太阳电池装置及其制造方法

文档序号:6807006阅读:126来源:国知局
专利名称:太阳电池装置及其制造方法
技术领域
本发明涉及将光作为能源使用的太阳电池装置及该装置的制造方法。
背景技术
用单晶硅或多晶硅及非晶型硅等材料形成的太阳电池常被用作向钟表、电子计算器、无线电收音机等产品供电的能源。
但是,以往是将太阳电池直接暴露在产品外面设置的,因而从外部就能看到太阳电池的样子,这已成为产品设计上的弊病。特别是在钟表等装饰品中由于太阳电池的原因而妨碍了结构设计的多样性时,将对产品价值带来很大影响,所以强烈地期望有所改进。
根据这种期望,提出了在太阳电池的正面装入吸收颜色的滤光层,或装入用来限制光透射波长范围的着色层,力求不能直接看到太阳电池(特开平5—29641号公报)。
然而,在使用如上所述的吸收颜色的滤光层的情况下,由于滤光层本身要吸收入射光,所以对太阳电池的光能供给量将减少。因此,一方面要向太阳电池充分地供给为发电所必需的光能,另一方面又要从外部看不到太阳电池,这是不可能的。
而在使用如特开平5—29641号公报中所述的着色层的情况下,能够在确保太阳电池的光能供给量的同时,看不到太阳电池。但是,使用了该着色层时的外观质量怎么说也是呈不能令人满意的状态。即,为了优先考虑太阳电池的遮掩效果,着色层在外观上呈反光弱的不鲜明的颜色,所以若想谋求结构设计的多样化是不可能的。
本发明正是鉴于这种技术背景而开发的,其目的是在向太阳电池供给充分的光能的同时,从外部凭视觉不能看出该太阳电池,而且能任意显现多种色彩,力求达到结构设计的多样化。
发明的公开为了达到上述目的,本发明的太阳电池装置采用以下结构。
即,本发明的第1太阳电池装置备有设在太阳电池的正面侧用于使从太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、设在该遮掩层的正面侧用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、及设在上述光学构件的正面侧用于使从该光学构件反射的光漫射并向正面侧射出的漫射层。
这里,光学构件例如可用干涉滤光层形成。
干涉滤光层能够利用高折射率材料和低折射率材料的组合以及层叠数和各层的光学厚度将光的透射率控制在任意波长范围。由于这种控制在可见区域进行,所以能显现亮度、色度、彩色相位不同的多种颜色。
此外,作为光学构件的另一例子,也可使用高折射率材料层。
高折射率材料层在与其他介质的界面上表现出由光折射率之差引起的反射率。例如,在与空气的界面上,材料层的折射率越高则表现的反射率越高,所以能得到反射光强度增加的明亮的反射光。因此,当将在可见光区域内几乎无吸收的透明的高折射率材料层与白色的漫射层组合使用时,可得到由于界面上的高反射率而形成的明亮白色外观,同时使除此之外的光能全部透射而到达太阳电池,所以也能确保太阳电池的电动势特性。在高折射率材料层中吸收的光能部分终究是无谓的消耗,所以希望尽可能采用无吸收的高折射率材料层。为此,高折射率材料层最好具有1.6以上的光折射率。
另外,光学构件可以这样构成,即在透明基底上形成在光源发出的可见光部亮线波长的光中至少透射1种波长的光的多层介质薄膜。
为了使光学构件对作为一般室内光源的荧光灯的光具有最佳的分光透射、反射特性,上述这种结构是特别有效的。就是说,在荧光灯的光谱中具有3种波长的亮线,由于光学构件使这些亮线波长的光中至少1种波长的光透射,所以能够向太阳电池元件供给比以往要多的有助于发电的光能。
漫射层同样是为增强在光学构件上的反射光以便让外部观察者看到而插入的。单独的光学构件上的反射光定向闪烁后而被看到,并且还可看到透射光的返回光线,所以反射色和透射色混合而使颜色的纯度降低。因此,通过引入该漫射层就能无定向地柔和显现任意的明亮反射色。
该漫射层可以这样构成,即在无色透明的塑料材料中分散混合作为光散射物质的白色粉末或具有与该塑料的折射率不同折射率的透明微粒。
漫射层还可用表面形成粗糙面的无色透明体构成。
漫射层是作为显现反射色用的部件而插入的,所以在满足其功能的范围内希望透射率尽可能高。具体地说,最好是具有80%以上的透射率。
到达太阳电池后的光,其大部分被太阳电池部分吸收,但在太阳电池周围部反射一部分,返回到外部观察者。因此就使观察者看到太阳电池的存在。遮掩层担负着防止上述反射光回到外部观察者的作用,通过引入该层能够使位于内侧的太阳电池不能凭目视辩认出来。
这里,遮掩层最好具有45~85%的光透射率。
遮掩层还可采用这样的结构,即,使其具有透射率随光的入射方向的不同而不同的各向异性,可使从正面侧射向太阳电池侧的光透射量大于从太阳电池侧面射向正面侧的光透射量。
在这种情况下,遮掩层对从正面侧入射的光最好具有60~96%的透射率。
这样的遮掩层可以通过将无色透明的片状构件机械加工成三维形状而得到。
按照本发明的结构,可以既具有太阳电池的功能,又能从外部将其存在完全遮掩住,在外观质量上可显现出优异的多种鲜明的外观颜色,所以与以往相比,大幅度地扩展了设计的自由度,使对迄今为止的以上多种用途的应用成为可能。
另一方面,本发明的第2太阳电池装置备有设在太阳电池的正面侧用于控制任意波长的入射光使其达到规定透射率的光学构件、及设在上述光学构件的正面侧用于使从该光学构件反射的光漫射并向正面侧射出的漫射层。
这里,光学构件例如可使用高折射率材料层。
高折射率材料层在与其他介质的界面上显现出由光折射率差引起的反射率。例如,在与空气的界面上,材料层的折射率越高则显现出其反射率也越高,所以能得到反射光强度增加的明亮的反射光。因此,将在可见光区域内几乎无吸收的透明的高折射率材料层与白色的漫射层组合使用时,可得到由于界面上的高反射率而形成的明亮白色外观,同时使除此之外的光能全部透射而到达太阳电池,所以也能确保太阳电池的电动势特性。
在高折射率材料层中吸收的光能部分终究是无谓的消耗,所以希望尽可能采用无吸收的高折射率材料层。为此,高折射率材料层最好具有1.6以上的光折射率。
漫射层同样是为增强从高折射率材料层与其他介质的界面反射的光以便作为散射光让外部观察者看到而插入的。在无漫射层时反射光定向闪烁后而被看到并且还可看到透射光的返回光线,但通过引入该漫射层就能无定向地柔和显现明亮颜色的外观。漫射层除了如上所述那样显现反射色之外,还为了使在其下面的太阳电池不能凭目视看到而插入的,所以其透射率范围应设定成满足两个目的。
该漫射层可以这样构成,即在无色透明材料中分散混合作为光散射物质的白色粉末或具有与该塑料的折射率不同折射率的透明微粒。
漫射层还可用表面形成粗糙面的无色透明体构成。
按照本发明的结构,也可以既具有作为太阳电池的功能,又能从外部将其存在完全遮掩住,在外观质量上可显现出优异的多种鲜明的外观颜色,所以与以往相比,大幅度地扩展了设计的自由度,使对迄今为止的以上多种用途的应用成为可能。
以下,在本申请中,将公开有关太阳电池制造方法的第1~第4发明。太阳电池装置的这些制造方法的特征在于,在太阳电池的正面侧配置用于使从该太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、同时在遮掩层的正面侧配置用于对从正面侧入射的任意波长的光进行控制,使其达到规定透射率的光学构件、而且在光学构件的正面侧配置用于使从该光学构件反射的光漫射并向正面侧射出的漫射层,尤其是上述漫射层和遮掩层按如下方法制造。
