导致在分层电极中形成较高的横向电导,并且还可防止高掺杂AlGaAs层中的高浓度的空穴溢至邻近区域。另外,GaAs和AlGaAs、GaAs和InGaP、AlGaAs和InGaP、或AlxGa(1-x)As和AlyGa(1-y)As均可分别作用高和低掺杂层,这里y是一个大于X的数值。腔内分层电极的应用允许串联电阻象侧面发射激光二极管中那样低,并且基本上不降低激光器的光量子效率。
图5(a)中最上面的半导体结构可以改变,以使顶部电接触层和分层电极之间的接触电阻减至最小,否则它会由层62的低掺杂水平所损害。在激光腔中并不希望层62是高掺杂的,因为这会增加吸收损耗。
如图5(d)所示,一种减小这种接触电阻的途径是,在激光腔外顶部电接触层80正下方形成一个浅P型注入区65。这将增加顶部电接触层80下面的P型载流子浓度,而并不损害腔的光学特性。通过标准的光刻和注入技术可容易地形成此浅注入区。
另一种途径是进行浅蚀刻形成一个由顶部镜70和层62的中心部分组成的台面结构,如图5(e)所示。结果是,顶部电接触层80形成于高掺杂层63上,从而降低了接触电阻。再一种途径是在层63的外延生长约一半时停止外延生长并省去生长层62。在这种情况下,高位镜70的底部必须由高折射系数层构成,以便产生所要求的波长的腔谐振。
如图6所示,激活区40包括三个约50 厚的GaInP层,这三层由两个约90 厚的AlGaInP阻挡层42隔开,激活区被夹置于低位隔层30和高位隔层50之间。两隔层是由非掺杂的Al-InP材料逐步过渡到靠近激活区的AlInGaP。激活区和隔层的设计和形成详细描述于我们的序号为07/790,964的在审美国专利申请中。
如图7所示,高位镜70包括SiO2层71和TiO2层72,各层均为λ/4n厚,这里n为折射系数。层71和72构成一个DBR镜。通常,允许采用几层折射系数有相当大差异的SiO2,TiO2和介质材料来形成高位DBR镜。典型的情况是用5至6对这些材料层就足以在VCSEL中提供产生激光所需的高反射率。
上述的优选实施例采用一个环形的质子注入区48来确定电流孔47。另外,如图8所示,纵向台面蚀刻之后选择性横向蚀刻激活区和周围层也可用来确定电流孔并隔离此器件。侧壁65和66分别由纵向台面蚀刻和选择性横向蚀刻确定。
在图8的工艺中还可得到其它好处。由于图8所示器件的直径通常为4-10μm,载流子寿命由于激活区周围边的非辐射复合而明显缩短。当此区由离子注入确定时,除高温退火外没有已知的消除此问题的(其它)途径,而高温退火还会降低注入效果,并因此损害器件的结构完整。
当台面被蚀刻到激活材料的水平时,对于横向蚀刻而言包括激活材料的侧壁66的钝化是可能的。此钝化可保持载流子寿命,降低非辐射复合,并因此导致较低的阈值电流和增加的光量子效率。
在如图9所示的另一实施例中,VCSEL包括衬底200、低位DBR镜210、低位隔层220、激活区230、高位隔层240和高位DBR镜275。具有光孔265的金属层260形成于高位镜275中,从而将高位镜275分两部分;即下部250和上部270。此金属层最好由铍金(AuBe)组成,它还起到电接触下部250的欧姆接触层作用。有益的是,下部250仅包括几对半导体DBR层,从而获得低串联电阻。下部250中包含的半导体DBR层的对数小于10,并且其最佳数量取决于(例如)特定的器件几何形状、辐射波长入和镜材料。
虽然为便于电接触正是下部250包括外延生长的半导体层,但上部270可以是如图4所示的半导体DBR镜,也可以是如图7所示的介质DBR镜,或两者的组合。为清楚起见,与半导体DBR镜、介质DBR镜、隔层和激活区有关的细节上面已描述,在此不再详细讨论。
