氮磷双掺杂的碳材料及其制备方法和应用

文档序号:10658856阅读:324来源:国知局
氮磷双掺杂的碳材料及其制备方法和应用
【专利摘要】本发明公开了一种氮磷双掺杂的碳材料及其应用,氮磷双掺杂的碳材料的制备方法为:将富磷污泥制成富磷污泥粉末,煅烧得到初步的碳材料,之后经浓盐酸处理得到氮磷双掺杂的碳材料;氮磷双掺杂的碳材料能够作为阴极催化剂应用于微生物燃料电池中。本发明利用污水处理厂的富磷污泥作为原料,将其转化为具有附加值的产品,实现了对废弃的富磷污泥资源化利用;本发明使用氮磷双掺杂的碳材料代替了常规的Pt/C催化材料,成本低廉,催化活性高和稳定性强;本发明制备的氮磷双掺杂的碳材料反应时间较短,工艺简单,从而达到了缩短生产周期的目的。
【专利说明】
氮磷双掺杂的碳材料及其制备方法和应用
技术领域
[0001] 本发明属于新能源和新材料应用技术领域,具体涉及一种氮磷双掺杂的碳材料及 其制备方法和应用。
【背景技术】
[0002] 微生物燃料电池 (Microbial fuel cells,MFCs)是微生物与燃料电池技术相结合 的产物,它能够利用微生物将有机物中的化学能直接转化为电能。其基本原理是:在阳极室 厌氧环境下,有机物被微生物氧化分解并释放出电子和质子,电子依靠合适的传递介质在 生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子 交换膜传递到阴极,氧化剂(一般为氧气)在阴极得到电子被还原,同时与质子结合成水。 MFCs在将化学能转化为电能的时候能够获得很高的转化效率,是未来缓解能源和环境问题 的有效途径,引起了科研工作者的广泛关注。
[0003] 在MFCs技术中,功率输出的提高一直是相关研究工作的重点。而阴极反应是影响 电能输出的重要环节,因此,选择合适的阴极电子受体及其相应的阴极催化剂便成为了大 幅度提高MFCs输出功率的关键。目前,因为氧气简单易得、成本低廉,常被作为阴极电子受 体得到普遍使用,然而,阴极的氧化还原反应会因为动力学因素的影响而不能保持高效稳 定的功率输出。为了维持阴极反应的持续高效进行,高效稳定的阴极催化剂的选择就显得 尤为重要。目前在MFCs中应用最多的还是铂(Pt)催化剂,但是Pt价格昂贵、资源稀缺,这些 严重限制了其在氧还原催化剂方面的应用。因此,寻找催化高效、成本低廉、可持续利用的 氧还原催化剂成为微生物燃料电池研究的关键领域之一。
[0004] 随着人们生活水平的提高,城市污水处理厂的数量和处理能力也有了长足的发 展,随之而来的是大量有待处理的污泥废弃物。近年来对于污泥处理处置的新方法也在不 断的探索之中。将废弃的污泥转化为具有高附加值的工业产品无疑是一种环境友好的资源 化利用途径。

【发明内容】

[0005] 本发明针对现有技术的不足,首要目的是提供一种氮磷双掺杂的碳材料的制备方 法。
[0006] 本发明的第二个目的在于提供一种电池阴极的制备方法。
[0007] 为达到上述目的,本发明的解决方案是:
[0008] -种氮磷双掺杂的碳材料的制备方法,包括如下步骤:
[0009] (1)、将富磷污泥制成富磷污泥粉末;
[0010] ⑵、煅烧富磷污泥粉末,得到初步的碳材料;
[0011] (3)、将初步的碳材料用浓盐酸浸泡,之后超声,洗涤、离心并干燥后得到氮磷双掺 杂的碳材料。
[0012] 优选地,富磷污泥来自污水处理厂的生物除磷强化处理池,其中氮为4~9wt%,磷 为5 ~10wt%。
[0013] 优选地,煅烧的温度为400~800°C,煅烧的时间为1~4h。
[0014] 优选地,浓盐酸的浓度为10~12mo 1 /L,浸泡的时间为1~3h。
[0015] 优选地,超声的时间为3~5h。
[0016] 优选地,离心的转速为3000~5000r/min,离心的时间为3~8min。
[0017] 优选地,干燥的温度为50~80°C,干燥的时间为12~24h。
[0018] -种氮磷双掺杂的碳材料,由上述制备方法制成。
[0019] -种电池阴极,包括:氮磷双掺杂的碳材料、导电材料和粘结剂。
[0020] -种上述的电池阴极的制备方法,包括如下步骤:
[0021] (1)、将氮磷双掺杂的碳材料、导电材料和粘结剂按比例混合,得到混合物;
[0022 ] (2 )、然后向混合物中加入溶剂,混合、超声得到阴极催化剂溶液;
[0023] (3)、将阴极催化剂溶液涂覆在导电基底上,自然风干后得到电池阴极。
[0024] 优选地,氮磷双掺杂的碳材料、导电材料和粘结剂的质量比为10:15: 32~10:48: 98 〇
[0025] 优选地,导电材料为炭黑、活性炭或石墨。
[0026]优选地,粘结剂为聚四氟乙烯(PTFE)和5wt %全氟磺酸-聚四氟乙烯共聚物 (Naf i on)溶液中的一种。
[0027]优选地,溶剂为异丙醇。
[0028] 优选地,超声的时间为20~40min。
[0029] 优选地,导电基底为碳纤维布或者碳纸。
[0030] 优选地,自然风干时间为18~36h。
[0031] -种上述的氮磷双掺杂的碳材料在制备微生物电池阴极中的应用。
[0032] 由于采用上述方案,本发明的有益效果是:
[0033]首先,本发明的方法所使用的富磷污泥来自于污水处理厂的生物除磷强化处理 池;本发明能够将废弃的富磷污泥转化为具有附加值的产品,进行资源化利用。
[0034]其次,本发明使用氮磷双掺杂的碳材料代替了常规的Pt/C催化材料,成本低廉,催 化活性高和稳定性强。
[0035]最后,本发明制备的氮磷双杂的碳材料反应时间较短,工艺简单,从而达到了缩短 生产周期的目的。
【附图说明】
[0036]图1为氮磷双掺杂的碳材料的SEM形貌图。
[0037]图2为空气阴极单室MFCs的结构示意图。