即,在有关太阳电池制造方法的第1发明中,其特征是将无色透明的片状构件的一侧表面用机械方法形成不规则的凹凸形状后,对该表面进行化学蚀刻以形成上述漫射层。
在有关太阳电池制造方法的第2发明中,其特征是上述漫射层通过2步工序制造,即形成其表面呈凹凸形状的母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
在有关太阳电池制造方法的第3发明中,其特征是将无色透明的片状构件的一侧表面用机械方法形成不规则的凹凸形状而制成上述遮掩层。
在有关太阳电池制造方法的第4发明中,其特征是上述遮掩层通过2步工序制造,即形成其表面呈凹凸形状的排列母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
进一步在本申请中,还将公开有关太阳电池制造方法的第5、第6的发明。太阳电池装置的这两种制造方法的特征在于,在太阳电池的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,尤其是上述漫射层按如下方法制造。
即,在有关太阳电池制造方法的第5发明中,其特征是将无色透明的片状构件的一侧表面用机械方法形成不规则的凹凸形状后,对该表面进行化学蚀刻以形成上述漫射层。
而在有关太阳电池制造方法的第6发明中,其特征是上述漫射层通过2步工序制造,即形成其表面呈凹凸形状的母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
附图的简单说明图1是用于说明在手表内应用了本发明的太阳电池装置时的实施例1的外观示意图。
图2是在图1中的A—A线断面中示意地表示出从太阳电池起的正面侧结构的断面示意图。
图3是表示实施例1的太阳电池装置的漫射层透射率与反射光强度的关系的图。
图4是表示比较例2的太阳电池装置的漫射层透射率与反射光强度的关系的图。
图5是为说明在手表内应用了本发明的太阳电池装置时的实施例2而示意地表示出从太阳电池起的正面侧结构的断面示意图。
图6是示意地表示出本发明实施例3涉及的太阳电池装置的结构的断面示意图。
图7是为说明在手表内应用了本发明的太阳电池装置时的实施例4而示意地表示出从太阳电池起的正面侧结构的断面示意图。
图8是实施例4中的白色漫射层的断面示意图。
图9是为说明在手表内应用了本发明的太阳电池装置时的实施例6而示意地表示出从太阳电池起的正面侧结构的断面示意图。
图10是实施例6中的白色漫射层的断面示意图。
图11是为说明在手表内应用了本发明的太阳电池装置时的实施例9而示意地表示出从太阳电池起的正面侧结构的断面示意图。
图12是示意地表示出作为该太阳电池装置构成部件的遮掩层表面形状的断面示意图。
图13是表示图12示出的遮掩层结构中有关棱镜角度与透射率的关系的图。
图14是示意地表示在与实施例9不同的结构中太阳电池装置的遮掩层部分的形成状态的断面示意图。
图15是为说明在手表内应用了本发明的太阳电池装置时的实施例11而示意地表示出从太阳电池起的正面侧结构的断面示意图。
图16是实施例11中的光学构件的断面示意图。
图17是表示实施例11中的光学构件的分光透射光谱和现有的光学构件的分光透射光谱的图。
图18是表示市售荧光灯的分光辐射光谱的图。
图19是实施例12中的光学构件的断面图。
图20是表示实施例12中的蓝、黄绿、红色反射部的分光反射光谱的图。
实施发明用的最佳形态以下,一面参照附图一面说明本发明的实施例。实施例1图1是用于说明在手表内应用了本发明的太阳电池装置时的实施例1的外观示意图,图中示出在表盘内侧太阳电池分成4部分设置的状态。图2是在图1的A—A线断面中示意地表示出从太阳电池起的正面侧结构的断面示意图。
在表壳11内,固定着玻璃基片12。在该玻璃基片12的背面,通过用等离子体CVD法形成非晶型硅膜,制成太阳电池13。而在玻璃基片12的正面,设置使从太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层14。再在遮掩层14的正面侧依次层叠设置干涉滤光层15、漫射层16,将漫射层16兼作表盘使用,从而构成太阳电池式手表。
这里,作为遮掩层14及漫射层16,可以利用将象玻璃或塑料薄膜那样的透明体的表面机械粗磨加工成粗糙面或使塑料表面变质等方法形成。也可使用如聚四氟乙烯或缩醛树脂等在分子结构上呈白色外观的材料制作遮掩层14及漫射层16。另外,还可以利用在粘合剂中混合碳酸钙粉末等涂布在透明体表面上,或在透明体中混入散射物质来形成遮掩层14及漫射层16。作为简便的方法,也可将纸或布等用作遮掩层14及漫射层16。
在实施例1中,将厚度为300微米的玻璃基片12的正面用相当于120号的SiC粉末进行珩磨处理后形成了遮掩层14。这时的珩磨面的平均粗糙度Ra为1.4~1.6微米、平均深度约为7微米、光的透射率为80%。
将300微米厚的玻璃基片的一侧表面用相当于1000号的SiC粉末进行珩磨处理后用作漫射层16。这时的珩磨面的平均粗糙度Ra为0.7~0.9微米、平均深度约为2微米、光的透射率为90%。
如后文所述,通过改变材料和珩磨处理条件,可调整上述遮掩层14及漫射层16的透射程度,以找到可以适用的范围。
此外,在本实施例1中,还通过使用高折射率材料(H)即TiO2及低折射率材料(L)即SiO2制成了干涉滤光层15。即,将高折射率材料和低折射率材料适当地层叠到5层,形成了光的控制波长例如分别为550nm、435nm、640nm的干涉滤光层15。这里,当光的控制波长为550nm时反射色为黄色,435nm时反射色为蓝色,640nm反射色为红色。
除此之外,光的透射波长范围当然也可以通过调整叠层材料、层叠数、膜厚等方法进行控制,还能对在反射波长区域内的光的反射率进行控制等,所以,即使是在相同的颜色配合下也能制成光的透射率不同的各种各样的干涉滤光层15。
将按如上所述方法制成的遮掩层14、干涉滤光层15及漫射层16按其顺序层叠,同时在正面形成了遮掩层14的玻璃基片12的背面形成太阳电池13,并以电动势特性评价了从正面侧到达该太阳电池1 3的光能量。并评价了太阳电池13的遮掩效果和外观质量。干涉滤光层15的反射色为明亮的蓝色。
由于到达该太阳电池13的光能量随反射色而变化,所以太阳电池13的电动势特性也随之变化,但就与太阳电池13的遮掩效果和外观质量的相关关系而言,不管是什么反射色都具有大致相同的倾向。
这里,作为评价的比较对象,准备了如下几种,即仅有太阳电池的结构(现有例)、在太阳电池的正面配置了吸收颜色的滤光层的结构(比较例1)、在特开平5—29641号公报所述结构中使用干涉滤光层作为着色层的结构(比较例2)作为电动势特性的评价基准,在通常室内光(最低照度100勒克司)下的电动势在1.3V以上为合格。其结果列于表1。
表1

<p>从表1可以明显看出,在现有例和各比较例中,不可能全面地满足确保太阳电池的电动势、遮掩效果、外观质量的要求。与此相反,在本发明的实施例1中,在将太阳电池的电动势充分地保持在可工作的范围的同时,还能遮掩太阳电池,而且外观质量也是优异的。这种情况就意味着能够实现全然不会意识到太阳电池外观的优良的结构设计。
接着,讨论了上述实施例1与比较例2在结构上的不同对外观质量的影响。这时,还通过用照度计测定透过本发明实施例1中各结构层后的光能的量,讨论了遮掩层14和漫射层16应满足的条件。
