发光二极管的制作方法

文档序号:6825478阅读:161来源:国知局
专利名称:发光二极管的制作方法
技术领域
本发明涉及具有双异质结结构的发光二极管(以下称为“LED”)。本发明特别涉及防止长时间工作下LED的光输出减少的技术。
具有称为双异质结结构的LED有高水平的发光效率和大的光输出,因此被广泛地用于显示器、光通信的光源等。
图12是表示具有典型双异质结结构的普通LED800的剖面图。LED800是基于InGaAlP的LED,该LED包括具有与GaAs衬底匹配的晶格,并发射从红光至绿光范围的光的层。在该LED800中衬底1由n型GaAs构成;第一缓冲层2由n型GaAs构成;光反射(DBR分布的布喇格反射器)层3包括按交替方式沉积的n型(Al0.4Ga0.6)0.5In0.5P层和n型Al0.5In0.5P层;第一覆盖层4由用杂质浓度为5×1017cm-3的Si掺杂的厚度为1μm的n型Al0.5In0.5P构成;发光层6由厚度0.5μm的p型(Ga0.7Al0.3)0.5In0.5P构成;第二覆盖层7由用杂质浓度为5×1017cm-3的Zn掺杂的厚度1μm的p型Al0.5In0.5P构成;第一电流扩散层91由用杂质浓度为1×1018cm-3的Zn掺杂的厚度1μm的p型Al0.7Ga03As构成;和第一电流扩散层92由用杂质浓度为3×1018cm-3的Zn掺杂的厚度6μm的p型Al0.7Ga0.3As构成。
第一电流扩散层91和第二电流扩散层92组成电流扩散层9。
用普通的淀积方法,把AuGe薄膜配置为在衬底1下表面上的n侧电极11。用相同的淀积方法在p型电流扩散层9的上表面上设置AuZn薄膜。对AuZn薄膜进行光刻构图,以便保留其上的圆形部分作为p侧电极10,将金属线键合于p侧电极10上,用于连接p侧电极10与外部导体。从除去AuZn薄膜的p型电流扩散层9的上表面部分辐射从发光层6中产生的光。
使用第一缓冲层2,以防止衬底1的缺陷和污物影响淀积于衬底1上的层。当已经令人满意地处理过衬底1的上表面时,就不需要第一缓冲层2。DBR层3反射在发光层6中产生的朝向衬底1的光。这样防止衬底1的光吸收,被反射的光按离开衬底1的方向前进,从而有助于提高LED800的强度。
电流扩散层9有低电阻率,以便形成与p侧电极10的近似欧姆接触,并把从p侧电极10注入的电流扩散到整个发光层6中。这是电流扩散层9为什么需要高含量杂质浓度的缘故。在这种情况下,为了防止杂质Zn扩散到发光层6中,把具有低杂质浓度的第一电流扩散层91设置在电流扩散层9的下部。
为了获得高水平的发光效率,常规的LED采用如图15所示的双异质结结构。图15是说明具有与GaAs衬底101晶格匹配的基于AlGaInP的LED900实例的剖面图。LED900中各层的结构如下衬底101由n型GaAs构成;缓冲层102由n型GaAs构成;n型第一覆盖层103由用杂质浓度为1×1018cm-3的Si掺杂的厚度1μm的n型(Ga0.3Al0.7)0.5In0.5P构成;发光层104由厚度0.5μm的p型(Ga0.7Al0.3)0.5In0.5P构成;p型第二覆盖层105由用杂质浓度为5×1017cm-3的Zn掺杂的厚度1μm的p型Al0.5In0.5P构成;第一电流扩散层61由用杂质浓度为1×1018cm-3的Zn掺杂的厚度1μm的p型Ga0.3Al0.7As构成;第二电流扩散层62由用杂质浓度为3×1018cm-3的Zn掺杂的厚度6μm的p型Ga0.3Al0.7As构成;和接触层108由p型GaAs构成。
在衬底1和接触层108上分别设定n侧电极109和p侧电极107。
通过注入电流,图12中基于AlGaInP的LED800产生光。在图13中,虚线A表示发光层6的杂质浓度与开始发光后初期的光输出之间的关系。光输出的峰值在开始发光后初期的杂质浓度1×1017cm-3处。但是,光输出随时间逐渐下降。例如,在室温下供给LED800约1000小时50mA的电流。在图13中,虚线B表示发光层6的杂质浓度与1000小时发光后的光输出之间的关系。1000小时发光后的光输出在杂质浓度为1×1017cm-3时变低,而光输出在杂质浓度为5×1017cm-3时变高,在不同于开始发光后初期的该杂质浓度下光输出最大。
我们的研究发现,在长时间发光后光输出上的改变由以下原因造成(1)在n型第一覆盖层4和p型发光层6之间的pn结界面上产生的非辐射复合中心;和(2)在发光层6中扩散的杂质的影响。
图14A和图14B表示发光层6周围的能带状态。图14A表示开始发光后初期的状态,而图14B表示长时间发光后的状态。
pn结界面40是异质结界面,在该界面处,如图14A所示具有大不相同的禁带宽度的两层彼此接触。在异质结界面40存在大的内应力。当电压施加在p侧电极10和n侧电极11之间以便产生光时,高电场电平跨接在异质结界面40上。
内部应力和发光层6中产生的光能量的结合造成异质结界面40上的晶格缺陷。在长时间发光过程中这种晶格缺陷沿电力线的方向生长到发光层6中。如图14B所示,晶格缺陷导致在异质结界面40附近形成深能级20。载流子即空穴和电子在深能级相互复合而不发光。这样的深能级被称为非辐射能级。由于LED800的辐射复合30是自发发射过程,所以在非辐射能级20的非辐射复合31有比辐射复合30寿命更短的寿命。因此,当在非辐射能级20的载流子复合数量增加时,LED800的发光效率下降。