具有所希望的直径的光增益区235由激活区230中的环形质子注入区245确定。光孔265被设计成具有小于光增益的直<p>
其中R7,R8,R9,R10,R11和R12分别选自氢和C1-2烷基,而m为0或1。
在特别优选方案中,m为0,R7,R8和R11为氢,R12为氢(碳酸亚乙酯),-CH3(碳酸亚丙酯)或-CH2CH3(碳酸亚丁酯)。
用于本发明的适宜碳酸酯包括1,3-二氧戊环-2-酮(碳酸亚乙酯),4-甲基-1,3-二氧戊环-2-酮(碳酸亚丙酯),4,5-二甲基-1,3-二氧戊环-2-酮,4-乙基-1,3-二氧戊环-2-酮,4,4-二甲基-1,3-二氧戊环-2-酮,4-甲基-5-乙基-1,3-二氧戊-2-酮,4,5-二乙基-1,3-二氧戊环-2-酮,4,4-二乙基-1,3-二氧戊环-2-酮,1,3-二噁烷-2-酮,4,4-二甲基-1,3-二噁烷-2-酮,5,5-二甲基-1,3-二噁烷-2-酮,5-甲基-1,3-二噁烷-2-酮,4-甲基-1,3-二噁烷-2-酮,5,5-二乙基-1,3-二噁烷-2-酮,4,6-二甲基-1,3-二噁烷-2-酮,4,4,6-三甲基-1,3-二噁烷-2-酮,螺〔1,3-氧杂-2-环己酮-5′,5′-1′,3′-氧杂-2′-环己酮〕和1,3-二氧环戊烯-2-酮(即与注入的或横向蚀刻的结构相比,上述再生长结构具有以下优点。首先是,再生长结构在激活区和周围材料之间提供了比注入结构更大的折射系数差异。因此,光辐射在再生长VCSEL结构中比在注入结构中得以更好地约束,从而大大改善了激光器的光量子效率,并允许制成更小直径的激光器。
其次是,再生长使VCSEL结构平面化并有助于电接触。在由蚀刻形成的自由驻波激光器中,由于其小的尺寸,对激光器的顶部进行电接触是极其困难的。采用具有平整表面的再生长结构,对激光器的顶部的电接触可容易而可靠地实现。另外,再生长可钝化由蚀刻造成的侧壁损坏,从而可以终止悬空键并抑制非辐射复合。
对于本领域的普通技术人员来说,可从上述说明中清楚了解本发明的各种变化。例如,单分层电极可置于VCSEL中的低位镜和低位隔层之间,或者采用折射系数比激活区材料的折射系数小的介质材料替代再生长AlGaAs区。此外,图1、2、3和8中的高位镜70可分成分别位于分层电极上下的上部和下部,这类似于图9、10和11中的高位镜275的划分。
权利要求
1.一种纵腔式表面发射激光器,该激光器产生波长为λ的辐射,它包括第一和第二镜,其间界定一个光学谐振腔;一个激活区,它位于所述的第一和第二镜之间;和第一分层电极,它基本上位于所述激活层和所述第一镜之间,所述第一分层电极包括多个交替排列的高掺杂层和低掺杂层,这些层具有第一电导类型,以便于向所述激活区注入电流而产生激光,并因此在所述腔中建立起一个驻波。
2.根据权利要求1的纵腔式表面发射激光器,它进一步包括位于所述激活区和所述第一分层电极之间的第一隔层;和位于所述第二镜与所述激活区之间的第二隔层。
3.根据权利要求1的纵腔式表面发射激光器,其中,光学谐腔的长度为mλ/2neff,这里m为整数,neff为光学谐振腔有效折射系数。
4.根据权利要求1的纵腔式表面发射激光器,其中,所述的低掺杂层和高掺杂层分别被近似地置于驻波的波峰和波谷处,以降低所述第一分层电极中的辐射吸收。
5.根据权利要求1的纵腔式表面发射激光器,其中,所述高掺杂层的厚度均大约等于或小于λ/4n,而所述低掺杂层的厚度均大约等于或大于λ/4n,这里n为相应各层的折射系数。