其结果是,当在实施例1和比较例2中使用同样的干涉滤光层时,通过使遮掩层14的透射率与漫射层16的透射率相乘后的值接近于实施例2的漫射层的透射率,可使供给太阳电池的光能的量大致相等。
随着干涉滤光层的反射色的不同,透过干涉滤光层的能量在全部入射能量的大约40~80%的范围内变化,因此太阳电池的电动势、遮掩效果也变化。
因此,可以看出,遮掩层14和漫射层16应满足的条件随反射色而不同,但若通过遮掩层14与漫射层16的透射率大约在40~80%的范围内时,则对于所有的外观颜色来说上述的必要条件都可以满足。这个值对于漫射层16相当于必须在80%以上,最好是90%以上的透射率,对于遮掩层14相当于必须具有45~85%的光透射率。
另一方面,关于外观质量,本发明的实施例1与比较例2的结果完全不同。图3和图4还具体地表示出其结果。
在比较例2的结构中,用一个漫射层兼起遮掩太阳电池及用反射光显现外观两个作用,与之相反,在本实施例1中,遮掩层14以遮掩太阳电池为其主要目的,漫射层16以用反射光显现外观为主要目的。
如图3所示,由于其作用分别承担,所以在本发明的实施例1中,来自干涉滤光层15的反射光强度仅依赖于漫射层16的透射率,即使遮掩层14的透射率改变,该反射光强度也没有任何变化。
而另一方面,在比较例2的结构中,如图4所示,在任何反射色时来自干涉滤光层15的最大反射光强度都较小,而且该反射光强度随漫射层透射率的改变而变化。这种情况表明,当为遮掩太阳电池而使用透射率小的漫射层时,反射光强度也随之大大减小。其结果是,只观察到不鲜明的发暗的反射光,因而使外观质量显著降低。
在上述的实施例1中,作为干涉滤光层15示出了由TiO2膜和SiO2膜形成的5层结构,但众所周知,通过改变材料和简单的设计变更可以构成多种多样的滤光层,并能将其投入使用。
干涉滤光层15不吸收入射光而具有将透射光或反射光分光的功能,所以在满足向太阳电池供给能量的同时还能显现反射色,因而作为本发明的构成部件是最适用的。
另外,利用干涉滤光层15还能将原来应构成反射光的光作为透射光使用,因而拓宽了根据反射色进行设计的自由度。
在本实施例1中,作为漫射层16使用了经过珩磨处理的玻璃片,但此外也可使用塑料等材料。
漫射层16或遮掩层14也可用旋转镀膜法、浸渍法、蒸镀法等薄膜形成法在干涉滤光层15或太阳电池13上直接形成。
在漫射层16的制作方法中,已经确认除珩磨处理之外还可以通过将透明基片表面加工成鱼眼镜头状、双透镜状、或菲涅尔透镜状来获得具有同样效果的漫射层。实施例2图5是为说明在手表内应用了本发明的太阳电池装置时的实施例2而示意地表示出从太阳电池起的正面侧结构的断面示意图。
在表壳21内,固定着玻璃基片22。作为基片既可以是金属基片也可以是绝缘基片,但这里采用厚度为300微米的玻璃基片,在其正面,通过用等离子体CVD法形成非晶型硅膜制成太阳电池23。
在太阳电池23的正面,为了将其遮掩住,依次层叠配置作为光学构件的高折射率材料层24和作为漫射层的白色漫射层25。并且,通过将白色漫射层25兼作表盘使用构成太阳电池式手表。
具体地说,在厚度为300微米的玻璃基片的一侧表面上形成厚度为125nm(相当于λ/4)的折射率为2.1的五氧化二钽薄膜,作为高折射率材料层24,并将另一个玻璃基片的表面用相当于100号的SiC粉末进行珩磨处理得到了白色漫射层25。
按照上述方法在玻璃基片上制成的高折射率材料层24在可见光区域的透射率与波长无依赖关系,大约为80%(反射率为20%)。而按如上所述制成的白色漫射层25在可见光区域的波长范围内的光的透射率近似均匀地为75%。
对于高折射率材料层24,由于通过改变折射率可使光的反射率变化,所以可用这种方法调整光的透射率。而对于白色漫射层25也可以通过选择珩磨材料和处理条件调整光的透射率。
另外,如上所述白色漫射层25也可以利用对玻璃或塑料薄膜那样的透明体的表面进行粗磨而机械加工成粗糙面或使塑料表面变质等方法形成。也可使用如聚四氟乙烯、缩醛树脂、纸或布等在结构上呈白色外观的材料制作白色漫射层25。还可以利用在粘合剂中混合碳酸钙粉末等涂布在透明体表面上,或在透明体中混入散射物质、或通过将透明基片表面加工成鱼眼镜头状、双透镜状、或菲涅尔透镜状等形成白色漫射层25。
此外,也可用旋转镀膜法、浸渍法、蒸镀法等薄膜形成法在太阳电池23或高折射率材料层24上直接形成白色漫射层25。当用粘接剂粘结各必要的构成部件时,在该粘接剂中也可以含有如上所述的具有白色漫射层功能的材料。
将按照上述方法制成的高折射率材料层24和白色漫射层25层叠在太阳电池23的正面侧,制成太阳电池装置。然后,使用该太阳电池装置,以电动势特性评价了到达太阳电池23的光能量。并评价了太阳电池23的遮掩效果和外观质量。
这里,作为评价的比较对象,准备了仅有太阳电池的结构(现有例)、以及在太阳电池的正面配置了白色吸收滤光层这样两种光的透射率不同的结构(比较例3、比较例4)。
作为电动势特性的评价基准,在通常的室内光(荧光灯照射)下的电动势在1.3V以上为合格。其结果列于表2。
从表2可以明显看出,在现有例和各比较例中,不可能全面地满足确保太阳电池的电动势、太阳电池的遮掩效果、以及外观质量的要求。与此相反,在本发明的实施例2中,在将太阳电池的电动势充分地保持在可工作的范围的同时,还能遮掩太阳电池,而且外观质量也是优异的。
表2

在上述实施例2中,作为高折射率材料层24采用了折射率为2.1的五氧化二钽薄膜,但其他象氧化铝、氧化钛等光折射率在1.6以上、不吸收可见光的材料,也可以用作高折射率材料层24。另外,高折射率材料层24不限于玻璃片上的薄膜,也可用塑料之类的材料形成。实施例3图6是示意地表示出本发明实施例3涉及的太阳电池装置的结构的断面示意图。
按照与实施例2相同的方法在基片31上形成太阳电池32之后,按照作为漫射层的第1白色漫射层33、作为光学构件的高折射率材料层34、作为漫射层的第2白色漫射层35这样的顺序进行叠层,从而形成太阳电池装置。
具体地说,将玻璃基片的一侧表面进行珩磨处理,得到具有光透射率为83%的第1白色漫射层33。然后,在该玻璃基片的背面形成具有光折射率为2.1的五氧化二钽薄膜,形成了具有光透射率为80%的高折射率材料层34。
接着,通过在厚度为0.1mm的塑料表面形成细小的凹凸,形成具有光透射率为90%的第2白色漫射层35,并将其层叠在高折射率材料层34上。
将按如上所述方法制成的第1白色漫射层33、高折射率材料层34、第2白色漫射层35配置在太阳电池32的正面上,进行了与实施例2同样的评价。其结果是,能够获得与实施例2大致相同的太阳电池32的电动势特性及太阳电池32的遮掩效果,还得到了比实施例2明亮的外观质量。
这可以认为是由于第2白色漫射层35的光透射率高因而从高折射率材料层34到外部观察者的反射光强度增强了的结果。
另一方面,表明由于太阳电池32的遮掩性取决于第1白色漫射层33的光透射率和第2白色漫射层35的光透射率,所以实际上取得了与实施例2同样程度的遮掩效果。
当从到达太阳电池32的光能的量及外观质量水平确定第1白色漫射层33和第2白色漫射层35的透射率容许范围时,若通过两个漫射层33、35的透射率范围大约为40~80%,则可断定能满足所有的特性。
该透射率范围的值,对于第1白色漫射层33相当于必须有大约45~85%的光透射率,对于第2白色漫射层35相当于必须有80%以上的光透射率此外,第2白色漫射层35的透射率在不导致外观质量降低的范围内,希望尽量取高一些的值。实施例4在本实施例4~后文所述的实施例8中,对用来对从干涉滤光层或高折射率材料层等光学构件反射的光进行散射控制的漫射层应满足的条件进行讨论,并取得了最佳条件。
