控制装置、电子设备以及无触点电力传输系统的制作方法

文档序号:11839730阅读:214来源:国知局
控制装置、电子设备以及无触点电力传输系统的制作方法

本发明涉及控制装置、电子设备以及无触点电力传输系统。



背景技术:

近年来,利用电磁感应,即使不存在金属部分的触点也能够进行电力传输的无触点电力传输(非接触电力传输)受到注目,作为该无触点电力传输的应用例,家庭用设备或便携终端等电子设备的充电被提出。

还公开了无触点电力传输中的各种充电控制方法。例如,在专利文献1中公开了如下的方法,即,通过在充满电时实施省电输电,从而维持受电装置侧的充电控制部的工作状态的方法。在专利文献1中,由于能够容易地实现向通常输电的顺利的恢复和在省电输电过程中受电装置被取走时的电力输送的停止,因此,抑制了无谓的电力消耗。

另外,在专利文献2中公开了如下的方法,即,在输电装置侧设置开关,并基于该开关的操作而实施认证用的临时输电的方法。

另外,在专利文献3中,公开了被称为智能充电的充电控制方法。

在受电装置具有蓄电池(二次电池)的情况下,只要对该蓄电池的状态信息进行存储,并实施与该状态信息相对应的控制即可。例如,当作为状态信息而对某些错误信息进行存储时,通过实施与该错误相对应的控制,从而能够抑制设备的故障或损坏等严重的问题的产生。或者,当对蓄电池的充电次数信息进行存储时,能够实现对该蓄电池的劣化程度的评价。或者,当对过去的充电电压进行存储时,也能够实现专利文献3所公开的智能充电等的充电控制。但是,在现有方法中,未公开在无触点电力传输系统的受电装置侧包含用于对状态信息进行存储的非易失性存储器的装置,也未对基于存储于该非易失性存储器中的信息的控制进行公开。

专利文献1:日本特开2008-202632号公报

专利文献2:日本特开2009-11129号公报

专利文献3:美国专利申请公开第2014/0320089号说明书



技术实现要素:

根据本发明的几个方式,能够提供根据存储于非易失性存储器中的状态信息而实施恰当的控制的控制装置、电子设备以及无触点电力传输系统等。

本发明的一个方式涉及一种控制装置,其为具有输电装置和受电装置的无触点电力传输系统中的受电侧的控制装置,包括:充电部,其根据接收来自所述输电装置的电力的受电部所接收到的电力,而对蓄电池进行充电;控制部,其实施充电控制;非易失性存储器,所述非易失性存储器对所述蓄电池的状态信息进行存储,所述控制部根据存储于所述非易失性存储器中的所述状态信息而实施所述充电控制。

在本发明的一个方式中,设置于无触点电力传输系统的受电装置侧的非易失性存储器对蓄电池的状态信息进行存储,受电侧的控制装置的控制部根据存储于非易失性存储器中的状态信息而实施充电控制。如果采用这种方式,则能够在受电装置侧适当地对蓄电池的状态信息进行存储,并且能够实施与蓄电池的状态相对应的恰当的充电控制等。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述非易失性存储器将温度异常检测信息作为所述状态信息进行存储。

由此,能够在非易失性存储器中对温度异常检测信息进行存储,并根据该温度异常检测信息而实施充电控制。

另外,在本发明的一个方式中,可以采用如下的方式,即,包括负载调制部,所述负载调制部通过负载调制而向所述输电装置发送通信数据,在温度异常被检测到的情况下,所述负载调制部通过所述负载调制而将所述温度异常检测信息向所述输电装置发送。

由此,能够通过负载调制而将温度异常检测信息向输电装置侧发送。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述非易失性存储器将表示所述蓄电池的充电次数的充电次数信息作为所述状态信息进行存储。

由此,作为状态信息,能够对蓄电池的充电次数进行存储。

另外,在本发明的一个方式中,可以采用如下的方式,即,在所述非易失性存储器中存储有所述温度异常检测信息的情况下,所述控制部不更新所述非易失性存储器的所述充电次数信息,在所述非易失性存储器未存储有所 述温度异常检测信息的情况下,所述控制部对所述非易失性存储器的所述充电次数信息进行更新。

由此,能够根据温度异常检测信息,适当地决定充电次数的更新、不更新。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述非易失性存储器将温度异常被检测出时的蓄电池电压作为所述状态信息进行存储。