[0038]图3为空气阴极双室MFCs的结构示意图。
[0039]附图标记:
[0040] 空气阴极单室MFCs进口 1、空气阴极单室MFCs出口 2、空气阴极单室MFCs阳极3、空 气阴极单室MFCs阴极4、空气阴极单室MFCs外电路5、空气阴极双室MFCs进口 6、空气阴极双 室MFCs出口 7、空气阴极双室MFCs阴极室8、空气阴极双室MFCs阴极9、空气阴极双室MFCs外 电路10、空气阴极双室MFCs阳极室11和质子交换膜12。
【具体实施方式】
[0041]本发明提供了一种利用富磷污泥制备氮磷双掺杂的碳材料的方法及其应用。
[0042]〈氮磷双掺杂的碳材料〉
[0043] 一种氮磷双掺杂的碳材料,该氮磷双掺杂的碳材料的SEM形貌图如图1所示。
[0044] 碳材料中用氮元素、磷元素进行双掺杂的原因如下:
[0045] 第一、氮元素在周期表中与碳元素相邻,与碳元素的半径相当,因此氮元素的掺杂 可使碳材料的晶格发生尽可能小的畸变;同时,氮原子上带有的孤对电子可以使碳材料的 电荷密度增加,从而增大导电性能。
[0046] 第二、磷元素的掺杂可引起碳材料的缺陷位,使得其在电化学或电催化反应中活 性增加。
[0047]〈氮磷双掺杂的碳材料的制备方法〉
[0048]氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0049] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥烘干,研磨、过筛,制成 富磷污泥粉末;
[0050] (2)、富磷污泥粉末在一定温度下煅烧反应一段时间,得到初步的碳材料;
[0051] (3)、将初步的碳材料用浓盐酸浸泡,之后超声,洗涤、离心,干燥后得到氮磷双掺 杂的碳材料。
[0052] 其中,在步骤(1)中,富磷污泥里氮可以为4~9wt%,磷可以为5~10wt%。
[0053]在步骤(1)中,过筛时,筛子的目数为200目。
[0054] 在步骤(2)中,煅烧的温度可以为400~800°C,优选为800°C。
[0055] 在步骤(2)中,煅烧的时间可以为1~4h,优选为2h。
[0056] 煅烧的目的是:使富磷污泥粉末材料实现碳化和在高温时石墨化;同时除去富磷 污泥粉末附带的杂质,如失去结晶水或挥发性组分,得到较纯的初步的碳材料。
[0057] 在步骤(3)中,浓盐酸的浓度可以为10~12mol/L,优选为10mol/L。
[0058] 在步骤(3)中,浓盐酸浸泡的时间可以为1~3h,优选为1 h。
[0059] 浓盐酸浸泡的目的是:使初步的碳材料实现部分质子化,同时增大未被质子化的 碳材料的比表面积。
[0060] 浓盐酸的除去过程是:用浓盐酸浸泡过的碳材料在超声之后,通过蒸馏水洗涤、离 心去除浓盐酸。
[0061 ] 在步骤(3)中,超声的时间可以为3~5h,优选为5h。
[0062]超声过程包括如下步骤:把用浓盐酸浸泡的碳材料放在超声仪中,利用超声波的 空化作用对碳材料和杂质作用,使部分质子化的材料剥离,进一步增大未被质子化的碳材 料的比表面积;同时去除杂质。
[0063] 在步骤(3)中,用蒸馏水洗涤、离心,离心转速为3000~5000r/min,时间为3~ 8min;洗涤次数为3~6次,离心转速优选为4500r/min,时间为5min,洗涤次数为5次。
[0064] 在步骤(3)中,干燥的温度可以为50~80°C,优选为60°C。
[0065] 在步骤(3)中,干燥的时间可以为12~24h,优选为24h。
[0066]〈氮磷双掺杂的碳材料的应用〉
[0067]上述的氮磷双掺杂的碳材料可以用于制备微生物电池阴极。
[0068]〈电池阴极〉
[0069] -种电池阴极包含上述的氮磷双掺杂的碳材料、导电材料和粘结剂。
[0070] 〈电池阴极的制备方法〉
[0071 ] -种电池阴极的制备方法包括如下步骤:
[0072] (1)、将氮磷双掺杂的碳材料、导电材料和粘结剂按比例混合,得到混合物;
[0073 ] (2 )、然后向混合物中加入溶剂,混合、超声得到阴极催化剂溶液;
[0074] (3)、将阴极催化剂溶液涂覆在导电基底上,自然风干后得到电池阴极。
[0075] 其中,在步骤(1)中,氮磷双掺杂的碳材料、导电材料和粘结剂的质量比可以为10 : 15:32~10:48:98。
[0076] 在步骤(1)中,导电材料可以为炭黑、活性炭或石墨。
[0077]在步骤(1)中,粘结剂可以为聚四氟乙烯(PTFE)和5wt%全氟磺酸-聚四氟乙烯共 聚物(Naf i on)溶液中的一种。
[0078]粘结剂的作用是:使氮磷双掺杂的碳材料更好地与导电基底结合。
[0079]在步骤(2)中,溶剂为异丙醇。
[0080] 异丙醇的作用是:可以使上述氮磷双掺杂的碳材料、导电材料和粘结剂的混合物 更好地混合,分散。
[0081] 另外异丙醇本身可以挥发,不需要特别去除。
[0082] 在步骤(2)中,超声的时间可以为20~40min,优选为30min。
[0083]在步骤(3)中,导电基底可以为碳纤维布或者碳纸。
[0084] 在步骤(3)中,自然风干时间可以为18~36h,优选为24h。
[0085]以下结合附图所示实施例对本发明作进一步的说明。
[0086] 实施例1:
[0087] 第一步:氮磷双掺杂的碳材料的制备方法
[0088] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0089] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt%,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0090] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应2h,得到初步的 碳材料;