为获得外观质量优异的太阳电池装置,漫射层应同时满足确保散射性能和高透射率两方面的条件。即,从外部射入的光透过白色漫射层后,一部分由光学构件反射而其余部分透射。反射光由漫射层散射,结果,得到的散射光返回到外部观察者,看到同样的颜色。
而另一方面,透射光到达太阳电池供发电用。这时,如果漫射层的透射率减小,则反射光、透射光也都减少,结果不能显现漂亮的外观颜色,发电特性也随之降低,所以希望漫射层的透射率在80%以上,最好是在90%以上。
对为了得到具有这种特性的漫射层所需的条件进行了多方面的讨论,判断出通过在无色透明的塑料材料中分散混入作为光散射物质的白色粉末、或分散混入折射率与塑料材料具有的折射率不同的透明微粒,可以得到具有80%以上高透射率的白色的漫射层。
另一方面,还对散射性能进行了讨论,并对与具有高透射率的条件范围相容的范围进行了估计。这里,将透射漫射层的光的比例取为全透射率,相隔一定距离配置相同尺寸的投射光纤和接收光纤,并将通过在其中间插入的漫射层后到达接收光纤的光的比例作为直通透射率,定义漫射系数=(全透射率-直通透射率)/全透射率,检查了与散射性能的相应关系。
其结果是,判断出如果漫射层满足漫射系数≥0.3,则可得到能满足外观质量的散射性能。同时,上述讨论结果表明,可以得到80%以上高透射率和漫射系数≥0.3两个条件相容的白色漫射层。
以下,参照


具体的实施例。
图7是为说明在手表内应用了本发明的太阳电池装置时的实施例4而示意地表示出从太阳电池起的正面侧结构的断面示意图。
在表壳41内固定着玻璃等具有光透射性的基片42。在基片42的背面,通过用等离子体CVD法形成非晶型硅膜制成太阳电池43。
在基片42的正面,依次层叠配置光学构件44及作为漫射层的白色漫射层45。并将白色漫射层45的正面兼作表盘使用,从而构成太阳电池式手表。
这里,作为光学构件44使用高折射率材料层。具体地说,通过在基片42上蒸镀膜厚约60nm的具有光折射率为2.3的氧化钛薄膜,形成了具有大约25%反射率的高折射材料层。
图8是实施例4中的白色漫射层45的断面示意图。白色漫射层45使用无色透明的塑料材料451,例如PMMA(聚甲基丙烯酸甲酯),在其中按大约10重量%分散混入光散射物质452,例如粒径约为20微米的PS(聚苯乙烯)微粒,然后通过形成0.25mm的厚度制成。
这里,因PMMA、PS材料本身全都是透明的,所以具有较高的光透射性,又因其光的折射率不同,即PMMA为1.49,PS为1.59,所以由折射率差而产生散射。其结果是,在上述结构中,得到透射率≈91%、漫射系数≈0.6的性能,可以充分地作为漫射层使用。
按如上所述方法制成的太阳电池装置已被确认除对太阳电池43的能量供给和对太阳电池43的遮掩效果外,还表现出优异的外观质量。
在本实施例4中,白色漫射层45的主要用途是有效地使从光学构件44反射的光散射,以便可从外部观察到同样的外观颜色。实际上,采用上述结构,作为外观颜色所看到的是与可见光区域波长没有依赖关系的灰色,可作为手表表盘使用而不会有不谐调的感觉。
在光学构件44与太阳电池43之间,通过附加插入具有遮掩太阳电池43的功能的构件,可以更有效地遮掩太阳电池43。
此外,在上述实施例4中,作为形成白色滤光层45的塑料材料选用了PMMA、作为光散射物质选用了PS,但与其他材料的组合当然也是可能的。
例如,作为分散混入PMMA中的光散射物质,可使用光折射率为1.63的聚砜、光折射率为1.58的PET(聚对苯二甲酸乙二醇酯)等。
而与上述实施例4相反,在光折射率高的物质中分散混入光折射率低的物质也能得到同样的效果。例如,也可在光折射率为1.55~1.61的环氧树脂中分散混入光折射率为1.46的PVAC(聚醋酸乙烯酯)。
另外,随着塑料材料中的光散射物质的浓度、粒径等的不同,光透射率、漫射系数会有很大变化。在本实施例4中,对PMMA中分散混入的PS的浓度、粒径进行了讨论,通过将浓度范围调整为5~40重量%、将粒径的范围调整为5~50微米,得到了同时满足光透射率在80%以上、且漫射系数在0.3以上的白色漫射层45。这样,通过改变光透射率、漫射系数,可以显现从散射性强的偏白的灰色到透明性强的灰色的很宽范围的外观。
在图7中,当形成了干涉滤光层取代高折射率材料层作为光学构件44时,白色漫射层45的性能差异将作为外观质量的不同更明确地被表现出来。
即,采用了高折射率材料层时,与可见光区域的波长无依赖关系的反射光被白色漫射层45散射后向外部射出,所以即使白色漫射层45的透射特性稍差一些而重叠出现白色混浊成分,但作为结果也不怎么差。与此相反,当利用干涉滤光层反射特定的颜色成分时,如存在白色漫射层45的白色混浊成分,则将观察到混浊不清的颜色。
因此,显现彩色外观时,作为理想情况希望白色漫射层45在具有散射性能的同时能透射接近100%的光,但实际上因存在着界面反射所以要想透射100%的光是不可能的。因此,希望白色漫射层45在可能的范围内尽量具有高的透射率。实施例5除使用了在白色漫射层45中作为光散射物质452分散混入的白色粉体之外,按照与实施例1同样的方法构成了太阳电池装置。
在PMMA中作为白色粉体以0.5重量%混入了粒径为10微米左右的碳酸钙粉末后,按0.25的厚度形成了白色漫射层45。
形成该白色漫射层45的塑料材料451的两面全都构成镜面状态,但因分散混入后的碳酸钙粉末具有对白色的散射性,所以作为总体呈现白色的外观,并得到光透射率≈85%、漫射系数≈0.5的特性。
即使在这种情况下,也能通过调整白色粉末的浓度、粒径、分散状态等,改变白色漫射层45的特性,从而能制作与目的一致的白色漫射层45。
在上述实施例4、5中,示出了将本发明的太阳电池装置应用于太阳电池式手表的例子,但因通过改变白色漫射层45的透射率及漫射系数可任意改变外观质量,所以也可以应用于包括电子计算器、无线电收音机在内的以太阳电池为驱动电源的各种装置。实施例6
图9是为说明在手表内应用了本发明的太阳电池装置时的实施例6而示意地表示出从太阳电池起的正面侧结构的断面示意图。
在表壳51内固定着玻璃等具有光透射性的基片52。在基片52的背面,通过用等离子体CVD法形成非晶型硅膜制成太阳电池53。
在基片52的正面,依次层叠配置光学构件54及作为漫射层的白色漫射层55。并将白色漫射层55的正面兼作表盘使用,从而构成太阳电池式手表。
这里,作为光学构件54使用高折射率材料层。具体地说,通过在基片52上蒸镀膜厚约60nm的具有光折射率为2.3的氧化钛薄膜,形成了具有大约25%反射率的高折射材料层。
图10是白色漫射层55的断面示意图。现说明白色漫射层55的制作方法,首先通过将玻璃基片551的一侧表面用相当于2000号的SiC粉末进行珩磨处理,在表面上形成平均粗糙度Ra≈0.02微米、平均深度≈0.1微米的凸凹形状。这时的光透射率为91%,但因漫射系数为0.1左右,在这种状态下,光散射性能低因而不能使用。
因此,通过将上述珩磨处理后的表面在氟酸中进行约10秒钟的蚀刻处理,得到了光透射率≈91.5%、漫射系数≈0.4的经过改进的凸凹部552。该值表明可以充分作为白色漫射层55充分使用。
已确认按如上所述方法制成的太阳电池装置除向太阳电池53供给能量和对太阳电池53的遮掩效果外,还表现出优异的外观质量。