由此,作为状态信息,能够对温度异常检测时的蓄电池电压进行存储。

另外,在本发明的一个方式中,可以采用如下的方式,即,即使在所述非易失性存储器中存储有所述温度异常检测信息的情况下,在所述蓄电池电压比存储于所述非易失性存储器中的所述蓄电池电压低预定电压时,所述控制部也对所述非易失性存储器的所述充电次数信息进行更新。

由此,在存储有温度异常检测信息的情况下,通过参照蓄电池电压的变化,从而能够适当地决定充电次数的更新、不更新等。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述控制部在将所述状态信息向所述非易失性存储器进行存储时,在将所述状态信息写入到第一地址中之后,在经过了所给定的时间之后,将所述状态信息写入与所述第一地址不同的第二地址中。

由此,能够提高适当地写入信息的可能性。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述非易失性存储器以基于所述受电部的输出电压而得到的电源电压进行工作。

由此,能够通过基于受电部的输出电压而得到的电压,而使非易失性存储器进行工作。

另外,在本发明的一个方式中,可以采用如下的方式,即,所述非易失性存储器对所述蓄电池的充电控制信息进行存储。

由此,通过非易失性存储器,不仅能够对状态信息进行存储,还能够对充电控制信息进行存储。

另外,本发明的其他方式涉及一种控制装置,其为具有输电装置和受电装置的无触点电力传输系统中的输电侧的控制装置,包括:驱动器控制电路,其对向所述受电装置输送电力的输电部的输电驱动器进行控制;控制部,其对所述驱动器控制电路进行控制;通信部,其实施与通过负载调制而发送通信数据的所述受电装置之间的通信处理,所述控制部在从所述受电装置接收 到包括温度异常检测信息在内的通信数据的情况下,使所述输电部实施间歇输电。

在本发明的其他方式中,无触点电力传输系统的输电侧的控制装置在从实施负载调制的受电装置接收到包括温度异常检测信息在内的通信数据的情况下,使输电部实施间歇输电。如果采用这种方式,则能够在受电装置侧产生了温度异常的情况下,实施恰当的输电控制等。

另外,本发明的其他方式涉及一种包括上述的控制装置的电子设备。

另外,本发明的其他方式涉及一种无触点电力传输系统,其为包括输电装置和受电装置的无触点电力传输系统,所述输电装置向所述受电装置输送电力,并且实施与通过负载调制而发送通信数据的所述受电装置之间的通信处理,所述受电装置具有对蓄电池的状态信息进行存储的非易失性存储器,并根据从所述输电装置接收到的电力和存储于所述非易失性存储器中的所述状态信息,而对所述蓄电池进行充电,并且通过所述负载调制而向所述输电装置发送通信数据,所述受电装置在温度异常被检测到的情况下,将温度异常检测信息作为所述状态信息而存储于所述非易失性存储器中,并且通过所述负载调制而将所述温度异常检测信息向所述输电装置发送,所述输电装置在从所述受电装置接收到包括所述温度异常检测信息在内的所述通信数据的情况下,通过间歇输电而向所述受电装置输送电力。

在本发明的其他方式中,在温度异常被检测到的情况下,受电装置将温度异常检测信息存储于非易失性存储器中并且向输电装置发送,输电装置在接收到温度异常检测信息的情况下实施间歇输电。如果采用这种方式,则能够通过使用温度异常检测信息,而在受电装置以及输电装置这两个装置中,实施相对于温度异常的适当的控制等。

附图说明

图1(A)、图1(B)为本实施方式的无触点电力传输系统的说明图。

图2为本实施方式的输电装置、受电装置、输电侧、受电侧的控制装置的结构示例。

图3为本实施方式的无触点电力传输系统的动作顺序的概要的说明图。

图4为对本实施方式的动作顺序进行说明的信号波形图。

图5为对本实施方式的动作顺序进行说明的信号波形图。

图6为对本实施方式的动作顺序进行说明的信号波形图。

图7为对本实施方式的动作顺序进行说明的信号波形图。

图8为非易失性存储器的结构示例。

图9为存储于非易失性存储器中的信息的示例。

图10为对本实施方式的动作顺序进行说明的图。

图11(A)、图11(B)为对与温度异常相关的控制的流程进行说明的流程图。

图12为对智能充电的流程进行说明的流程图。

图13为通过负载调制实现的通信方法的说明图。

图14为通信部的结构示例。

图15为受电侧的通信结构的说明图。

图16为由通信时的噪声引起的问题点的说明图。

图17为本实施方式的通信方法的说明图。

图18为本实施方式的通信方法的说明图。

图19(A)、图19(B)为通信数据的格式的示例。

图20为对通信处理的详细示例进行说明的流程图。

图21为受电部、充电部的详细的结构示例。

具体实施方式

以下,对本发明的优选的实施方式进行详细说明。并且,以下说明的本实施方式并非对权利要求书所记载的本发明的内容进行不当限定的方式,本实施方式所说明的全部结构也并不一定都是作为本发明的解决方法所必须的。