[0091] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0092] 其中,步骤(1)中富磷污泥的氮在4~9wt %之内均可以,磷在5~10wt%是可以的, 鼓风箱的温度在80~105°C之内也是可以的。
[0093]步骤(2)中煅烧的温度在400~800°C之内,煅烧的时间在1~4h之内都是可以的。 [0094] 步骤(3)中浓盐酸的浓度在10~12mo VL之内均可以,超声的时间在3~5h之内也 是可以的。
[0095]第二步:电池阴极的制备方法
[0096]本实施例的电池阴极的制备方法包括如下步骤:
[0097] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0098] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0099] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0100]其中,在步骤(1)中,氮磷双掺杂的碳材料、导电材料和聚四氟乙烯(PTFE)的质量 比在10:15:32~10:48:98之内是可以的。
[0101] 在步骤(1)中,导电材料可以为炭黑、活性炭和石墨中的一种。
[0102] 在步骤(1)中,粘结剂可以为聚四氟乙烯(PTFE)和5wt%全氟磺酸-聚四氟乙烯共 聚物(Naf i on)溶液中的一种。
[0103] 在步骤(2)中,超声的时间在20~40min之内也是可以的。
[0104] 在步骤(3)中,自然风干的时间在18~36h之内是可以的。
[0105] 在步骤(3)中,导电基底可以为碳纤维布和碳纸中的一种。
[0106] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0107] 实施例2:
[0108] 第一步:氮磷双掺杂的碳材料的制备方法
[0109] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0110] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0111] (2)、将过筛后的富磷污泥粉末置于管式炉中,在600°C下煅烧反应2h,得到初步的 碳材料;
[0112] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0113]第二步:电池阴极的制备方法
[0114]本实施例的电池阴极的制备方法包括如下步骤:
[0115] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0116] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0117] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0118] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0119] 实施例3:
[0120] 第一步:氮磷双掺杂的碳材料的制备方法
[0121] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0122] (1)、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0123] (2)、将过筛后的富磷污泥粉末置于管式炉中,在700°C下煅烧反应2h,得到初步的 碳材料;
[0124] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0125] 第二步:电池阴极的制备方法
[0126] 本实施例的电池阴极的制备方法包括如下步骤:
[0127] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0128] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0129] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0130] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0131] 实施例4:
[0132] 第一步:氮磷双掺杂的碳材料的制备方法
[0133] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0134] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0135] (2)、将过筛后的富磷污泥粉末置于管式炉中,在400°C下煅烧反应2h,得到初步的 碳材料;
[0136] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0137] 第二步:电池阴极的制备方法
[0138] 本实施例的电池阴极的制备方法包括如下步骤:
[0139] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0140] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0141] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0142] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0143] 实施例5:
[0144] 第一步:氮磷双掺杂的碳材料的制备方法
[0145] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0146] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0147] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应lh,得到初步的 碳材料;
[0148] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0149] 第二步:电池阴极的制备方法
[0150] 本实施例的电池阴极的制备方法包括如下步骤:
[0151] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0152] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0153] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0154] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0155] 实施例6:
[0156] 第一步:氮磷双掺杂的碳材料的制备方法
[0157] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0158] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末; [0159] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应3h,得到初步的 碳材料;
[0160] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0161] 第二步:电池阴极的制备方法
[0162] 本实施例的电池阴极的制备方法包括如下步骤:
[0163] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0164] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0165] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0166] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0167] 实施例7:
[0168] 第一步:氮磷双掺杂的碳材料的制备方法
[0169] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0170] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末; [0171] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应4h,得到初步的 碳材料;
[0172] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0173]第二步:电池阴极的制备方法
[0174] 本实施例的电池阴极的制备方法包括如下步骤:
[0175] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0176] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0177] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0178] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0179] 实施例8:
[0180] 第一步:氮磷双掺杂的碳材料的制备方法
[0181] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0182] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt%,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末; [0183] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应2h,得到初步的 碳材料;
[0184] (3)、然后将初步的碳材料放入12mol/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0185] 第二步:电池阴极的制备方法
[0186] 本实施例的电池阴极的制备方法包括如下步骤:
[0187] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0188] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0189] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0190] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0191] 实施例9:
[0192] 第一步:氮磷双掺杂的碳材料的制备方法
[0193] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0194] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末;
[0195] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应2h,得到初步的 碳材料;
[0196] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声4h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0197] 第二步:电池阴极的制备方法
[0198] 本实施例的电池阴极的制备方法包括如下步骤:
[0199] (1)、将质量比为10: 32:64的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0200] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0201] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0202] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0203] 实施例10:
[0204] 第一步:氮磷双掺杂的碳材料的制备方法
[0205] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0206] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末; [0207] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应2h,得到初步的 碳材料;
[0208] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0209] 第二步:电池阴极的制备方法
[0210] 本实施例的电池阴极的制备方法包括如下步骤:
[0211] (1)、将质量比为10:16: 34的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0212] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0213] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0214] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/c电池阴极。
[0215] 实施例11:
[0216] 第一步:氮磷双掺杂的碳材料的制备方法
[0217] 本实施例的氮磷双掺杂的碳材料的制备方法包括如下步骤:
[0218] (1 )、将来自污水处理厂的生物除磷强化处理池的富磷污泥,其中氮为6wt %,磷为 8wt%,在105°C的鼓风箱内烘干,置于研钵中研磨并过入200目的筛子,得到富磷污泥粉末; [0219] (2)、将过筛后的富磷污泥粉末置于管式炉中,在800°C下煅烧反应2h,得到初步的 碳材料;
[0220] (3)、然后将初步的碳材料放入10m〇l/L的浓盐酸中浸泡lh,进行超声5h,超声后反 复用超纯水洗涤5次,在转速为4500r/min的离心机中离心5min至中性,随后放入温度为60 °C的真空干燥箱内干燥24h,最终形成氮磷双掺杂的碳材料。
[0221] 第二步:电池阴极的制备方法
[0222] 本实施例的电池阴极的制备方法包括如下步骤:
[0223] (1)、将质量比为10:47:95的上述氮磷双掺杂的碳材料、导电材料和聚四氟乙烯 (PTFE)充分混合,得到混合物;
[0224] (2)、然后向上述混合物中加入异丙醇,混合均匀并超声30min得到阴极催化剂溶 液;
[0225] (3)、将上述分散均匀的阴极催化剂溶液涂覆在碳纤维布上,自然风干24h,即可制 得氮磷双掺杂的碳材料的电池阴极。
[0226] 按照上述电池阴极的制备方法,将常规Pt/C催化剂、导电材料和粘结剂混合可制 得Pt/C电池阴极。
[0227] 〈实验〉
[0228] 以上述实施例的产品为材料进行如下实验:
[0229] 本实验是为了验证在微生物燃料电池中,氮磷双掺杂的碳材料作为电池阴极具有 较高的催化活性和较高的稳定性。
[0230] 微生物燃料电池(MFCs)的产电过程如下:由进样口将基质溶液和少量产电微生物 (主要包括泥细菌、希瓦氏菌、红螺菌等)加入到阳极室,在厌氧条件下产电微生物氧化有机 燃料乙酸钠产生质子、电子以及二氧化碳。电子经外电路转移到阴极,质子经有电解液扩散 至阴极。阴极发生的反应如下:
[0231] 〇2+2H20+4e--40H-
[0232] OH-+H+-H20
[0233] 实验 1
[0234] 本实验涉及的阴极单室微生物燃料电池(MFCs)包括:空气阴极单室MFCs进口 1、空 气阴极单室MFCs出口 2、空气阴极单室MFCs阳极3、空气阴极单室MFCs阴极4和空气阴极单室 MFCs外电路5。
[0235] 其中,空气阴极单室MFCs阳极3为石墨纤维刷;空气阴极单室MFCs外电路5为1000 欧姆电阻;阴极单室MFCs基质溶液由以下物质组成:PH为7.0的0.05mol/L磷酸盐缓冲溶液、 〇. 31g/L的氯化铵溶液、0.13g/L的氯化钾溶液、12.25mL的微量元素溶液、12.5mL的维生素 溶液以及1 g/L的乙酸钠溶液作为燃料。