在本实施例6中,白色漫射层55与上述的实施例4等同样,白色漫射层55的主要用途是有效地使从光学构件54反射的光散射,以便可从外部观察到同样的外观颜色。实际上,采用上述结构,作为外观颜色所看到的是与可见光区域波长没有依赖关系的灰色,可作为手表表盘使用而不会有不谐调的感觉。
在光学构件54与太阳电池53之间,通过附加插入具有遮掩太阳电池53的功能的构件,可以更有效地遮掩太阳电池53。
另外,通过改变珩磨条件可以使白色漫射层55的透射率、漫射系数变化。例如,通过对采用从SiCI20号到4000号的珩磨处理的各种条件的讨论、与蚀刻处理相配合,已判定从400号到2000号左右可同时满足光透射率和漫射系数。这样,通过调整珩磨处理的条件,可以呈现从散射性强的偏白的灰色到透明性强的灰色的很宽范围的外观。
如上所述,仅在珩磨处理中提高SiC的号数即可提高光的透射率,但因漫射系数会随之降低,所以散射性能减低,因而不能同时满足两方面的规格。因此,通过增加蚀刻处理,已断定可进一步提高光的透射率、漫射系数,所以能够在如上所述的很宽的范围满足珩磨处理的条件。
凸凹形态随珩磨处理的条件而不同。附带说一下,已确认用800号SiC进行珩磨处理后,经蚀刻处理的表面是50微米左右大小的一些圆形凸凹的集合体。而用2000号SiC进行珩磨处理后,经蚀刻处理的表面由几微米~10微米左右大小的一些圆形凸凹的集合体构成。
在实施例6中,作为将玻璃基片的透明体表面机械地粗磨而形成粗糙面的方法采用了珩磨处理方法,但也可使用其他机械加工方法。
在图9中,当使用干涉滤光层代替高折射率材料层作为光学构件时,白色漫射层55的特性差异将作为外观质量的不同更明确地被表现出来。即,采用了高折射率材料层时,与可见光区域的波长无依赖关系的反射光被白色漫射层散射后能从外部观察到,所以即使白色漫射层55的透射性能稍差一些而重叠白色混浊成分,作为结果也不怎么差。与此相反,当利用干涉滤光层反射特定的颜色成分时,如存在白色漫射层55的白色混浊成分,则将观察到混浊不清的颜色。
因此,当利用干涉滤光层显现彩色外观时,希望在具有散射性能的同时,尽可能调整到高的透射率。实施例7按照与实施例6同样的方法将基片的一侧表面用相当于1000号的SiC粉末进行珩磨处理后,通过在氟酸中进行约10秒钟的蚀刻处理形成平均粗糙度Ra≈0.2微米、平均深度≈0.9微米的凸凹部。因此,制成具有光透射率≈91%、漫射系数≈0.4的白色漫射功能的玻璃基片。
以该玻璃基片作为母模在塑料片上进行了铸塑复制。具体地说是在片厚为0.2mm的PC(聚碳酸酯)片上铸塑紫外线硬化型的PMMA(聚甲基丙烯酸甲酯)树脂,复制母模。因此,获得了在表面上具有片厚≈0.22mm、平均粗糙度≈0.3微米、平均深度≈1.0微米的机械凸凹部的塑料基片。该塑料基片光透射率≈90.5%、漫射系数≈0.5的特性。可以充分地作为白色漫射层55使用。
另外,也可利用在对金属型表面进行珩磨处理后用硫酸等进行蚀刻处理的方法制作母模。
按照实施例7,由于可以用塑料基片制成白色漫射层55,所以与使用玻璃基片的情况相比,生产率提高。特别是在模拟式手表中,因表针位于表盘的中心部,这就必须在兼作表盘使用的白色漫射层55的中心部钻孔。在玻璃基片上进行钻孔作业是有困难的,但若是在塑料基片上,就很容易进行。并且,也能简便地加工成不同的形状。实施例8基本结构与上述的实施例6、7相同,但在本实施例8中,通过以下工序制成了用于形成白色漫射层55的母模。
首先,在(100)的Si片上形成金膜后,通过采用光刻工序、蚀刻工序以50微米的间距将直径为5微米的圆形形状的金膜除去。
接着,通过将Si片在浓氟酸、硝酸、醋酸的混合液中浸渍,以除去金膜后的部分为起点对Si片各向同性地进行蚀刻。除去残余的金膜后,即可制成有规则地排列着半球形凹部的母模。
凹部的直径取决于蚀刻时间,在大约1小时的蚀刻后,获得了有规则地排列着直径约40微米的半球部的母模。
用按照如上所述方法制成的母模制成电铸模,并用透明PC材料进行了注射成型。将片厚为0.3mm的中央浇口式阴模铸型保持在120°℃下进行该注射成型,结果可以制成在一侧表面上具有半球形凹透镜状阵列的0.3mm厚的PC片。
该PC片具有光透射率≈88%、漫射系数≈0.4的特性,可以充分地作为白色漫射层55使用。在PC片的表面上形成凸透镜状的阵列也能具有同样的特性。
按照这种方法,因在制作母模时采用光刻工序,所以能严密地配置透镜状的阵列,并能任意设定凸凹部的直径。并且,通过Si的各向异性蚀刻也能改变阵列的形状。
在上述实施例6、7、8中,仅给出了各自的有代表性的材料,但即使用其他的材料也能形成同时具有80%以上光透射率和0.3以上漫射系数的白色漫射层。
如果透射特性相同,则对太阳电池发电能力的影响也相同,而通过改变漫射系数又能显现不同的外观,所以可以广泛应用于包括钟表在内的电子计算器、无线电收音机等使用太阳电池的装置。
如果采用以上说明的实施例4~8的漫射层,则因兼有高透射率和散射性能,所以在满足对太阳电池的能量供给和对太阳电池的遮掩的同时,能容易地提供外观质量优异的太阳电池装置,因而可以应用于采用与以往不同的外观显现颜色的多种用途。实施例9在本实施例9和后文所述的实施例10中,对在高水平地兼有外观质量和发电性能的太阳电池装置中的遮掩层应满足的条件进行了讨论,并取得了最佳条件。
为得到外观质量优异的太阳电池装置,遮掩层应满足的条件是,从光学构件侧尽可能多地向太阳电池透射入射光,与此相反,应尽可能不使从太阳电池反射的光通过。
即,从外部射入的光透射漫射层后,一部分由光学构件反射而其余部分透过。反射光由漫射层散射,结果,散射光返回到外部观察者,看到同样的颜色。
而另一方面,透射光经过遮掩层到达太阳电池供发电用。以往,遮掩层具有的结构是无论光从哪个方向入射,其透射率都一样,所以将光供给太阳电池和对太阳电池进行遮掩二者是矛盾的,但在这些实施例中,透射率随光的入射方向而不同,通过采用具有所谓的透射各向异性的结构,可以得到进一步的改善。
即,为得到具有这种特性的遮掩层,反复进行了多方面的讨论,对象玻璃片或塑料片那样的至少在可见光区域为无色透明的片状构件,通过将其与光学构件接触一侧的表面加工成三维形状,已判定出根据条件能够使从光学构件侧向遮掩层入射的光的透射率在90%以上,相反,能够使从太阳电池侧向遮掩层入射的光的透射率在60%以下。
这种情况表示从外部入射到遮掩层的光量的90%以上到达太阳电池供发电用,而另一方面,到达太阳电池之后,在太阳电池上反射而再次入射到遮掩层、并在光学构件侧射出的光量减少到以往的2/3左右的54%以下。
这意味着在假定太阳电池的发电能力与以往相同的情况下,对太阳电池的遮掩效果提高。此外,通过设定遮掩层的表面形状将从太阳电池反射的光向不同方向散射后再向光学构件侧射出,使太阳电池的信息散乱地返回,所以遮掩效果进一步提高。
以下,参照

具体的实施例。
图11是为说明在手表内应用了本发明的太阳电池装置时的实施例9而示意地表示出从太阳电池起的正面侧结构的断面示意图。图12是示意地表示出作为该太阳电池装置构成部件的遮掩层表面形状的断面示意图。
在玻璃片等的基片62的背面,通过用等离子体CVD法形成非晶型硅膜制成太阳电池63。在基片62的正面,进行表面加工形成如图12所示形状的遮掩层表面部67。由此与遮掩层64形成为一体的基片62固定在表壳61内。在遮掩层64的正面侧依次层叠配置光学构件65及作为漫射层的白色漫射层66。并将白色漫射层66的正面兼作表盘使用,从而构成太阳电池式手表。