1.电子设备

图1(A)表示本实施方式的无触点电力传输系统的一个示例。充电器500(电子设备之一)具有输电装置10。电子设备510具有受电装置40。另外,电子设备510具有操作用的开关部514和蓄电池90。并且,虽然在图1(A)中,模式化地图示了蓄电池90,但是,该蓄电池90实际上被内置于电子设备510中。通过图1(A)的输电装置10和受电装置40而构成了本实施方式的无触点电力传输系统。

电力经由电源适配器502而被供给至充电器500,该电力通过无触点电力传输而从输电装置10向受电装置40输送。由此,能够对电子设备510的蓄电池90进行充电,从而使电子设备510内的装置工作。

并且,充电器500的电源可以为通过USB(USB电缆)实现的电源。另外,作为应用了本实施方式的电子设备510,能够设想各种各样的设备。例如能够设想助听器、手表、生物体信息测量装置(可穿戴设备)、便携信息终端(智能手机、移动电话等)、无绳电话、剃须刀、电动牙刷、腕式计算机、手持终端、电动汽车或者电动自行车等各种各样的电子设备。

如图1(B)模式化所示的那样,从输电装置10向受电装置40的电力传输通过如下的方式等实现,即,使设置于输电侧的初级线圈L1(输电线圈)和设置于受电侧的次级线圈L2(受电线圈)电磁耦合从而形成电力传输变压器的方式等。由此,能够实现非接触的电力传输。

2.输电装置、受电装置、输电侧、受电侧的控制装置

图2表示本实施方式的输电装置10、受电装置40、输电侧的控制装置20、受电侧的控制装置50的结构示例。图1(A)的充电器500等输电侧的电子设备至少包括图2的输电装置10。另外,受电侧的电子设备510至少能够包括受电装置40、蓄电池90和电力供给对象100。电力供给对象100例如为处理部(DSP等)等各种装置。而且,通过图2的结构,实现了通过使初级线圈L1和次级线圈L2电磁耦合从而从输电装置10向受电装置40传输电力并实施蓄电池90的充电等的无触点电力传输(非接触电力传输)系统。

输电装置10(输电模块、初级模块)包括初级线圈L1、输电部12、显示部16、控制装置20。并且,输电装置10并不限定于图2的结构,能够实施省略其结构要素的一部分(例如显示部等),或追加其他结构要素,或对连接关系进行变更等的各种改变。

输电部12在电力传输时生成预定频率的交流电压,并向初级线圈L1进行供给。该输电部12包括对初级线圈L1的一端进行驱动的第一输电驱动器DR1、对初级线圈L1的另一端进行驱动的第二输电驱动器DR2、电源电压控制部14。另外,输电部12能够包括与初级线圈L1一起构成谐振电路的至少一个电容器(蓄电器)。

输电部12的输电驱动器DR1、DR2各自通过例如功率MOS(Metal-oxide semiconductor,金属氧化物半导体)晶体管构成的倒相电路(缓冲电路)等 而实现。这些输电驱动器DR1、DR2通过控制装置20的驱动器控制电路22而被控制(驱动)。

输电部12的电源电压控制部14对输电驱动器DR1、DR2的电源电压VDRV进行控制。例如,控制部24根据从受电侧接收到的通信数据,而对电源电压控制部14进行控制。由此,供给至输电驱动器DR1、DR2的电源电压VDRV被控制,从而实现了例如输电电力的可变控制等。该电源电压控制部14能够通过例如DCDC转换器等而实现。例如电源电压控制部14实施对来自电源的电源电压(例如5V)的升压动作,而生成输电驱动器用的电源电压VDRV(例如6V~15V),并向输电驱动器DR1、DR2进行供给。具体而言,在提高从输电装置10向受电装置40的输电电力的情况下,电源电压控制部14提高向输电驱动器DR1、DR2供给的电源电压VDRV,而在降低输电电力的情况下,降低电源电压VDRV。