长时间发光继续导致晶格缺陷的生长,该晶格缺陷在发光层6内部蔓延。换句话说,发光层6产生具有非辐射能级20的多个部分。因此,LED800的发光效率进一步下降,即与发光的初期相比,LED800的光输出降低。
日本专利申请公开No.2-151085披露了具有与图12所示相同结构的半导体发光器件(以下称为“常规例2的LED”)。常规例2的LED包括插入发光层6与第一覆盖层4和第二覆盖层7之间的层间覆盖层。各层间覆盖层有大于约10A和小于约200的厚度,和其值在发光层6与第一覆盖层4和第二覆盖层7的禁带宽度之间的禁带宽度。在常规例2的LED中,异质结界面形成在层间覆盖层与第一覆盖层4和第二覆盖层7之间,并形成在层间覆盖层和发光层6之间。因此,可以降低界面的禁带宽度之差,从而降低内部应力。因此,这使晶格缺陷难以产生,因此,在发光层6中有很少的非辐射复合中心。
但是,在常规例2的LED中,在发光层6和中间层之间的界面形成pn结。在存在高电场电平的该界面上产生因发光造成的晶格缺陷。尽管常规例2的LED光输出的下降被有效地延迟,但长时间的发光造成在界面上产生的晶格缺陷扩大。晶格缺陷的生长使发光层6的光输出降低。
如图13所示,在长时间发光后,具有较高杂质浓度发光层将有较大的光输出。下面说明这种现象。当发光层6有比最佳浓度大的杂质浓度时,发光层6的电阻率变小。因此,施加于第一覆盖层4和发光层6之间的pn结界面上的电场变小,导致在开始发光后的初期的低光输出。在长时间发光后,由于在发光层6附近产生的电场和热,所以多余的杂质在发光层6中扩散。杂质的扩散使电场增加,从而增加光输出。在这种情况下,缺陷还产生于pn结界面上,因此,在长时间发光后,发光效率下降。
在图15所示的LED900中,缓冲层102用于隔离衬底101的缺陷和杂质的影响。当衬底101的表面处理令人满意时,就不需要缓冲层102。接触层108由GaAs构成,为了产生与p侧电极107的欧姆接触,该接触层不包含Al。接触层108不允许由发光层104产生的光通过它。但是,接触层108被直接设置于电极107下,对光辐射没有不利影响。
在图15所示的LED900中,利用Al摩尔分数来设定发光层104和第一覆盖层103及第二覆盖层105的禁带宽度。当Al被Ga替代或相反替代时,III-V化合物半导体的晶格常数几乎不变。包含的Al摩尔分数越大,化合物半导体的禁带宽度就越大。以下,混合晶体中Al和Ga的总量中Al的比例被看作混合晶体中Al的摩尔分数。
为了获得LED900的良好光输出,需要通过在发光层104的禁带宽度和第一覆盖层103的禁带宽度及第二覆盖层105的禁带宽度之间产生足够大的差别来令人满意地限制发光层104内的载流子。LED900有双异质结结构,在该结构中,(Ga0.7Al0.3)0.5In0.5P发光层104插入n型(Ga0.3Al0.7)0.5In0.5P第一覆盖层103和具有大禁带宽度的p型(Ga0.3Al0.7)0.5In0.5P第二覆盖层105之间。发光层104的Al摩尔分数为0.3,而第一覆盖层103和第二覆盖层105的Al摩尔分数都为0.7。
为了获得LED900的良好光输出,需要将从电极107注入的载流子扩散到整个发光层104中。为此,需要将电流扩散层106的杂质浓度增加至足够高的水平来减小电流扩散层106的电阻率。衬底101一般由n型半导体构成,因而p型半导体被用于电流扩散层106。但是,例如Zn或Mg的p型半导体的杂质大多扩散。彼此的杂质浓度有较大不同的层之间的界面有大的杂质浓度梯度。因此,在该界面上,因电能与发光层104产生的光能的相互作用,杂质大多扩散。
例如,在电流扩散层106和p型第二覆盖层105,以及p型第二覆盖层105和发光层104之间有上述关系。因此,杂质扩散大多发生在电流扩散层106和p型第二覆盖层105之间,以及p型第二覆盖层105与发光层104之间。
即使发光层104最初有p型杂质的最佳浓度时,但因杂质的扩散该浓度改变,因此,发光层104的发光效率降低。此外,通过扩散进入发光层104的p型杂质未必淀积在晶格的正常位置上,从而变成有深能级的非辐射复合中心。
在图15所示的普通LED900中,电流扩散层106包括两层。下层是有低杂质浓度的第一电流扩散层61。因此,发光层104和第一电流扩散层61之间的杂质浓度梯度变为较低的值,从而防止Zn的扩散。第一电流扩散层61和第二电流扩散层62有相同的Al摩尔分数。
因此,第一覆盖层103和第二覆盖层105的Al摩尔分数约为0.7。发明人发现,当为了增强载流子限制和获得LED900的更大光输出,把第一覆盖层103和第二覆盖层105的Al摩尔分数增大至约1.0时,上述常规技术不足以防止杂质扩散。换句话说,当Al摩尔分数大时,上述p型杂质扩散明显。
本发明的发光二极管包括衬底;发光层;第一覆盖层,具有第一导电类型和大于发光层禁带宽度的禁带宽度;第二覆盖层,具有第二导电类型和大于发光层禁带宽度的禁带宽度;和层间阻挡层,具有与发光层的导电类型相同但与第一或第二覆盖层的导电类型不同的导电类型,并有小于第一或第二覆盖层的禁带宽度但大于发光层禁带宽度的禁带宽度。该发光二极管有双异质结结构,发光层插入第一和第二覆盖层之间。层间阻挡层配置在发光层与第一覆盖层之间和/或发光层与第二覆盖层之间。
因此,可防止在pn结上产生的结晶缺陷影响发光层,从而实现即使在长时间发光后也可以防止光输出下降的LED。