这里,遮掩层64是通过将基片62的一侧表面机械加工形成遮掩层表面部67。该遮掩层表面部67被加工成以50微米为单位的四角锥在X—Y方向连续铺满的连续棱形形状。
而作为光学构件65,则使用通过在PC(聚碳酸酯)片的一侧表面上蒸镀膜厚为60nm左右具有光折射率为2.3的氧化钛薄膜而形成的高折射率材料层。
白色漫射层66是将玻璃基片用相当于1000号的SiC粉末进行珩磨处理后,在氟酸和硝酸的混合液中进行蚀刻处理制成母模,并在上述PC片的没有形成光学构件65的一侧表面上铸塑复制紫外线硬化型的PMMA(聚甲基丙烯酸甲酯)树脂而形成的。
使按如上方法制成的太阳电池装置的遮掩层表面部67的四角锥的顶角在70°~120°范围内改变,测定对垂直入射光的透射率。
其测定结果如图13所示。图中的黑圆圈表示从光学构件65侧向遮掩层64入射的光的透射率对顶角的依赖关系。而图中的白圆圈表示从太阳电池63侧向遮掩层64入射的光对顶角的依赖关系。
从图13的结果可以清楚地观察到,在顶角取某个角度时能观察到明显的透射各向异性性能。例如,当将顶角设定为80°时,可判断出从光学构件65侧入射光量的90%以上透射,但从相反方向透过遮掩层64的光量仅在55%以下。
即,入射到遮掩层64的光量的90%以上到达太阳电池63供发电用,与此相反,在太阳电池63上反射并透过遮掩层64后入射到光学构件65的光减少到55%以下。
在室内的照明环境下,入射光分布与垂直入射相比虽然表现出较弱的定向性,但即使如此也已经确认从光学构件65侧向遮掩层64入射的光的透射率在80%以上、相反,从太阳电池63侧向遮掩层64入射的光透射率在60%以下,呈透射各向异性。
在本实施例中,白色漫射层66的透射率约为92%、光学构件65的透射率约为75%、遮掩层64对从光学构件65侧入射的光的光透射率约在90%以上,所以在考虑到界面反射等情况之后,外部入射光中至少有大约65%到达太阳电池63用于发电。
另一方面,估计太阳电池63的反射率在非晶型硅部约为20%、在金属电极部约为70%,所以从金属电极反射并经过与上述相反的过程返回到外部观察者的光量大约为初始入射光的18%。由于这个值比从光学构件上反射并以特定颜色显现的21%反射光强度小,所以从太阳电池反射的光,外部观察者几乎看不出来。来自太阳电池其他部位的反射光强度就更小了。
作为比较对象,在光透射率约为90%的情况下采用不具有透射各向异性的遮掩层时,从金属电极反射后返回到外部观察者的光量大约为30%,在外观上能清晰地看到从太阳电池反射的光,所以遮掩效果是不够的。
在结构上不具备透射各向异性的遮掩层本身的透射率降低的情况下,虽仍有方法确保遮掩效果,但这时到达太阳电池的光量就会减少,反射光强度也减小,因而只能显现出混浊不清的外观颜色,外观质量和能量供给能力都不能达到要求。实施例10图14是示意地表示在与实施例9不同的结构中形成了太阳电池装置的遮掩层部分的状态的断面示意图。
即,在本实施例10中,在金属基片68上间隔着绝缘层69形成太阳电池63,再在其正面侧形成遮掩层64。更具体地说,就是在不锈钢等金属基片68上间隔着聚酰亚胺等的绝缘层69形成太阳电池63。然后,在该太阳电池63的正面直接形成了具有半球形遮掩层表面部67的遮掩层64。
其他的结构与上述实施例9大致相同,但在该实施例10中,通过以下工序制成了用于形成遮掩层64的母模。
首先,在(100)的Si片上形成金膜后,通过采用光刻工序、蚀刻工序以30微米的间距将直径为5微米的圆形形状的金膜除去。
接着,通过将Si片在浓氟酸、硝酸、醋酸的混合液中浸渍,以除去金膜后的部分为起点对Si片各向同性地进行蚀刻。除去残余的金膜后,即可制成有规则地排列着半球形凹部的母模。
凹部的直径取决于蚀刻时间,在大约30分钟的蚀刻后,获得了直径约25微米的半球部沿X—Y方向连续地有规则地排列的母模。
用按照如上所述方法制成的母模制成电铸模,并在太阳电池63上铸塑PMMA树脂,使用上述电铸模复制半球形状后形成了遮掩层64。最后将具有与上述实施例9的光学构件65和白色漫射层66(参照图11)相同功能的PC片设置在遮掩层64的正面侧形成了太阳电池装置。
将本实施例10的太阳电池装置形成在透明的玻璃基片上并确认了透射为各向异性。其结果是,从光学构件65侧向遮掩层64入射的光的透射率约为92%、相反从太阳电池63侧向遮掩层64入射的光的透射率约为65%,因此确认了在本结构中也具有透射各向异性。
因此,利用本实施例10的结构,仅调整光学构件的光透射率使其百分数减少,也能使外部观察者看不到从太阳电池63反射的光。
在本实施例10中,由于具有上述特性的遮掩层64可用塑料复制技术以50微米的厚度在太阳电池63上直接形成,所以能以简单的结构使装置总体厚度变薄。而且,太阳电池63上的遮掩层64还能兼有保护层的功能。另外,由于在太阳电池63正面形成的遮掩层64上可只配置1片在两个面上具有光学构件65和白色漫射层66的功能的PC片,所以组装作业也非常容易。
在上述实施例9、10中,示出了遮掩层表面部67的形状为棱形、半球形的情况,但除此之外也可考虑透镜形、或将棱形的顶端切割后的形状、或使棱与棱之间的间隙为某种形状等任意的形状。这里关键在于要使用具有透射各向异性的遮掩层。
此外,作为形成光学构件及白色漫射层用的基片,除PC片外还可使用多种塑料材料,成型法也可使用除注射法之外的其他方法。
还可利用在实施例10中说明的遮掩层制造方法制造白色漫射层。
在实施例9、10中,作为光学构件使用了高折射率材料层,但也可使用干涉滤光层。在这种情况下,可从外部观察到特定的颜色,由于依靠遮掩层的功能从外部几乎看不到从太阳电池反射的光,所以可如实且均匀地再现所希望的颜色。而且,因遮掩层本身的透射率高,所以混入的白色混浊成分很少,能够显现清晰的颜色。
如上所述,如采用实施例9、10所示的遮掩层,则因兼有高透射率和遮掩性,所以既能满足对太阳电池供给能量和太阳电池的遮掩性能,又能容易地提供外观质量优异的太阳电池装置,因而可以应用于采用与以往不同的外观显现颜色的多种用途。实施例11在本实施例11和后文所述的实施例12中,讨论了使光学构件对作为一般室内光源的荧光灯发出的光的分光透射、反射特性最佳化进行了讨论。即,在评价反射色及荧光灯能量透射率的同时,对制成条件作了各种调查,并在象玻璃片或塑料片那样的在可见光区域透明的基片上,形成至少包含1层光学厚度(以下称nd)为m×λ/2(λ亮线波长之一、m正整数)的层、而总层数在2层以上的多层介质膜,而且已经判明在使层叠设计最佳化的情况下,作为目的既能使透射率提高又能保持外观质量。
图15是为说明在手表内应用了本发明的太阳电池装置时的实施例11而示意地表示出从太阳电池起的正面侧结构的断面示意图。
在表壳71内,固定着透明的基片72。在基片72的背面,通过用等离子体CVD法形成非晶型硅膜制成太阳电池73。
在基片72的正面,依次层叠设置白色漫射层75。并将漫射层75的正面兼作表盘使用,从而构成太阳电池式手表。
这里,白色漫射层75是将玻璃片的一侧表面用相当于1000号的SiC粉末进行珩磨处理后,再将该处理面在氟酸中进行20秒的蚀刻处理后形成。该白色漫射层75的光透射率≈91%。
图16是光学构件的断面示意图。光学构件74的构成方法是,在玻璃基片741的一侧表面上,通过用真空蒸镀法蒸镀折射率为2.1的五氧化二钽(Ta2O5)和折射率为1.47的二氧化硅(SiO2),构成具有以下设计结构的多层介质膜742。