初级线圈L1(输电侧线圈)通过与次级线圈L2(受电侧线圈)电磁耦合,从而形成电力传输用变压器。例如,在需要电力传输时,如图1(A)、图1(B)所示,将电子设备510放置在充电器500的上方,从而形成初级线圈L1的磁通穿过次级线圈L2的状态。另一方面,在不需要电力传输时,使充电器500和电子设备510物理性地分离,从而形成初级线圈L1的磁通不穿过次级线圈L2的状态。

显示部16利用颜色或图像等来显示无触点电力传输系统的各种状态(电力传输中、ID认证等),例如能够通过LED(Light Emitting Diode,发光二极管)或LCD(Liquid Crystal Display,液晶显示屏)等来实现。

控制装置20实施输电侧的各种控制,并能够通过集成电路装置(IC)等而实现。该控制装置20包括驱动器控制电路22、控制部24、通信部30。另外,控制装置20能够包括时钟生成电路37、振荡电路38。并且,控制装置20并不限定于图2的结构,能够实施省略其结构要素的一部分(例如时钟生成电路、振荡电路等),或者追加其他的结构要素,或者对连接关系进行变更等的各种各样的改变。例如,也能够实施将输电部12等内置于控制装置20中的改变。

驱动器控制电路22对将电力向受电装置40输送的输电部12的输电驱动器DR1、DR2进行控制。例如驱动器控制电路22向构成输电驱动器DR1、DR2 的晶体管的栅极输出控制信号(驱动信号),从而通过输电驱动器DR1、DR2来驱动初级线圈L1。

控制部24实施输电侧的控制装置20的各种控制处理。例如,控制部24实施驱动器控制电路22的控制。具体而言,控制部24实施电力传输、通信处理等所需的各种顺序控制或判断处理。该控制部24能够通过例如门阵列等通过自动配置布线方法所生成的逻辑电路或者微型计算机等各种处理器而实现。

通信部30实施与受电装置40之间的通信数据的通信处理。例如,通信部30实施与通过负载调制而发送通信数据的受电装置40(控制装置50)之间的通信处理。具体而言,通信部30实施用于检测并接收来自受电装置40的通信数据的处理。

振荡电路38例如由水晶振荡电路等构成,并生成初级侧的时钟信号。时钟生成电路37生成对驱动频率进行规定的驱动时钟信号等。而且,驱动器控制电路22根据该驱动时钟信号和来自控制部24的控制信号等,而生成所给定的频率(驱动频率)的控制信号,并向输电部12的输电驱动器DR1、DR2输出而实施控制。

受电装置40(受电模块、次级模块)包括次级线圈L2、控制装置50。并且,受电装置40并不限定于图2的结构,能够实施省略其结构要素的一部分,或追加其他的结构要素,或对连接关系进行变更等的各种改变。

控制装置50实施受电侧的各种控制,并能够通过集成电路装置(IC)等而实现。该控制装置50包括受电部52、控制部54、负载调制部56、充电部58、放电部60。另外,能够包括非易失性存储器62、检测部64。并且,控制装置50并不限定于图2的结构,能够实施省略其结构要素的一部分,或追加其他的结构要素,或对连接关系进行变更等的各种改变。例如,能够实施将受电部52等设置于控制装置50的外部等的改变。

受电部52接收来自输电装置10的电力。具体而言,受电部52将次级线圈L2的交流的感应电压转换为直流的整流电压VCC并输出。该转换通过受电部52所具有的整流电路53而实施。整流电路53能够通过例如多个晶体管或二级管等而实现。

控制部54实施受电侧的控制装置50的各种控制处理。例如,控制部54实施负载调制部56、充电部58、放电部60的控制。另外,也能够实施受电 部52、非易失性存储器62或检测部64等的控制。该控制部54能够通过例如门阵列等通过自动配置布线方法所生成的时钟电路或者微型计算机等各种处理器而实现。

负载调制部56实施负载调制。例如,负载调制部56具有电流源IS,并利用该电流源IS而实施负载调制。具体而言,负载调制部56具有电流源IS(恒电流源)和开关元件SW。电流源IS和开关元件SW例如被串联设置于整流电压VCC的节点NVC和GND(广义而言,低电位侧电源电压)的节点之间。而且,例如,根据来自控制部54的控制信号而使开关元件SW导通或断开,通过使从节点NVC流向GND的电流源IS的电流(恒电流)导通或断开,从而实现负载调制。

并且,在节点NVC上连接有电容器CM的一端。该电容器CM例如作为控制装置50的外设部件而被设置。另外,开关元件SW能够通过MOS的晶体管等而实现。该开关元件SW也可以作为构成电流源IS的电路的晶体管而被设置。另外,负载调制部56并不限定于图2的结构,例如,能够实施作为电流源IS的代替而使用电阻等的各种各样的改变。