在本发明的一个实施例中,层间阻挡层的厚度小于在层间阻挡层中少数载流子的扩散长度,并大于这样的值,以致在层间阻挡层和第一或第二覆盖层之间的界面上产生的非辐射复合中心基本上不影响发光层。
在本发明的一个实施例中,层间阻挡层的厚度在0.1μm或0.1μm以上至0.5μm或0.5μm以下的范围内。
因此,可防止在pn结上产生的结晶缺陷影响发光层,可防止在发光效率上的下降,从而实现即使在长时间发光后仍可防止光输出下降的LED。
在本发明的一个实施例中,层间阻挡层的禁带宽度比发光层的禁带宽度大0.2eV或0.2eV以上。
因此,可进一步降低层间阻挡层中的非辐射复合,从而实现具有高水平发光效率的LED。
在本发明的一个实施例中,层间阻挡层是具有长的非辐射复合寿命的间接跃迁型半导体层。
因此,基本上消除了层间阻挡层中的非辐射复合,从而实现具有高水平发光效率的LED。
在本发明的一个实施例中,层间阻挡层包括第一和第二层间阻挡层。第一层间阻挡层设置在发光层和第一覆盖层之间。第二层间阻挡层设置在发光层和第二覆盖层之间。第一层间阻挡层有与发光层相同但与靠近第一层间阻挡层的第一覆盖层的导电类型不同的导电类型,并有小于第一覆盖层禁带宽度但大于发光层禁带宽度的禁带宽度。第二层间阻挡层有与发光层和靠近第二层间阻挡层的第二覆盖层的导电类型相同的导电类型,并有小于第二覆盖层禁带宽度但大于发光层禁带宽度的禁带宽度。
因此,可防止在pn结上产生的结晶缺陷影响发光层,可防止发光效率下降。此外,可防止容易扩散的p型杂质扩散至发光层,从而防止发光效率下降。
在本发明的一个实施例中,衬底由GaAs构成;第一覆盖层由(Ga1-x2Alx2)0.5In0.5P(x1<x2≤1)构成;发光层由(Ga1-x1Alx1)0.5In0.5P(0≤x1<1)构成;层间阻挡层由(Ga1-x4Alx4)0.5In0.5P(x1<x4<x2、x3)构成;和第二覆盖层由(Ga1-x3Alx3)0.5In0.5P(x1<x3≤1)构成。
因此,即使在长时间发光后,在从红光至绿光的光谱中光输出也下降很少。
按照本发明的另一方案,发光二极管包括衬底;发光层;p型覆盖层,具有大于发光层禁带宽度的禁带宽度;和n型覆盖层,具有大于发光层禁带宽度的禁带宽度。该发光二极管由至少III-V化合物半导体材料构成,并具有双异质结结构,发光层插入p型和n型覆盖层之间。p型覆盖层包括p型第二层间阻挡层和p型第二覆盖层。p型第二层间阻挡层比p型第二覆盖层靠近发光层。p型第二层间阻挡层分别有比p型第二覆盖层的Al摩尔分数和杂质浓度更低的Al摩尔分数和更低的杂质浓度。
因此,即使当LED是包括具有大的Al摩尔分数的覆盖层的高强度LED时,也可以防止长时间发光后容易扩散的p型杂质从电流扩散层或p型第二覆盖层扩散至发光层,从而防止发光效率的下降。
在本发明的一个实施例中,p型第二层间阻挡层的Al摩尔分数为0.5或0.5以下,而p型第二覆盖层的Al摩尔分数为0.7或0.7以上。
因此,p型第二层间阻挡层的结晶性被良好地维持,从而可以防止杂质的扩散。
在本发明的一个实施例中,p型第二层间阻挡层的杂质浓度为3×1017cm-3或3×1017cm-3以下。p型第二层间阻挡层的厚度在0.1μm或0.1μm以上至0.5μm或0.5μm以下的范围内。
因此,即使当LED包括p型第二层间阻挡层时,p型第二覆盖层也维持载流子限止效应,从而实现大的光输出,并可以在高温下维持LED的特性。此外,p型第二覆盖层有低的杂质浓度,因而吸收进入的杂质,以防止它们扩散至发光层。
在本发明的一个实施例中,衬底由GaAs构成;n型第一覆盖层由(Ga1-x2Alx2)0.5In0.5P(x1<x2≤1)构成;发光层由(Ga1-x1Alx1)0.5In0.5P(0≤x1<x2、x3)构成;p型第二层间阻挡层由(Ga1-x4Alx4)0.5In0.5P(x1<x4<x3,杂质浓度小于5×1017cm-3)构成;和p型第二覆盖层由(Ga1-x3Alx3)0.5In0.5P(x1<x3≤1,杂质浓度为5×1017cm-3或更大)构成。
因此,即使当LED在从红光至绿光的光谱中按高强度长时间发光时,也可以防止容易扩散的p型杂质从电流扩散层或p型第二覆盖层扩散至发光层,从而防止光输出的下降。
因此,上述本发明具有以下优点(1)设有层间阻挡层,以防止在pn结界面上产生的缺陷侵入发光层;(2)通过在p型第二覆盖层中提高Al摩尔分数良好地限止载流子;(3)设置具有高水平电阻率的LED,在该LED中,可防止长时间发光后光输出的降低。
对于本领域技术人员来说,通过参照附图阅读和弄清楚以下详细说明,本发明的这些和其它优点将变得明确。
图1是表示本发明实例1的LED的剖面图。
图2A和图2B是分别表示在初期发光和长时间发光后实例1的LED的发光层附近的能带状态的图。
图3是表示本发明实例2的LED的剖面图。
图4是表示在长时间发光后实例2的LED的发光层附近的能带状态的图。
图5是表示本发明实例3的LED的剖面图。
图6是表示在长时间发光后实例3的LED的发光层附近的能带状态的图。
图7是表示本发明实例4的LED的剖面图。
图8是表示本发明实例5的LED的剖面图。
图9是表示本发明实例6的LED的剖面图。
图10A和图10B是分别表示长时间发光后的下降率与实例6的LED的p型第二层间阻挡层的杂质浓度和厚度之间关系的曲线。
图11是表示本发明实例7的LED的剖面图。
图12是表示常规LED的剖面图。
图13是表示发光层的杂质浓度与图12所示的常规LED的开始发光后的起始光输出和长时间发光后的光输出之间关系的曲线。