基片/HLH·2L·H/空气......(1)H材料Ta2O5、nd=(3/4)λtL材料SiO2、nd=λt/4λt546nm这时,从光学构件74反射的光为黄绿色。还以白色荧光灯(东芝制FL—10W型商品名)作为光源测定了荧光灯的能量透射率。
其结果是,将以从该光源发出的光通过透明基片72照射太阳电池73时的短路电流为分母、以从该光源发出的光通过在朝光源侧的表面上层叠了光学构件74的透明基片72照射太阳电池73时的短路电流为分子所求得的值作为荧光灯的能量透射率时,该荧光灯的能量透射率≈70%。
同样,如以从该光源发出的光通过在朝光源侧的表面上层叠了光学构件74及白色漫射层75的透明基片72照射太阳电池73时的短路电流为分子求得的值作为荧光灯的能量透射率时,荧光灯的能量透射率≈64%。
按如上所述方法制成的太阳电池装置,对太阳电池73的遮掩性和外观质量都是良好的,此外从表3示出的与现有光学构件的比较结果可以确认对太阳电池73的能量供给性是优良的。
表3<

<p>在图17中示出了上述实施例11的光学构件74的分光透射光谱(图示的实线a)、及现有光学构件的分光透射光谱(图示的虚线b)。实施例11的光学构件74可使来自荧光灯的入射光中强度较强的亮线部分透射并供给太阳电池73,所以与不能透射亮线部分的光的现有光学构件相比,光的透射率高而且外观质量能保持相同的水平。
在一般使用的荧光灯的发光光谱中,可见光范围存在着3条亮线。作为实际例子,在第18图中示出白色荧光灯(东芝制FL—10W型商品名)的发光光谱。该白色荧光灯发光强度高的亮线的波长为λ=436nm、546nm、578nm。
在本发明的实施例11中,图17清楚地示出了光学构件74使3条亮线中的波长λ=436nmm和λ=546nm的光透射的情况,但另一波长的亮线也能透射。
例如,若使用与上述(1)式相同的材料而将λt从546nm变更为578nm,则可使波长λ=436nmm和λ=578nm的亮线透射,并能得到反射色为黄橙色的光学构件。
利用同样的方法,当使用光源的亮线为上述波长以外波长的光源时,能够有选择地使该亮线波长透射。实施例12图19是本发明实施例12的光学构件断面图。在本实施例12中,光学构件76以外的构成部件与上述实施例11具有同样的结构。
在玻璃基片761的一侧表面上,用旋转涂胶法涂布4μm厚的正性光刻胶AZ—4620(商品名シップレィ公司制)并进行干燥。然后,使用感光部宽度为50μm、间距为150μm的带状掩模在玻璃基片761上曝光。曝光后通过显影将带状曝光部的光刻胶除去,同时在露出玻璃面的玻璃基片761上,按以下设计结构进行多层介质膜的蒸镀。
基片/HLH·2L·HLH/空气......(2)H材料Ta2O5、nd=(3/4)λtL材料SiO2、nd=λt/4λt436nm接着,用丙酮以剥离法将残存的光刻胶除去,形成蓝色反射部761B。进一步在形成了蓝色反射部761B的玻璃基片761上涂布与上述同样的光刻胶,并用与上述相同的掩模使与蓝色反射部761B邻接的带状区域曝光。再通过显影将光刻胶除去而露出玻璃面。然后,在玻璃基片761上,进行具有以下设计结构的多层介质膜的蒸镀。
基片/HLH·2L·H/空气......(3)H材料Ta2O5、nd=(3/4)λtL材料SiO2、nd=λt/4λt546nm再以剥离法将残存的光刻胶除去,形成黄绿色反射部761G。
利用同样的方法,形成由具有以下设计结构的多层介质膜构成的红色反射部761R,从而得到了光学构件76。
基片/HLHLHLH/空气......(4)
H材料Ta2O5、nd=λt/4L材料SiO2、nd=λt/4λt680nm按照如上所述方法得到的光学构件76,全部反射光色呈白色(无彩色),如同半透射滤光片一样的外观,对应于白色荧光灯发出的光的透射率约为76%。
光学构件76中的蓝色反射部761B、黄绿色反射部761G、红色反射部761R的分光反射特性示于图20。在该图中,实线c表示蓝色反射部761B、虚线d表示黄绿色反射部761G、点划线e表示红色反射部761R的各分光反射特性。
光学构件76的反射光色和透射率与从图20示出的蓝色反射部761B、黄绿色反射部761G、红色反射部761R的分光反射特性估计出的值大体上相等。
按如上所述方法制成的太阳电池装置与实施例11相同,对太阳电池73的遮掩性和外观质量也是良好的,此外如表4所示,可以确认荧光灯的能量透射率高,对太阳电池73的能量供给性是优良的。
表4

<p>如上所述,如采用实施例11、12示出的光学构件,则因对应于荧光灯的光具有高透射率,所以在满足对太阳电池供给能量和遮掩太阳电池的同时,能容易地提供外观质量优异的太阳电池元件,因而可以应用于显现色彩丰富的外观颜色并具有高的发电效率的多种用途。
在实施例12中,按带状将蓝色反射部761B、黄绿色反射部761G、红色反射部761R交替配置,但也可以按方格花纹状、蜂巢状等配置。即,所采用的配置形状只要能使来自各色反射部的独立反射光混合在一起达到辨认不出的程度即可。各色反射部的带状宽度,在实施例12中采用50μm,但该值只要细到能使来自各色反射部的独立反射光达到辨认不出的程度即可,如在大约100μm以上,不会发生外观质量上的问题。
在实施例12中,在光学构件76上形成了蓝色反射部761B、黄绿色反射部761G、红色反射部761R三种颜色的反射部,但也可是2色或4色以上。即使在这种情况下,从外部观察到的是将各反射部的反射光合成后的总体颜色,这一点未变。
在上述的实施例11、12中,为了透射亮线波长的光,所示出的多层介质膜包含1层nd=亮线波长/2的层,但这样的层不限于1层,也可以包含多层。而且,如nd=m×亮线波长/2(m正整数),也同样能获得透射亮线波长的光的效果。另外,作为介质材料使用了五氧化二钽(Ta2O5)和二氧化硅(SiO2),但也可使用其他透明介质材料。
作为这种介质材料,除上述材料以外,例如可列举出硫化锌(ZnS)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化铟(In2O3)、氧化钇(Y2O3)、氧化镁(MgO)、氧化铝(Al2O3)、氟化镧(LaF3)、氟化镁(MgF2)、氟化锂(LiF)等。
通过对由这些介质材料的组合决定的叠层各层的折射率及重叠的各层的光学厚度进行控制,可以在透射亮线波长的光的同时,任意决定反射光的颜色。
在实施例11、12中,示出了将从光学构件反射的光作为单一颜色从外部观察的情况,但通过在光学构件上形成能独立地观察到各色反射光的具有较大区域的若干个反射部分,也可显现出花纹图样。
另外,在实施例11、12中,作为光学构件的基片示出了使用玻璃的例子,但除玻璃以外使用聚碳酸酯树脂等透明基片也可构成完全相同的光学构件。当将透明树脂作为基片使用时,如按上述的各种设计结构构成多层介质膜,则在基片与H层之间容易发生剥离或裂缝,但在各种设计结构中通过利用在基片与H层之间插入L层的设计结构来构成多层膜,可以防止剥离或裂缝而不改变分光反射特性。
本发明的应用范围并不限于上述实施例的结构,可以构成各种各样的结构。例如,可在透明基片的一侧表面上形成太阳电池和本发明的结构部件,而将透明基片的另一侧表面用于其他用途,例如用作表盘等。
由于成为本发明的太阳电池装置构成部件的光学构件、漫射层、遮掩层都可以形成薄层形状,所以仅几百微米厚的空间即足够设置,因而当应用于使用太阳电池的各种装置时几乎没有实用上的限制。
