一种rfid天线及其自动匹配方法

文档序号:8263015阅读:453来源:国知局
一种rfid天线及其自动匹配方法
【技术领域】
[0001]本发明涉及一种RFID天线及其自动匹配方法,属于电学领域。
【背景技术】
[0002]射频识别(RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,作为条形码的无线版本,RFID技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点,其应用将给零售、物流等产业带来革命性变化。
[0003]RFID系统,是由阅读器、电子标签及应用软件三个部分组成,其工作原理是阅读器发射一特定频率的无线电磁波,驱动电子标签将其内部的数据发送,此时,阅读器接收解读数据,送给应用程序做相应的处理。
[0004]目前,在国内应用较为广泛的是基于IS015693协议和IS014443协议的RFID系统,其工作中心频率皆为13.56MHz,以无源方式工作,这样就要求阅读器发射天线阻抗匹配良好,保证能够发射足够的功率。国内市场能见到的该RFID系统的天线皆为固定匹配模式,以大小不一的方形为主,匹配电路也是出厂时固定,用户不能自行弯折或者改变天线的形状,否则会导致天线驻波增加,效率下降甚至损坏设备。在实际应用中,有些场合需要用户自行更改天线的形式,比如长条形状,圆形,或者其它甚至与装饰物合为一体,若要支持此项功能,就必须提供一种天线阻抗自动检测和匹配的方法。

【发明内容】

[0005]针对现有技术的不足,本发明公开了一种RFID天线;
[0006]本发明还公开了上述RFID天线的自动匹配方法;
[0007]上述RFID天线的自动匹配方法的原理为:首先,测量固有串联电感LO和固有串联电阻R0,然后,根据LC匹配电路计算公式,得到应接入电路的并联匹配电容值Cp和应接入电路的串联匹配电容值Cs,再由微控制器通过磁保持继电器选取最接近的电容值接入电路,最后,进彳T微调。
[0008]本发明的技术方案为:
[0009]一种RFID天线,包括同轴馈线、巴伦、负载调制三极管、负载调制电阻、并联匹配电容组、串联匹配电容组、天线金属管、Q值调节电阻、控制线路、微控制器、驱动电路、检波电路、模数转换器ADC,所述并联匹配电容组包括多路串联连接的并联匹配电容与磁保持继电器,所述串联匹配电容组包括多路串联连接的串联匹配电容与磁保持继电器,所述天线金属管包括固有串联电感LO与固有串联电阻R0,所述同轴馈线连接所述巴伦输入端,所述巴伦输出端连接所述并联匹配电容组,所述巴伦输出端还同时连接所述串联匹配电容组的一端,所述串联匹配电容组的另一端串联所述天线金属管一端,所述天线金属管另一端串联所述Q值调节电阻,所述Q值调节电阻连接所述巴伦输出端;所述巴伦输出端还连接所述检波电路的输入端,所述检波电路的输出端连接所述模数转换器ADC,所述模数转换器ADC连接所述微控制器,所述微控制器的一路输出控制信号连接所述驱动电路,所述驱动电路通过所述控制线路连接各路所述磁保持继电器的控制端,所述微控制器另一路输出控制信号连接到所述负载调制三极管的基极,所述负载调制三极管的发射极与集电极通过所述负载调制电阻与所述巴伦的输出端并联。
[0010]根据本发明优选的,所述并联匹配电容组中的多个并联匹配电容的电容值由小到大成2倍关系,所述串联匹配电容组中的多个串联匹配电容的电容值由小到大成2倍关系。
[0011]所述并联匹配电容组中的多个并联匹配电容的电容值由小到大成2倍关系,例如,所述并联匹配电容组中的七个并联匹配电容的电容值依次为25p、50p、100p、200p、400p、800p、1600p ;所述串联匹配电容组中的多个串联匹配电容的电容值由小到大成2倍关系,例如,所述串联匹配电容组中的十个串联匹配电容的电容值依次为lp、2p、4p、8p、16p、32p、64p、128p、256p、512p0
[0012]天线金属管由用户自行弯折、更换,天线金属管主要参数等效为固有串联电感LO和固有串联电阻R0。
[0013]上述RFID天线的自动匹配方法,具体步骤包括:
[0014](I)测量用户RFID天线参数
[0015]上电,所述微控制器输出控制信号使所有所述磁保持继电器处于开路状态,所述串联匹配电容组中的串联匹配电容及所述并联匹配电容组中的并联匹配电容都处于断开状态,此时处于开路状态,所述微控制器记录所述模数转换器ADC采集的开路状态下的电压值U0,所述微控制器进一步控制所述串联匹配电容组的磁保持继电器,根据所述串联匹配电容的电容值由小到大的顺序,所述串联匹配电容逐步闭合,使接入回路的电容值逐步增加,电容值逐步增加的过程中,所述微控制器通过所述模数转换器ADC得到电压极小值,所述电压极小值是指所述模数转换器ADC在对所述巴伦输出电压连续采样得到的数据中的最小值,记录下由所述磁保持继电器闭合导联接入回路的所述串联匹配电容的电容值之和CsO,记录电压极小值U1,计算所述天线金属管的固有串联电感LO的值,如下式所示:
[0016]LO = l/(4*pi~2*f(T2*CsO)
[0017]式中,pi= 3.14,f0 为 RFID 天线的中心频率,f0 = 13.56MHz ;
[0018]计算固有串联电阻RO的值,如下式所示:
[0019]RO = Z0*U1/(UO-Ul)-Rq
[0020]式中,ZO为所述同轴馈线阻抗,ZO = 50欧姆,Rq为Q值调节电阻,Rq的取值范围为0_4欧姆;
[0021](2)计算应接入电路的并联匹配电容的电容值Cp和应接入电路的串联匹配电容的电容值Cs
[0022]步骤⑴得到了天线金属管的固有串联电感LO与固有串联电阻R0,根据LC匹配电路计算公式,得到应接入电路的并联匹配电容的电容值Cp和应接入电路的串联匹配电容的电容值Cs,如下式所示:
[0023]Cp = (Z0*Rf-Rf~2)0.5/(2*pi*f0*Z0*Rf)
[0024]Cs = l/(4*pi~2*f(T2*L0-2*pi*fO*(Z0*Rf-Rr2) ~0.5)
[0025]式中,Rf= R0+Rq ;
[0026](3)控制匹配电容接入
[0027]步骤⑵得到了得到应接入电路的并联匹配电容的电容值Cp和应接入电路的串联匹配电容的电容值Cs,所述微控制器从所述并联匹配电容组中选择并联匹配电容的组合,所述并联匹配电容的组合电容值为Cp’,使Cp’最接近Cp,通过控制所述磁保持继电器将所述并联匹配电容的组合并联接入电路,所述微控制器从所述串联匹配电容组中选择串联匹配电容的组合,所述串联匹配电容的组合电容值为Cs’,使Cs’最接近Cs,通过控制所述磁保持继电器将所述串联匹配电容的组合串联接入电路;其中,所述匹配电容是指所述并联匹配电容的组合及所述串联匹配电容的组合;
[0028](4)微调匹配点
[0029]对接入电路的并联匹配电容的组合电容值Cp’与接入电路的串联匹配电容的组合电容值Cs’进行微调,所述微控制器微调接入电路的串联匹配电容的组合电容值Cs’,当
U-U0/2 I取最小值时,对应的接入电路的串联匹配电容的组合电容值Cs”即为接入电路的串联匹配电容的组合最佳匹配电容值,所述微控制器微调接入电路的并联匹配电容的组合电容值Cp’,当|
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1