充电部58实施蓄电池90的充电(充电控制)。例如充电部58根据接收来自输电装置10的电力的受电部52所接收到的电力,而对蓄电池90进行充电。例如,充电部58被供给基于来自受电部52的整流电压VCC(广义而言,直流电压)而得到的电压,而对蓄电池90进行充电。该充电部58能够包括CC充电电路59。CC充电电路59为实施蓄电池90的CC(Constant-Current,恒流)充电的电路。

放电部60实施蓄电池90的放电动作。例如,放电部60(电力供给部)实施蓄电池90的放电动作,并将来自蓄电池90的电力向电力供给对象100供给。例如,放电部60被供给蓄电池90的蓄电池电压VBAT,并将输出电压VOUT向电力供给对象100供给。该放电部60能够包括电荷泵电路61。电荷泵电路61对蓄电池电压VBAT进行降压(例如降压1/3),并将输出电压VOUT(VBAT/3)向电力供给对象100供给。该放电部60(电荷泵电路)例如将蓄电池电压VBAT作为电源电压而进行工作。

蓄电池90例如为能够充电的二次电池,例如锂电池(锂离子二次电池、锂离子聚合物二次电池等)、镍电池(镍氢蓄电池、镍镉蓄电池等)等。电力供给对象100例如为处理部(DSP、个人电子计算机)等装置(集成电路装 置),并为被设置于内置有受电装置40的电子设备510(图1(A))中,成为蓄电池90的电力供给对象的装置。

非易失性存储器62为对各种信息进行存储的非易失性的存储器装置。该非易失性存储器62对例如后文叙述的蓄电池90的状态信息或受电装置40(控制装置50)的状态信息等各种信息进行存储。作为非易失性存储器62,例如能够使用EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)等。作为EEPROM,例如能够使用MONOS(Metal-Oxide-Nitride-Oxide-Silicon,金属氧化氮氧化硅)型的存储器。例如能够使用利用了MONOS型的存储器的闪存存储器。或者,作为EEPROM,也可以使用漂置栅极型等其他类型的存储器。

检测部64实施各种检测处理。例如,检测部64对整流电压VCC或蓄电池电压VBAT等进行监控,并实施各种检测处理。具体而言,检测部64具有A/D转换电路65,并通过A/D转换电路65而对整流电压VCC、基于蓄电池电压VBAT而得到的电压或来自未图示的温度检测部的温度检测电压等进行A/D转换,利用所得到的数字的A/D转换值而实施检测处理。作为检测部64实施的检测处理,能够设想过放电、过电压、过电流或者温度异常(高温、低温)的检测处理。例如,通过在充电时检测部64对过电压、温度异常进行检测,从而能够实现过电压保护、高温保护、低温保护。另外,通过在放电时检测部64对过放电、过电流进行检测,从而能够实现过放电保护、过电流保护。

3.无触点电力传输系统的动作顺序

接下来,对本实施方式的无触点电力传输系统的动作顺序的一个示例进行说明。图3为对动作顺序的概要进行说明的图。

在图3的A1中,具有受电装置40的电子设备510未被放置于具有输电装置10的充电器500的上方,而是成为取走状态。在该情况下,成为待机状态。在该待机状态中,输电侧成为等待状态,受电侧成为放电动作开启的状态。

具体而言,在待机状态中,输电装置10的输电部12实施用于着陆检测的间歇输电。即,输电部12不实施如通常输电那样的连续输电,而是实施每隔所给定的期间而间歇地输送电力的间歇输电,从而成为对电子设备510的着陆进行检测的状态。另外,在待机模式中,在受电装置40中,向电力供给对象100放电的放电动作成为开启,向电力供给对象100的电力供给成为使 能。即,受电装置40的放电部60实施将来自蓄电池90的电力向电力供给对象100放出的动作。由此,处理部等电力供给对象100被供给来自蓄电池90的电力,从而能够进行工作。

如图3的A2所示,当电子设备510被放置于充电器500上,而检测到着陆时,成为通信检查和充电状态。在该通信检查和充电状态下,输电侧实施通常输电,受电侧的充电动作成为开启,而放电动作成为关闭。另外,受电侧实施通过负载调制而实现的通信数据的发送。