图14A和图14B是表示在图12所示的常规LED的发光层附近的能带状态的图。
图15是表示另一普通LED的剖面图。
下面,参照


本发明的实施例。
(实例1)图1是表示本发明实例1的LED100结构的剖面图。为了简化,与LED800具有相同功能的部件被标以相同的标号。LED100包括衬底1由GaAs构成;第一覆盖层4由(Ga1-x2Alx2)0.5In0.5P(x1<x2≤1)构成;发光层6由(Ga1-x1Alx1)0.5In0.5P(0≤x1<1)构成;层间阻挡层5由(Ga1-x4Alx4)0.5In0.5P(x1<x4<x2,x3)构成;和第二覆盖层7由(Ga1-x3Alx3)0.5In0.5P(x1<x3≤1)构成。
利用该结构,可以获得这样的LED,该LED的光输出即使在长时间发光后在从红光至绿光的光谱中也很少下降。
更具体地说,该LED100包括衬底1由n型GaAs构成;第一缓冲层2由n型GaAs构成;光反射(DBR)层3包括按交替方式淀积的n型(Al0.4Ga0.6)0.5In0.5P层和n型Al0.5In0.5P层;第一覆盖层4由用杂质浓度为5×1017cm-3的Si掺杂的厚度1μm的n型Al0.5In0.5P构成;层间阻挡层5由用杂质浓度为1×1017cm-3的Zn掺杂的厚度0.2μm的p型(Ga0.5Al0.5)0.5In0.5P构成;发光层6由用杂质浓度为1×1017cm-3的Zn掺杂的厚度0.5μm的p型(Ga0.7Al0.3)0.5In0.5P构成;第二覆盖层7由用杂质浓度为5×1017cm-3的Zn掺杂的厚度1μm的p型Al0.5In0.5P构成;第二缓冲层8由用杂质浓度为1×1018cm-3的Zn掺杂的厚度0.15μm的p型(Al0.05Ga0.95)0.95In0.05P构成;和电流扩散层9由用杂质浓度为5×1018cm-3的Zn掺杂的厚度7μm的p型(Al0.01Ga0.99)0.99In0.01P构成。
本特定实例中的LED100与图12所示的LED800的不同之处在于,层间阻挡层5设置在发光层6和第一覆盖层4之间。层间阻挡层5有与发光层6相同但与第一覆盖层4不同的导电类型。层间阻挡层5的禁带宽度大于发光层6的禁带宽度但小于第一覆盖层4的禁带宽度。在p型发光层6中Zn的杂质浓度为1×1017cm-3,该杂质浓度对于开始发光后初期的发光效率是最佳值。
在实例1中,与常规LED800的不同之处在于,电流扩散层9由InGaAlP构成。这有助于使光吸收尽量低和使光输出尽量大。
但是,电流扩散层9没有与GaAs衬底1匹配的晶格。为了降低电流扩散层9的电阻率,Al的摩尔分数必须为低值,即为0.01。因此,把In的摩尔分数设定为0.01,以补偿因Al的摩尔分数减小造成的禁带宽度的降低。由于电流扩散层9包括0.01的In摩尔分数,所以其上表面比由GaP构成时平滑。因此,形成于电流扩散层9的上表面上的电极10将难以拆除。0.01的低In摩尔分数不允许电流扩散层9有与从衬底1至第二覆盖层7的任何层匹配的晶格。因此,第二缓冲层8设置在第二覆盖层7和电流扩散层9之间,以防止因晶格常数的不匹配产生晶体缺陷。具体地说,第二缓冲层8有在电流扩散层9的晶格常数和衬底1等的晶格常数之间的晶格常数。当Al和In的摩尔分数都为0.5时,获得第二缓冲层8的中间的晶格常数。
下面,参照图2说明层间阻挡层5的作用。
图2A和图2B表示长时间发光后LED100的能带状态。与图14A和图14B一样,图2A表示当利用正向偏置把载流子注入到发光层6中时的LED100的状态。层间阻挡层5有Al摩尔分数,使其禁带宽度在n型第一覆盖层4和p型发光层6的禁带宽度之间。由于层间阻挡层5为p型,所以pn结形成在n型第一覆盖层4和p型层间阻挡层5之间。注入的载流子在pn结附近复合。空穴和电子都存在于有较低禁带宽度的层中,即层间阻挡层5中。即使层间阻挡层5的厚度比注入的少数载流子的扩散长度小得多时,但仍有足够多的少数载流子被注入到发光层6中。由于辐射复合寿命在发光层6中比在层间阻挡层5中短,所以在发光层6中消耗的载流子量多于在层间阻挡层5中的消耗量。因此,发光层6缺少载流子,从而进入层间阻挡层5的载流子被迅速地传送给发光层6。尽管在层间阻挡层5中存在大量的空穴和电子,但在发光层6中仍充分地产生辐射复合。这是因为较低的禁带宽度导致更短的辐射复合寿命。
如上所述,层间阻挡层5基本上不影响LED100的发光和发光效率。
图2B表示在长时间发光后包括层间阻挡层5的LED100的能带状态。在pn结附近产生非辐射复合的能级20。尽管如此,如上所述,由于层间阻挡层5中的载流子迅速扩散至发光层6中,所以在该能级20上结合的载流子数量小,从而可防止发光效率下降。
如上所述,层间阻挡层5有与发光层6相同但与第一覆盖层4不同的导电类型。层间阻挡层5的禁带宽度大于发光层6的禁带宽度但小于第一覆盖层4的禁带宽度。利用层间阻挡层5,可以实现其发光层6的发光效率在发光初期和长时间发光后部不下降的LED100。
电子的扩散长度一般为0.5-1.5μm。在实例1中,其In的摩尔分数在0.5左右的基于InGaAlP的半导体层有约0.5μm的扩散长度。因此,在LED100中,把层间阻挡层5的厚度设定为0.2μm。在长时间发光后,在p型层间阻挡层5和n型第一覆盖层4之间的界面(pn结)附近产生晶体缺陷。为了防止晶体缺陷的生长和在实际使用的发光时间中影响发光层6,p型层间阻挡层5的厚度最好大一些,即为0.1μm或更大。