6.根据权利要求1的纵腔式表面发射激光器,其中,所述高掺杂层和低掺杂层的掺杂浓度分别约为1020/cm3和1018/cm3。
7.根据权利要求1的纵腔式表面发射激光器,其中,所述高掺杂层和低掺杂层包括异质结构的半导体材料,该材料具有适于约束来自各高掺杂层的多数载流子的能带隙。
8.根据权利要求7的纵腔式表面发射激光器,其中,所述高掺杂层为AlxGa(1-y)As,而所述低掺杂层为AlyGa(1-y)As,这里x和y值的范围是0≤x≤1,0<y≤1,并且x<y。
9.根据权利要求7的纵腔式表面发射激光器,其中,所述高掺杂层为AlxGa(1-x)As,这里x值的范围是0≤x≤1,而所述低掺杂层为InyAlcGa(1-y-z)P,这里y和z值的范围是0≤y≤1,0≤z≤1,并且0≤(y+z)≤1。
10.根据权利要求1的纵腔式表面发射激光器,其中,所述第一电极的一个低掺杂层最靠近所述第一镜。
11.根据权利要求10的纵腔式表面发射激光器,它进一步包括用导电率增加离子注入形成一个环形离子注入区,以便于与所述第一分层电极低阻电接触、所述环形离子注入区至少包括所述第一电极的最靠近所述第一镜的低掺杂层。
12.根据权利要求10的纵腔式表面发射激光器,它进一步包括一个台面,所述台面至少包括所述第一镜和所述第一电极的最靠近低掺杂层,所述台面使最靠近所述第一镜的高掺杂层一个环形区域显露出来,以实现与所述第一电极的低阻电接触。
13.根据权利要求1的纵腔式表面发射激光器,它进一步包括一个位于所述第二镜与所述激活区之间的第二分层电极,所述第二分层电极包括多个具有第二电导类型的交替排列的高掺杂层和低掺杂层。
14.根据权利要求1的纵腔式表面发射激光器,它进一步包括一个电流孔,此电流孔用于导引在所述第一分层电极和所述激活区之间流动的电流,所述电流孔包括一个水平的盘形区,此盘形区位于所述第一镜和所述激活区之间,所述电流孔有一个较低电导率的环形围绕区,以促使电流在所述电流孔和所述激活区之间主要纵向地流动,从而建立基模TEM00激光。
15.根据权利要求14的纵腔式表面发射激光器,其中,所述第一镜的直径等于或大于第一电流孔的直径。
16.根据权利要求14的纵腔式表面发射激光器,其中,所述电流孔具有通过除去环形围绕区的材料所形成的侧壁。
17.根据权利要求14的纵腔式表面发射激光器,其中,所述电流孔由采用注入有电导率降低离子的环形区所围绕。
18.根据权利要求17的纵腔式表面发射激光器,其中,所述电流孔是在所述分层电极或其一部分中形成的。
19.根据权利要求17的纵腔式表面发射激光器,其中,环形围绕区具有这样的注入离子浓度,即,在注入区中,所述分层电极的低掺杂层是电阻性的,而高掺杂层是导电的。
20.根据权利要求1的纵腔式表面发射激光器,其中,所述高掺杂层包括单量子阱或多量子阱(well)。
21.根据权利要求1的纵腔式表面发射激光器,其中,所述第一分层电极位于所述激活区和整个所述第一镜之间。
22.根据权利要求1的纵腔式表面发射激光器,其中,所述第一分层电极位于所述第一镜中。
23.根据权利要求1的纵腔式表面发射激光器,其中,所述第一镜和第二镜是分配式分布喇格反射器,此反射器包括顺序排列的多对具有高折射系数和低折射系数的材料层,每层具有λ/4n的厚度,这里n是相应的折射系数。