按照上述本发明的太阳电池装置,由于能够遮掩太阳电池的存在,所以能有效地利用以往因结构设计上的限制而不可能配置的空间来配置太阳电池。
从太阳电池来看,以往由于期望着功能和外观两者兼顾,所以在设计上存在着种种限制,但利用本发明可构成从外部辨别不出的结构,所以功能本身的设计成为可能,能比较自由地使用大容量太阳电池。
按照本发明,可以在从外部遮掩太阳电池的同时,在外观质量上显现出优异的多种鲜明的外观颜色,所以与以往相比,大幅度地扩展了设计的自由度,使对迄今为止的以上多种用途的应用成为可能。
本发明的太阳电池装置已在以上的实施例中作了说明,但不限于太阳电池式手表,可应用于使用太阳电池的台式电子计算机、无线电收音机等各种产品。
工业上的应用范围本发明可以应用于使用太阳电池的钟表、台式电子计算机、无线电收音机等的各种产品。
利用本发明,可在充分确保对太阳电池的光能供给的同时,从外部辨认不出太阳电池,达到提高外观质量的目的。
权利要求
1.一种太阳电池装置,其特征在于备有设在太阳电池的正面侧用于使从太阳电池反射的光漫射以减少向正面侧射出光量的遮掩层、设在该遮掩层的正面侧用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、及设在上述光学构件的正面侧用于使从该光学构件反射的光漫射并向正面侧射出的漫射层。
2.根据权利要求1所述的太阳电池装置,其特征在于上述遮掩层具有45~85%的光透射率。
3.根据权利要求1所述的太阳电池装置,其特征在于上述遮掩层具有其透射率随光的入射方向不同而不同的透射各向异性特性,从正面侧射向上述太阳电池侧的光透射量大于从上述太阳电池侧射向正面侧的光透射量。
4.根据权利要求3所述的太阳电池装置,其特征在于上述遮掩层对来自正面侧的入射光具有60~96%的透射率。
5.根据权利要求1所述的太阳电池装置,其特征在于上述遮掩层是将无色透明的片状构件的正面加工成三维形状构成的。
6.根据权利要求1所述的太阳电池装置,其特征在于上述光学构件是在透明基底上形成在光源发出的可见光部亮线波长的光中至少透射1种波长的光的多层介质薄膜构成的。
7.根据权利要求1所述的太阳电池装置,其特征在于上述光学构件由具有1.6以上光折射率的高折射率材料构成。
8.根据权利要求1所述的太阳电池装置,其特征在于上述漫射层是在无色透明的塑料材料中分散混合作为光散射物质的白色粉末或具有与该塑料的折射率不同折射率的透明微粒而构成。
9.根据权利要求1所述的太阳电池装置,其特征在于上述漫射层由表面形成粗糙面的无色透明体构成。
10.根据权利要求8或9所述的太阳电池装置,其特征在于上述漫射层具有80%以上的光透射率。
11.一种太阳电池装置,其特征在于备有设在太阳电池的正面侧用于控制任意波长的入射光使其达到规定透射率的光学构件、及设在上述光学构件的正面侧用于使从该光学构件反射的光漫射并向正面侧射出的漫射层。
12.根据权利要求11所述的太阳电池装置,其特征在于上述光学构件由具有1.6以上光折射率的高折射率材料构成。
13.根据权利要求11所述的太阳电池装置,其特征在于上述漫射层是在无色透明的塑料材料中分散混合作为光散射物质的白色粉末或具有与该塑料的折射率不同折射率的透明微粒而构成。
14.根据权利要求11所述的太阳电池装置,其特征在于上述漫射层由表面形成粗糙面的无色透明体构成。
15.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于使从该太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、同时在遮掩层的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于将无色透明的片状构件的一侧表面用机械方法形成不规则的凹凸形状后,对该表面进行化学蚀刻以形成上述漫射层。
16.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于使从该太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、同时在遮掩层的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于上述漫射层通过2步工序制造,即形成其表面呈凹凸形状的母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
17.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于使从该太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、同时在遮掩层的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于将无色透明的片状构件的一侧表面用机械方法形成凹凸形状以制造上述遮掩层。
18.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于使从该太阳电池反射的光漫射以减少向正面侧射出的光量的遮掩层、同时在遮掩层的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于上述遮掩层通过2步工序制造,即形成其表面呈凹凸形状的母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
19.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于将无色透明的片状构件的一侧表面用机械方法形成不规则的凹凸形状后,对该表面进行化学蚀刻以形成上述漫射层。
20.一种太阳电池装置的制造方法,在太阳电池的正面侧配置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件、而且在上述光学构件的正面侧配置用于使从上述光学构件反射的光漫射并向正面侧射出的漫射层,该制造方法的特征在于上述漫射层通过2步工序制造,即形成其表面呈凹凸形状的母模的工序及在该母模或由该母模形成的电铸模内注入透明树脂材料成型后在该树脂材料的表面上形成凹凸形状的工序。
全文摘要
在太阳电池(13)的正面侧配置用于使从该太阳电池(13)反射的光漫射以减少向正面侧射出的光量的遮掩层(14)。该遮掩层(14)担负着防止上述反射光返回到外部观察者的作用,通过引入该层能够使位于内侧的太阳电池凭目视不能辨认。然后在该遮掩层(14)的正面侧设置用于控制从正面侧入射的任意波长的光使其达到规定透射率的光学构件(15),再在上述光学构件(15)的正面侧设置用于使从上述光学构件(15)反射的光漫射并向正面侧射出的漫射层(16)。漫射层(16)同样是为增强在光学构件(15)上的反射光以便让外部观察者看到而插入的。利用该漫射层(16)可使从光学构件反射的光成为无定向性的且柔和的光。
文档编号H01L31/0216GK1134760SQ94194037
公开日1996年10月30日 申请日期1994年11月4日 优先权日1993年11月5日
发明者南谷孝典, 村田靖 申请人:时至准钟表股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1