在LED100中,当p型层间阻挡层5的禁带宽度比发光层6的禁带宽度大0.2eV或以上时(即x4-x1≥0.15,其中,如上所述,x4和x1分别是p型层间阻挡层5和发光层6的Al摩尔分数),大多数空穴和电子在发光层6中结合,产生更高的LED100的发光效率。
当Al摩尔分数为0.5或更大时,由基于InGaAlP的半导体构成的层间阻挡层5变为间接跃迁(indirect transition type)型半导体层。因此,在层间阻挡层5中几乎不产生辐射复合30,从而进一步提高发光层6中辐射复合效率。在LED100中,把层间阻挡层5的Al摩尔分数x4设定到0.5,从而使层间阻挡层5变为间接跃迁型半导体层。这使层间阻挡层5难以发光,从而所有注入的空穴和电子基本上在发光层6中辐射结合。
根据实例1制造很多的LED,然后在室温下对LED施加50mA的驱动电流1000小时的条件下,如图13所示进行长时间工作。在1000小时后测量LED的光输出。结果,平均光输出为650μW,与驱动电流为20mA情况下发光初期的光输出相比,光输出的变化率在±2%内。对于实际使用来说,光输出的变化率很小。
(实例2)图3是表示本发明实例2的LED200的剖面图。为了简化,与实例1的LED100具有相同功能的部件被标以相同的标号。
实例2的LED200与实例1的LED100的不同之处在于,发光层6不掺杂杂质,因此该发光层为n型,并把层间阻挡层50设置在n型发光层6和p型第二覆盖层7之间。层间阻挡层50的禁带宽度大于发光层6的禁带宽度,但小于第二覆盖层7的禁带宽度。n型层间阻挡层50由用杂质浓度为1×1016cm-3的Si掺杂的厚度0.2μm的(Ga0.5Al0.5)0.5In0.5P构成。
图4表示长时间发光后LED200的能带状态。
在LED200由与GaAs衬底1有匹配晶格的基于AlGaInP材料构成的情况下,当发光层6不掺杂杂质时,发光层6就变为n型导电类型。实例2说明发光层6为n型的情况。
在LED200中,把n型层间阻挡层50设置在n型发光层6和p型第二覆盖层7之间。用Si掺杂层间阻挡层50。杂质浓度最好为1×1017cm-3或更小。层间阻挡层50的厚度小于作为少数载流子的空穴的扩散长度。空穴的扩散长度小于电子的扩散长度,即约0.3μm。因此,在实例2的LED200中,层间阻挡层50的厚度为0.2μm。该值大于0.1μm,该值是防止由层间阻挡层50和p型第二覆盖层7之间的pn结造成的晶体缺陷的影响到达发光层6的厚度值。因此,长时间发光后的光输出的下降相对于实际使用来说非常小,如实例1的LED100那样。
众所周知,长时间发光导致作为p型杂质的Zn扩散。由于发光层6中Zn的扩散,发光层6的发光效率下降。特别是对于大输出的LED来说,为了降低其电阻率,电流扩散层9和p型第二覆盖层7被大量掺杂Zn。在这种情况下,对发光层6的Zn扩散是明显的,导致发光效率降低。
但是,在实例2的LED200中,把有低杂质浓度的层间阻挡层50设置在p型第二覆盖层7和发光层6之间,从而可防止对发光层6的Zn扩散,因此,可防止发光效率降低。实际上,由于层间阻挡层50有低的Al摩尔分数,所以Zn的扩散基本上很小。因此,层间阻挡层50有效地防止了Zn扩散。结果,即使在电流扩散层9的杂质浓度增加使工作电压下降时,LED200仍可以有在长时间发光后不降低的发光效率。
在实例2的LED200中,由于基本上没有来自p型电流扩散层9和p型第二覆盖层7的Zn扩散,所以光输出基本上不下降。例如,在室温下把50mA的驱动电流施加在LED上1000小时的条件下,如图2所示那样长时间工作后,LED200的光输出在驱动电流为20mA情况下为在发光初期获得的450μW的±2%内。应该指出,与实例1的情况相比,驱动电压降低10%。
(实例3)图5是表示本发明实例3的LED300的剖面图。为了简化,与实例1的LED100具有相同功能的部件被标以相同的标号。
实例3的LED300与实例1的LED100的不同之处在于,除了在n型第一覆盖层4和p型发光层6之间设置的p型第一层间阻挡层51(在实例1中用标号5表示)外,把p型第二层间阻挡层52设置在p型发光层6和p型第二覆盖层7之间。p型层间阻挡层52由用杂质浓度为1×1017cm-3的Zn掺杂的厚度0.2μm的(Ga0.5Al0.5)0.51In0.49P构成。
图6表示分别在发光的初期和长时间发光后的LED300的能带状态。
除了实例1的LED100的结构之外,把p型第二层间阻挡层52设置在未形成pn结界面的p型发光层6和p型第二覆盖层7之间。如在实例2中说明的那样,p型第二层间阻挡层52防止因发光层6和第二覆盖层7之间的禁带宽度产生的晶体缺陷。在防止光输出的降低上比实例1的LED100更有效。
此外,p型第二层间阻挡层52有低的杂质浓度和低的Al摩尔分数。因此,p型第二层间阻挡层52可防止Zn从p型电流扩散层9和p型第二覆盖层7扩散至发光层6,从而可防止发光效率降低。
结果,实例3的LED300可防止在比实例1的LED100发光时间更长的时间周期内发光层6的发光效率的下降。
此外,与实例1的LED100相比,实例3的LED300的产生晶体缺陷的级别低,因此有更大的光输出。特别是,在将50mA的驱动电流在室温下施加在LED300上的情况下,在1000小时工作后测量LED300的光输出。该条件与图13所示的工作条件相同。结果,LED300的光输出为720μW。该数值在驱动电流为20mA情况下在发光初期获得的光输出的±2%内。