具体而言,在通信检查和充电状态下,输电装置10的输电部12实施作为连续输电的通常输电。此时,实施电力根据电力传输的状态等而可变地变化的电力控制,同时,实施通常输电。另外,也实施基于蓄电池90的充电状态的控制。电力传输的状态为,例如由初级线圈L1、次级线圈L2的位置关系(线圈间距离等)等决定的状态,例如,能够根据作为受电部52的输出电压的整流电压VCC等信息来进行判断。蓄电池90的充电状态例如能够根据蓄电池电压VBAT等信息来进行判断。

另外,在通信检查和充电状态中,受电装置40的充电部58的充电动作成为开启,根据受电部52所接收到的电力而实施蓄电池90的充电。另外,放电部60的放电动作成为关闭,从而来自蓄电池90的电力不会向电力供给对象100供给。另外,在通信检查和充电状态中,通过负载调制部56的负载调制,从而使通信数据被发送至输电侧。例如,包括电力传输状态信息(VCC等)、充电状态信息(VBAT或各种状态标志等)、温度等信息在内的通信数据通过通常输电期间中的经常性的负载调制,而从受电侧被发送至输电侧。例如,由输电部12的电源电压控制部14实施的电力控制根据通信数据中所包含的电力传输状态信息等而被实施。

如图3的A3所示,当检测到蓄电池90的充满电时,成为充满电待机状态。在充满电待机状态下,输电侧成为等待状态,受电侧成为保持放电动作关闭的状态。

具体而言,输电部12例如实施用于取走检测的间歇输电。即,输电部12不实施如通常输电那样的连续输电,而是实施每隔所给定的期间而间歇性地输送电力的间歇输电,成为对电子设备510的取走进行检测的状态。另外,放电部60的放电动作保持关闭的状态,向电力供给对象100的电力供给也保持非使能的状态。

如图3的A4所示,当检测到电子设备510的取走时,如A5所示,电子设备510成为使用状态,受电侧的放电动作成为开启。

具体而言,放电部60的放电动作从关闭切换为开启,从而来自蓄电池90的电力经由放电部60而向电力供给对象100供给。由此,来自蓄电池90的电力被供给,从而处理部等电力供给对象100进行工作,由此成为用户能够正常使用电子设备510的状态。

如上所示,在本实施方式中,如图3的A2所示,当检测到电子设备510的着陆时,实施通常输电,在该通常输电期间,实施经常性的负载调制。另外,当检测到着陆时,放电部60的放电动作停止。而且,通过该经常性的负载调制,包括用于输电侧的电力控制的信息或表示受电侧的状态的信息在内的通信数据从受电侧被输送至输电侧。例如,通过对用于电力控制的信息(电力传输状态信息)进行通信,从而能够实现例如与初级线圈L1和次级线圈L2之间的位置关系等相对应的最佳的电力控制。另外,通过对表示受电侧的状态的信息进行通信,从而能够实现最佳且安全的充电环境。而且,在本实施方式中,在负载调制持续的期间内,通常输电也持续,并且放电部60的放电动作也保持关闭状态。

另外,在本实施方式中,如图3的A3所示,当检测到蓄电池90的充满电时,通常输电停止,而实施取走检测用的间歇输电。而且,如A4、A5所示,当检测到取走而成为取走期间时,放电部60的放电动作被实施。由此,来自蓄电池90的电力被供给至电力供给对象100,从而能够实现电子设备510的通常工作。并且,着陆检测或取走检测根据受电部52的输出电压(例如整流电压VCC)而被实施。

如此,在本实施方式中,在电子设备510的蓄电池90的充电期间(通常输电期间)内,由于向电力供给对象100的放电动作成为关闭,因此,能够抑制在充电期间内电力被电力供给对象100无谓地消耗的情况。

而且,当检测到电子设备510的取走时,从通常输电切换为间歇输电,并且向电力供给对象100的放电动作成为开启。通过像这样使放电动作成为开启,从而来自蓄电池90的电力被供给至电力供给对象100,由此能够实现处理部(DSP)等电力供给对象100的通常工作。通过这种方式,例如,在电子设备510被放置在充电器500之上的充电期间内不工作的这种类型的电子设备510(例如,助听器等用户所佩戴的电子设备)中,能够实现理想的无 触点电力传输的动作顺序。即,在这种类型的电子设备510中,在充电期间(通常输电期间)内,通过使来自蓄电池90的电力的放电动作成为关闭,从而能够实现省电化。而且,当检测到取走时,通过放电动作自动地成为开启,来自蓄电池90的电力向作为电子设备510的电力供给对象100的各种装置被供给,从而该装置能够进行工作,由此能够自动地转移至电子设备510的通常的工作模式。