24.一种纵腔式表面发射半导体量子阱激光器,包括一个衬底;一个形成于所述衬层上的第一镜;一个形成于所述第一镜上的第一隔层;一个激活层,它包括至少一个形成于所述第一隔层的量子阱层,所述激光层产生波长为λ的辐射;一个形成于所述激活层上的第二隔层;一个形成于所述激活层上的分层电极,它包括多个交替排列的高和低掺杂层,这些掺杂层与所述第二隔层具有相同电导类型,以便将电流引入所述激活层而产生激光;和一个形成于所述分层电极上的第二镜,所述第一和第二镜之间确定了一个长度为mλ/2neff的激光谐振腔,这里m为整数,neff为谐振腔的有效折射系数,在谐振腔中建立起一个驻波,而所述低和高掺杂层分别近似地位于驻波强度最大和最小处,以降低辐射吸收。
25.根据权利要求24的激光器,其中,所述第一和第二镜是分配式布喇格反射器,此反射器包括顺序排列的多对具有高折射系数和低折射系数的材料层,每层具有的厚度为λ/4n,这里n为相应层的折射系数。
26.根据权利要求25的纵腔式表面发射激光器,其中,所述第一电极的一个低掺杂层最靠近所述第二镜;和所述第二镜中具有低折射系数的一个材料层最靠近所述的第一分层电极。
27.根据权利要求25的纵腔式表面发射激光器,其中,所述第一电极的一个高掺杂层最靠近所述第二镜;和所述第二镜中具有高折射系数的一个材料层最靠近所述第一分层电极。
28.一种纵腔式表面发射激光器,包括一个衬底;一个形成于所述衬底上的第一镜;一个形成于所述第一镜上的第一隔层;一个形成于所述第一隔层上的激活区,它用于发射波长为λ的光;一个形成于所述激活层上的第二隔层;一个形成于所述第二隔层上的第二镜,其中,所述第一和第二镜之间确定一个激光谐振谐;一个形成于所述激活区中的具有所希望的直径的光学增益区,所述光学增益区具有一个低电导率的环形围绕区;和一个金属层,它具有一个足够大的直径的光孔,以抑制高次模激光,所述金属层水平地形成于所述第二镜中或与之相邻,所述光学孔纵向与所述光学增益区对准,并具有等于或小于所述光学增益区的直径。
29.根据权利要求28的纵腔式表面反射激光器,其中所述金属层的厚度小于400

30.根据权利要求28的纵腔式表面发射激光器,其中,所述金属层近似地位于所述激光谐振腔中形成的驻波强度最大处。
31.根据权利要求28的纵腔式表面发射激光器,其中,所述第二镜包括分配式布喇格反射器,此反射器包括交替排列的多个高和低折射系数的材料层,每层具有的厚度为λ/4n,这里n为各层的折射系数,所述金属层将所述第二镜分为上部和下部。
32.根据权利要求31的纵腔式表面发射激光器,其中,所述上部位于所述金属层之上并包括介质层。
33.根据权利要求31的纵腔式表面发射激光器,其中,所述下部位于所述金属层之下并包括半导体层。
34.根据权利要求33的纵腔式表面发射激光器,其中,所述金属层与所述下部的半导体层欧姆接触,以将电流引至所述激活区。
35.根据权利要求28的纵腔式表面发射激光器,其中,所述光增益区由采用注入了电导率降低离子的环形区所围绕。
36.根据权利要求28的纵腔式表面发射激光器,其中,所述光增益区具有通过除去环形围绕区材料所形成的侧壁。
37.根据权利要求28的纵腔式表面发射激光器,其中,环形围绕区包括具有高的电阻率和比所述激活区低的折射系数的再生长半导体材料。
38.根据权利要求28的纵腔式表面发射激光器,其中,所述金属层主要为金。
全文摘要
所公开的纵腔式表面发射激光器(VCSELs)具有各种腔内结构,以实现低串联电阻、高功率效率和TEM
文档编号H01S5/183GK1081541SQ9310674
公开日1994年2月2日 申请日期1993年5月7日 优先权日1992年5月7日
发明者J·L·纪威尔, G·R·奥尔布赖特 申请人:班德加普技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1