(实例4)图7是表示本发明实例4的LED400的剖面图。为了简化,与实例1的LED100具有相同功能的部件被标以相同的标号。
实例4的LED400与实例1的LED100的不同之处在于,发光层60有多量子阱(MQW)结构,和层间阻挡层5设置在发光层60和n型第一覆盖层4之间。通过交替Ga0.51In0.49P层和(Ga0.5Al0.5)0.5In0.5P层组成发光层60,该发光层有小于Broglie波长的厚度。层间阻挡层5的禁带宽度为在发光层60和n型第一覆盖层4的禁带宽度之间的值。按薄的厚度来设置层间阻挡层5,即厚度为0.05μm。
利用MQW结构,可阻止在发光层60中晶体缺陷的产生。因此,在n型第一覆盖层4和层间阻挡层5之间的pn结上产生的晶体缺陷难以继续将其扩展生长在发光层60中。当层间阻挡层5的厚度达到0.02μm以上时,可以防止光输出的下降。
(实例5)
图8是表示本发明实例5的LED500的剖面图。为了简化,与实例1的LED100具有相同功能的部件被标以相同的标号。
上述实例的各个LED有n型衬底。在实例5中,LED500有p型衬底。在这种情况下,也可以获得与上述实例的那些LED相同的效果。
实例5的LED500包括衬底1由p型GaAs构成;第一缓冲层2由p型GaAs构成;光反射(DBR)层3包括按交替方式淀积的p型(Al0.4Ga0.6)0.5In0.5P层和p型Al0.5In0.5P层;第一覆盖层4由用杂质浓度为5×1017cm-3的Zn掺杂的厚度1.0μm的p型Al0.5In0.5P构成;层间阻挡层5由用杂质浓度为5×1017cm-3的Si掺杂的厚度0.1μm的n型(Ga0.5Al0.5)0.5In0.5P构成;发光层6由厚度0.5μm的n型(Ga0.7Al0.3)0.5In0.5P构成;第二覆盖层7由用杂质浓度为5×1017cm-3掺杂Si的厚度1μm的n型Al0.5In0.5P构成;第二缓冲层8由用杂质浓度为1×1018cm-3的Si掺杂的厚度0.15μm的n型(Al0.05Ga0.95)0.95In0.05P构成;和电流扩散层9由用杂质浓度为1×1018cm-3的Si掺杂的厚度7μm的n型(Al0.01Ga0.99)0.99In0.01P构成。
由于p型衬底比n型衬底难于制造,所以大多数LED使用n型衬底。由于LED500包括p型衬底,所以电流扩散层9为n型。即使在杂质浓度低于p型电流扩散层的杂质浓度时,n型电流扩散层9仍可以有与p型电流扩散层相同的电流扩散效果。这有利于降低向发光层6的杂质扩散,因此,基本上防止了发光效率的降低。此外,可以降低n型电流扩散层9和n侧电极之间的接触电阻。
在上述说明中,各个LED由基于InGaAlP的半导体构成,该半导体有与GaAs衬底匹配的晶格。如上述说明可知,本发明的LED可以由其它材料构成,例如III-V化合物半导体(例如,AlGaAs、AlGaInSb、InGaAsP、AlGaInN和GaInNSb)和II-VI化合物半导体。在本发明的LED中也可以改变这些材料构成的层的厚度和载流子浓度。
(实例6)图9是表示本发明实例6的LED600的剖面图。为了简化,与图15所示的普通LED900具有相同功能的部件被标以相同的标号。
实例6的LED600与普通LED900的不同之处在于,p型第二覆盖层105由p型第二层间阻挡层53和p型第二覆盖层54组成。p型第二层间阻挡层53有比发光层104的Al摩尔分数大但比LED900的p型第二覆盖层105的Al摩尔分数小的Al摩尔分数,并设置在p型第二覆盖层105的下部。p型第二覆盖层54有足够的Al摩尔分数,以限制载流子,并被设置在p型第二覆盖层105的上部。
实例6的LED600设有p型第二层间阻挡层53由用杂质浓度为2×1017cm-3的Zn掺杂的厚度0.3μm的p型(Ga0.5Al0.5)0.5In0.5P(Al摩尔分数为0.5)构成;p型第二覆盖层54由用杂质浓度为5×1017cm-3的Zn掺杂的厚度1.0μm的p型Al0.5In0.5P(Al摩尔分数为1.0)构成;和电流扩散层106单层。
在上述结构中,p型第二覆盖层54有足够的Al摩尔分数,以限制载流子,从而可以获得LED600的高的光输出。p型第二覆盖层54的Al摩尔分数x最好在0.7≤x≤1的范围内。p型第二层间阻挡层53有低的杂质浓度和低的Al摩尔分数。这可以防止因发光产生的杂质扩散,从而防止长时间发光后光输出的下降。
应该指出,在p型第二层间阻挡层53中,Al低摩尔分数以及低杂质浓度决定着结晶度的改善,因此可防止杂质扩散。Al的高氧化性导致包含于层材料中的氧被带入晶体。因此,与晶体的理想结构相比,大的Al摩尔分数产生晶体缺陷结构。具有这种缺陷结构的晶体常有晶格空位,该晶格点是理想晶体的晶格点,期望原子处于该位置,但却未包含原子;具有这种缺陷结构的晶体还有在理想晶体中所期望的空隙。与理想晶体中的扩散相比,这便于杂质的扩散。
为了良好地限制载流子,p型第二覆盖层54的Al摩尔分数x最好尽量大。一般地,x等于1.0。再有,为了把载流子扩散在整个发光层104中,p型第二覆盖层54的电阻率最好尽量低。为此,p型第二覆盖层54的杂质浓度最好尽量高。
在p型第二层间阻挡层53中,应该把Al摩尔分数设定为低值,例如设定为0.5。这样可提高结晶度,从而尽管p型第二层间阻挡层53的厚度低,但也可以防止杂质扩散。