图4、图5、图6为用于对本实施方式的无触点电力传输系统的动作顺序进行说明的信号波形图。

图4的B1为图3的A1的待机状态,实施着陆检测用的间歇输电。即,每隔期间TL1的间隔而实施期间TL2的间隔的输电。TL1的间隔例如为3秒,TL2的间隔例如为50毫秒。而且,在图4的B2、B3中,作为受电部52的输出电压的整流电压VCC在6.0V以下,因此,不会实施由负载调制实现的通信。

另一方面,由于在B4处,整流电压VCC超过了作为着陆检测的阈值电压的6.0V,因此,如B5所示,负载调制部56开始进行负载调制。即,虽然在B2、B3处,L1、L2的线圈未充分地成为电磁耦合状态,但是,在B4处,L1、L2的线圈成为如图1(B)所示的适当的电磁耦合状态。因此,整流电压VCC上升,并超过6.0V,从而开始进行负载调制。而且,当该负载调制(空的通信数据)被输电侧检测到时,如B6所示,开始由输电部12实施的通常输电。B6的通常输电为与B1的间歇输电不同的连续输电,通过由该通常输电传输的电力,而开始进行充电部58对蓄电池90的充电。此时,放电部60的放电动作成为关闭。另外,通过B5所示的负载调制,包括整流电压、蓄电池电压或状态标志等各种信息在内的通信数据从受电侧被发送至输电侧,从而执行输电控制。并且,由于B7所示的着陆检测用的间歇输电而使整流电压VCC上升,从而开始B5的负载调制。

在图5的C1处,在实施蓄电池90的充电的通常输电期间内,取走了电子设备510。如C2、C3如所示,该C1的取走为蓄电池90的充满电前的取走。即,为充满电标志成为非激活电平即低电平的状态下的取走。

当以此种方式实施了电子设备510的取走时,输电侧的电力不会被传输至受电侧,从而作为受电部52的输出电压的整流电压VCC降低。而且,如C4所示,例如,当成为VCC<3.1V时,如C5所示,由负载调制部56实施的 负载调制将停止。当负载调制停止时,如C6所示,由输电部12实施的通常输电将停止。

另外,当整流电压VCC(输出电压)降低,例如,低于作为判断电压的例如3.1V时,开始进行未图示的受电侧的起动电容器的放电。该起动电容器为,受电侧的放电动作的起动用(起动期间的计测用)的电容器,例如,作为受电侧的控制装置50的外设部件而被设置。而且,当在整流电压VCC低于判断电压(3.1V)之后经过了起动期间TST时,如C8所示,放电部60的放电动作将从关闭切换为开启,从而来自蓄电池90的电力被供给至电力供给对象100。具体而言,当起动电容器的电压(充电电压)低于用于使放电动作开启的阈值电压时,判断为经过了起动期间TST,从而放电部60的放电动作成为开启,由此来自蓄电池90的电力向电力供给对象100放出。由此,如图3的A5所示,电子设备510成为能够使用的状态。另外,输电部12在停止了通常输电之后,如C9所示,实施着陆检测用的间歇输电。

在图6的D1处,充满电标志成为激活电平即高电平,从而检测到蓄电池90的充满电。当像这样检测到充满电时,如图3的A3所示,转移至充满电待机状态,从而如D2所示,实施充满电后的取走检测用的间歇输电。即,每隔期间TR1的间隔,实施期间TR2的间隔的输电。TR1的间隔例如为1.5秒,TR2的间隔例如为50毫秒。取走检测用的间歇输电的期间TR1的间隔与着陆检测用的间歇输电的期间TL1的间隔相比变短。

通过该取走检测用的间歇输电,从而如图6的D3、D4所示,受电部52的整流电压成为VCC>6.0,由此如D5、D6所示,实施负载调制。输电侧通过对该负载调制(空的通信数据等)进行检测,从而能够检测到电子设备510尚未取走的情况。

而且,与通过前述的起动电容器而被设定的D7所示的起动期间TST的间隔(例如3秒)相比,取走检测用的间歇输电的期间TR1的间隔(例如1.5秒)较短。因此,在未取走电子设备510的状态下,起动电容器的电压(充电电压)未低于用于使放电动作开启的阈值电压VT,从而如D8所示,从放电动作的关闭向开启的切换未被实施。