[0236] 单室微生物燃料电池(MFCs)的性能测试如下:
[0237] 单室微生物燃料电池(MFCs)的结构如图2所示。单室微生物燃料电池(MFCs)的性 能测试包括如下步骤:将15mL的产电微生物菌液从空气阴极单室MFCs进口 1加入单室MFCs 中,分别以上述实施例制备的氮磷双掺杂的碳材料催化电极和Pt/C催化电极作为燃料电池 的阴极;将燃料电池接入1000欧姆的空气阴极单室MFCs外电路5,开始记录产电过程,待最 高电压输出稳定之后进行燃料电池的性能测试。不同催化电极单室微生物燃料电池的性能 值如表1所示:
[0238] 按照上述方法,对实施例1至实施例11的材料分别进行实验,得到了不同催化电极 的性能值。
[0239] 表1不同催化电极单室微生物燃料电池性能值
[0240]
[0241] 由表1可以看出,与常规Pt/C催化电池阴极相比,氮磷双掺杂的碳材料电池阴极在 单室微生物燃料电池里具有更高的催化活性和稳定性。
[0242] 实验 2
[0243] 本实验涉及的阴极双室微生物燃料电池(MFCs)包括:空气阴极双室MFCs进口 6、空 气阴极双室MFCs出口 7、空气阴极双室MFCs阴极室8、空气阴极双室MFCs阴极9、空气阴极双 室MFCs外电路10、空气阴极双室MFCs阳极室11和质子交换膜12。
[0244]其中,空气阴极双室MFCs阳极为石墨纤维刷;质子交换膜12为全氟磺酸-聚四氟乙 烯共聚物(Nafion)117阳离子交换膜;空气阴极双室MFCs外电路10为1000欧姆电阻;空气阴 极双室MFCs阴极9为lmo 1/L的氯化钾溶液;阳极双室MFCs基质溶液由以下物质组成:PH为 7.0的0.05mol/L磷酸盐缓冲溶液、0.31g/L的氯化铵溶液、0.13g/L的氯化钾溶液、12.25mL 的微量元素溶液、12.5mL的维生素溶液以及lg/L的乙酸钠溶液作为燃料。
[0245] 双室微生物燃料电池 (MFCs)的性能测试如下:
[0246] 双室微生物燃料电池 (MFCs)的结构如图3所示。双室微生物燃料电池(MFCs)的性 能测试包括如下步骤:将15mL产电微生物菌液从空气阴极双室MFCs进口 6加入双室MFCs中, 以上述实施例1制备的氮磷双掺杂的碳材料催化电极和Pt/C催化电极作为燃料电池的阴 极;将燃料电池接入1000欧姆的空气阴极双室MFCs外电路10,开始记录产电过程,待最高电 压输出稳定之后进行燃料电池的性能测试。不同催化电极双室微生物燃料电池的性能值如 表2所示:
[0247] 表2不同催化电极双室微生物燃料电池性能值
[0248]
[0249] 由表2可以看出,与常规Pt/C催化电池阴极相比,氮磷双掺杂的碳材料电池阴极在 双室微生物燃料电池里同样具有更高的催化活性和稳定性。
[0250] 上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用本发 明。熟悉本领域技术人员显然可以容易的对这些实施例做出各种修改,并把在此说明的一 般原理应用到其他实施例中,而不必经过创造性的劳动。因此,本发明不限于上述实施例。 本领域技术人员根据本发明的原理,不脱离本发明的范畴所做出的改进和修改都应该在本 发明的保护范围之内。
【主权项】
1. 一种氮磷双掺杂的碳材料的制备方法,其特征在于:包括如下步骤: (1 )、将富磷污泥制成富磷污泥粉末; (2 )、煅烧所述富磷污泥粉末,得到初步的碳材料; (3)、将所述初步的碳材料用浓盐酸浸泡,之后超声,洗涤、离心并干燥后得到所述氮磷 双掺杂的碳材料。2. 根据权利要求1所述的氮磷双掺杂的碳材料的制备方法,其特征在于:所述富磷污泥 来自污水处理厂的生物除磷强化处理池,其中氮为4~9wt%,磷为5~10wt% ; 或所述煅烧的温度为400~800 °C,煅烧的时间为1~4h; 或所述浓盐酸的浓度为10~12mo 1 /L,浸泡的时间为1~3h; 或所述超声的时间为3~5h; 或所述离心转速为3000~5000r/min,离心的时间为3~8min; 或所述干燥的温度为50~80 °C,干燥的时间为12~24h。3. -种氮磷双掺杂的碳材料,其特征在于:由如权利要求1或2的制备方法制成。4. 一种电池阴极,其特征在于:包括:氮磷双掺杂的碳材料、导电材料和粘结剂; 所述的氮磷双掺杂的碳材料为权利要求3所述的氮磷双掺杂的碳材料。5. -种如权利要求4所述的电池阴极的制备方法,其特征在于:包括如下步骤: (1 )、将氮磷双掺杂的碳材料、导电材料和粘结剂按比例混合,得到混合物; (2 )、然后向所述混合物中加入溶剂,混合、超声得到阴极催化剂溶液; (3)、将所述阴极催化剂溶液涂覆在导电基底上,自然风干后得到所述电池阴极; 所述的氮磷双掺杂的碳材料为权利要求3所述的氮磷双掺杂的碳材料。6. 根据权利要求5所述的电池阴极的制备方法,其特征在于:所述的氮磷双掺杂的碳材 料、所述的导电材料和所述的粘结剂的质量比为10:15:32~10:48:98; 或所述的导电材料为炭黑、活性炭或石墨; 或所述的粘结剂为聚四氟乙稀(PTFE)和5wt%全氟磺酸-聚四氟乙稀共聚物(Nafion) 溶液中的一种; 或所述溶剂为异丙醇; 或所述超声的时间为20~40min; 或所述导电基底为碳纤维布或者碳纸; 或所述自然风干时间为18~36h。7. -种如权利要求3所述的氮磷双掺杂的碳材料在制备微生物电池阴极中的应用。
【文档编号】H01M8/16GK106025296SQ201610597201
【公开日】2016年10月12日
【申请日】2016年7月27日
【发明人】冯雷雨, 曹越, 陈旭涛, 陈韵致, 陈建光
【申请人】同济大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1