当p型第二层间阻挡层53的厚度大时,从发光层104溢出的载流子在p型第二层间阻挡层53中发光或因非辐射复合而被消除,从而使发光层104的发光效率降低。为了避免这种现象,p型第二层间阻挡层53的厚度最好为p型第二层间阻挡层53中少数载流子的电子扩散长度的一半。Al摩尔分数为0.5的AlGaInP晶体一般有约0.5μm的电子扩散长度。因此,p型第二层间阻挡层53的厚度最好为0.3μm或更小。
应该指出,可以更好地使p型第二层间阻挡层53的杂质浓度以及厚度最佳化。
图10A表示对于p型第二层间阻挡层53来说杂质浓度和1000小时发光后的光输出与发光初期光输出比率之间的关系。图10B表示对于p型第二层间阻挡层53来说厚度和1000小时发光后的光输出与发光初期光输出比率之间的关系。在室温下把50mA的驱动电流施加在p型第二层间阻挡层53上的这种条件下进行发光。
当p型第二层间阻挡层53的杂质浓度高时,发光效率降低。这是由于杂质从电流扩散层106扩散至发光层104和p型第二覆盖层54将p型第二层间阻挡层53中的杂质置放在发光层104中的缘故。
另一方面,当p型第二层间阻挡层53的厚度过低时,一些杂质就扩散至发光层104中,造成光输出的降低。
由图10A可看出,有3×1017cm-3以下的足够低的杂质浓度的p型第二层间阻挡层53可防止p型杂质从电流扩散层106和p型第二覆盖层54进一步扩散至发光层104。在这种情况下,1000小时发光后的光输出为初期发光下光输出的80%以上,该光输出对于实际使用来说可达到足够的光强度水平。
图10B表示发光层104的杂质浓度为1×1017cm-3情况下的结果。由图10B可知,厚度为0.1μm以上的p型第二层间阻挡层53可以实现1000小时发光后光输出为发光初期光输出的90%以上的LED。这种LED特别有用。
当p型第二层间阻挡层53有较大厚度时,p型第二覆盖层54会损失载流子限制效应。这种p型第二层间阻挡层53起到具有原函数(function)的p型覆盖层的作用。在这种情况下,载流子通过辐射复合被消耗,象在p型第二层间阻挡层53中一样。因此,要求p型第二层间阻挡层53的厚度等于或小于p型层的少数载流子的电子的扩散长度。电子的扩散长度在有与GaAs匹配晶格的基于AlGaInP的化合物半导体中为0.5-1.5μm。当Al的摩尔分数在基于AlGaInP的化合物半导体中为0.5时,电子的扩散长度约为0.5μm。因此,要求p型第二层间阻挡层53的厚度为0.5μm或0.5μm以下,最好为0.3μm或0.3μm以下。
(实例7)图11是说明本发明实例7的LED的剖面图。在n型GaAs衬底201上顺序地淀积n型(AlxGa1-x)yIn1-yP第一覆盖层21(x=1.0,y=0.5,Si载流子浓度为5×1017cm-3,厚度1μm);n型(AlxGa1-x)yIn1-yP第一层间阻挡层22(x=0.5,y=0.5,Si载流子浓度为2×1017cm-3,厚度0.5μm);(AlxGa1-x)yIn1-yP发光层203(x=0.3,y=0.5,厚度0.5μm);p型(AlxGa1-x)yIn1-yP第二层间阻挡层41(x=0.5,y=0.5,Zn载流子浓度为2×1017cm-3,厚度0.5μm);p型(AlxGa1-x)yIn1-yP第二覆盖层42(x=1.0,y=0.5,Zn载流子浓度为5×1017cm-3,厚度1μm);和(AlxGa1-x)yIn1-yP电流扩散层205(x=0.05,y=0.90,Zn载流子浓度为1×1018cm-3,厚度7μm)。此外,在电流扩散层205的上表面上形成p侧电极207。在衬底201的下表面上形成n侧电极209。接着,完整地制备发光二极管700。
p型第二层间阻挡层41有低的Al摩尔分数和低的杂质浓度,并有大于0.5μm的厚度。因此,p型第二层间阻挡层41可防止杂质从电流扩散层205和p型第二覆盖层42扩散至发光层203,从而防止发光效率的降低。利用n型第一层间阻挡层22,可以在其上形成有低的Al摩尔分数的发光层203。低的Al摩尔分数在发光层203中产生良好的结晶度。在有良好结晶度的发光层203和n型第一层间阻挡层22之间的pn结可以改善发光效率。
在上述说明中,各个LED由基于InGaAlP的半导体构成,该半导体有与GaAs衬底匹配的晶格。如上所述,本发明的LED可以由例如III-V化合物半导体(例如,AlGaAs、AlGaInSb、InGaAsP和AlGaInN)构成,在该半导体中,可以按Al的摩尔分数来设定禁带宽度。在本发明的LED中也可以改变由这些材料构成的层的厚度和载流子浓度。
如上所述,在本发明的LED中,即使在长时间发光后,光输出也很少下降。
按照本发明的一个方案,防止了产生于pn结上的结晶缺陷影响发光层,从而实现即使在长时间发光后也可以防止在其上光输出降低的LED。
按照本发明的另一方案,防止了产生于pn结上的结晶缺陷影响发光层,从而防止发光效率的降低,可实现即使在长时间发光后也可以防止其光输出降低的LED。
按照本发明的另一方案,基本上消除了在层间阻挡层中的非辐射复合,从而实现具有高水平发光效率的LED。
按照本发明的另一方案,防止了容易扩散的p型杂质扩散至发光层,从而防止发光效率的降低。
按照本发明的另一方案,即使在长时间发光后,光输出在从红光至绿光的光谱中也很少降低。
按照本发明的另一方案,即使LED为包括具有Al的大摩尔分数的覆盖层的高强度LED时,也可防止了在长时间发光后容易扩散的p型杂质从电流扩散层或p型第二覆盖层扩散至发光层,从而防止光输出的降低。
按照本发明的另一方案,p型第二层间阻挡层的Al摩尔分数为0.5以下,而p型第二覆盖层的Al摩尔分数为0.7以上,从而充分维持p型第二层间阻挡层的结晶度,因此可以防止杂质的扩散。
按照本发明的另一方案,即使当LED包括p型第二层间阻挡层时,p型第二覆盖层也维持载流子限制效应,从而实现良好的光输出,并在高温下可以维持LED的特性。此外,p型第二覆盖层有低杂质浓度,从而吸收进入的杂质,防止杂质扩散至发光层。
按照本发明的另一方案,即使当LED按高强度长时间发射光谱的从红光至绿光的光时,也可以防止容易扩散的p型杂质从电流扩散层或p型第二覆盖层扩散至发光层,从而防止光输出的降低。
在不脱离本发明范围和精神的情况下,本领域的技术人员当然可以容易地进行各种其它改进。因此,不应该认为权利要求的范围受限于上述说明,而应该认为该权利要求具有更广泛的范围。
权利要求
1.一种发光二极管,包括衬底;发光层;第一覆盖层,有第一导电类型和大于发光层禁带宽度的禁带宽度;第二覆盖层,有第二导电类型和大于发光层禁带宽度的禁带宽度;和层间阻挡层,有与发光层相同但与第一或第二覆盖层不同的导电类型,有小于第一或第二覆盖层禁带宽度但大于发光层禁带宽度的禁带宽度,其中,发光二极管有双异质结结构,发光层插入在第一和第二覆盖层之间;层间阻挡层设置在发光层和第一覆盖层之间和/或设置在发光层和第二覆盖层之间。
2.如权利要求1的发光二极管,其中,层间阻挡层的厚度小于层间阻挡层中少数载流子的扩散长度,并大于这样的值,以致在层间阻挡层和第一或第二覆盖层之间的界面上产生的非辐射复合中心基本上不影响发光层。
3.如权利要求1的发光二极管,其中,层间阻挡层的厚度在0.1μm或0.1μm以上至0.5μm或0.5μm以下的范围内。
4.如权利要求1的发光二极管,其中,层间阻挡层的禁带宽度比发光层的禁带宽度大0.2eV以上。
5.如权利要求1的发光二极管,其中,层间阻挡层是具有长的非辐射复合寿命的间接跃迁型半导体层。
6.如权利要求1的发光二极管,其中,层间阻挡层包括第一和第二层间阻挡层;第一层间阻挡层设置在发光层和第一覆盖层之间;第二层间阻挡层设置在发光层和第二覆盖层之间;第一层间阻挡层有与发光层相同但与靠近第一层间阻挡层的第一覆盖层不同的导电类型,并且其禁带宽度小于第一覆盖层的禁带宽度但大于发光层的禁带宽度;第二层间阻挡层有与发光层相同但与靠近第二层间阻挡层的第二覆盖层不同的导电类型,并且其禁带宽度小于第二覆盖层的禁带宽度但大于发光层的禁带宽度。
7.如权利要求1的发光二极管,其中,衬底由GaAs构成;第一覆盖层由(Ga1-x2Alx2)0.5In0.5P(x1<x2≤1)构成;发光层由(Ga1-x1Alx1)0.5In0.5P(0≤x1<1)构成;层间阻挡层由(Ga1-x4Alx4)0.5In0.5P(x1<x4<x2,x3)构成;和第二覆盖层由(Ga1-x3Alx3)0.5In0.5P(x1<x3≤1)构成。
8.一种发光二极管,包括衬底;发光层;p型覆盖层,有大于发光层禁带宽度的禁带宽度;和n型覆盖层,有大于发光层禁带宽度的禁带宽度,其中,发光二极管由至少III-V化合物半导体材料构成,并有双异质结结构,发光层插入p型和n型覆盖层之间;p型覆盖层包括p型第二层间阻挡层和p型第二覆盖层;p型第二层间阻挡层比p型第二覆盖层靠近发光层;p型第二层间阻挡层有分别比p型第二覆盖层的Al摩尔分数和杂质浓度低的Al摩尔分数和杂质浓度。
9.如权利要求8的发光二极管,其中,p型第二层间阻挡层的Al摩尔分数为0.5或0.5以下,而p型第二覆盖层的Al摩尔分数为0.7或0.7以上。
10.如权利要求8的发光二极管,其中,p型第二层间阻挡层的杂质浓度为3×1017cm-3或更低;p型第二层间阻挡层的厚度在0.1μm或0.1μm以上至0.5μm或0.5μm以下的范围内。
11.如权利要求8的发光二极管,其中衬底由GaAs构成;n型第一覆盖层由(Ga1-x2Alx2)0.5In0.5P(x1<x2≤1)构成;发光层由(Ga1-x1Alx1)0.5In0.5P(0≤x1≤x2,x3)构成;p型第二中间阻挡覆盖层由(Ga1-x4Alx4)0.5In0.5P(x1<x4<x3)构成,杂质浓度小于5×1017cm-3;和p型第二覆盖层由(Ga1-x3Alx3)0.5In0.5P(x1<x3≤1)构成,杂质浓度为5×1017cm-3或更高。
全文摘要
一种发光二极管,包括:衬底;发光层;第一覆盖层,有第一导电类型和大于发光层禁带宽度的禁带宽度;第二覆盖层,有第二导电类型和大于发光层禁带宽度的禁带宽度;和层间阻挡层,有与发光层相同但与第一或第二覆盖层不同的导电类型,有小于第一或第二覆盖层禁带宽度但大于发光层禁带宽度的禁带宽度。该发光二极管有双异质结结构,发光层插入第一和第二覆盖层之间。层间阻挡层设置在发光层和第一覆盖层之间和/或设置在发光层和第二覆盖层之间。
文档编号H01L33/00GK1257313SQ9912775
公开日2000年6月21日 申请日期1999年11月30日 优先权日1998年11月30日
发明者中津弘志, 村上哲朗, 细羽弘之, 仓桥孝尚 申请人:夏普公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1