另一方面,在D9处,取走了电子设备510。而且,在D4所示的取走检测用的间歇输电的期间TR2结束后,如D10所示,由于受电部52的整流电压VCC低于判断电压即3.1V,因此,D7所示的起动期间TST的计测开始。而且, 在D11处,起动电容器的电压低于用于使放电动作开启的阈值电压VT,从而检测出起动期间TST的经过。由此,放电部60的放电动作从关闭切换为开启,从而来自蓄电池90的电力被供给至电力供给对象100。另外,如D12所示,电子设备510的着陆检测用的间歇输电被实施。

图7为,对用于由温度异常(温度错误)引起的从头至尾的等待状态下的动作顺序进行说明的信号波形图。

在图7的E1处,例如,检测出蓄电池温度达到50度的温度异常(高温异常),从而温度错误标志成为激活电平即高电平。在该情况下,在本实施方式中,如E2所示,设定了从头至尾的等待期间TOW。在该等待期间TOW内,停止通常输电,而实施例如取走检测用的间歇输电。也就是说,实施与在图6中所说明的充满电待机状态同样的间歇输电。例如包括温度错误标志在内的通信数据通过负载调制而从受电侧被发送至输电侧,由此,输电部12的通常输电停止,而开始间歇输电。

等待期间TOW的间隔例如为5分钟,在等待期间TOW内,未实施作为连续输电的通常输电,从而未实施蓄电池90的充电。因此,蓄电池90散热,从而如图7的E3所示,蓄电池温度降低。而且,当经过了等待期间TOW时,如E4所示,再次开始通常输电,从而再次开始蓄电池90的充电。此时,在本实施方式中,如E5所示,未实施表示充电次数的循环次数的更新处理。即,由于由温度异常引起的蓄电池充电的反复并不应该包含在充电次数内,因此,不实施使循环次数(循环时间)加1的更新处理。

在图7的E6处,蓄电池温度再次达到50度,从而温度错误标志成为高电平。由此,E7所示的等待期间TOW被设定,从而通常输电停止,而实施间歇输电。

而且,在图7的E8处,取走了电子设备510,当在图6中所说明的起动电容器的电压低于阈值电压VT时,如E9所示,放电部60的放电动作将从关闭切换至开启。而且,如E10所示,实施由输电部12进行的着陆检测用的间歇输电。

如上所述,在本实施方式中,如图4的B5所示,以受电装置40开始负载调制为条件,如B6所示,开始由输电部12实施的通常输电。而且,在B5的负载调制持续的期间内,B6所示的通常输电也持续。具体而言,如图5的C5所示,在未检测到负载调制的情况下,如C6所示,停止由输电部12实施 的通常输电。而且,如C9所示,实施由输电部12进行的着陆检测用的间歇输电。

如此,在本实施方式中,采用了如下的动作顺序,即,以负载调制的开始为条件而开始通常输电,在负载调制持续的期间内,通常输电也持续,当未检测到负载调制时,停止通常输电。如果采用这种方式,则能够不需要复杂的认证处理等,从而以简单且简化的动作顺序便能够实现无触点电力传输和由负载调制实现的通信。另外,在通常输电期间内,通过进行由经常性的负载调制实现的通信,从而也能够实现与电力传输的状态等相对应的效率的无触点电力传输。

另外,在本实施方式中,如图6的D1所示,在根据来自受电侧的通信数据而检测出受电装置40的蓄电池90的充满电的情况下,如D2所示,停止由输电部12实施的通常输电,而实施取走检测用的间歇输电。而且,如D9所示,当取走了电子设备510而检测到该取走时,如D12所示,实施由输电部12进行的着陆检测用的间歇输电。

如果采用这种方式,则在检测到充满电时,将停止作为连续输电的通常输电,而转移至间歇地传输电力的间歇输电。由此,在取走期间等内,能够抑制电力被无谓地消耗的情况,从而实现省电化等。

另外,在本实施方式中,在根据通信数据而检测到受电侧的异常的情况下,由输电部12实施的通常输电也停止,并实施取走检测用的间歇输电。该受电侧的异常是指,例如蓄电池90的电压低于1.0V的蓄电池故障等蓄电池充电错误、充电时间超过了预定期间(例如6~8小时)的计时结束的错误等。通过采用这种方式,在检测到受电侧的异常的情况下,由于作为连续输电的通常输电自动停止,并转移至间歇输电,因此,能够确保安全性和可靠性等。

另外,在作为受电侧的异常而产生了温度异常的情况下,也停止由输电部12实施的通常输电,并实施取走检测用的间歇输电。但是,在温度异常的情况下,执行如图7所示的特别的动作顺序。具体而言,在如图7的E1所示那样根据通信数据(温度错误标志)而检测到受电装置40的蓄电池90的温度异常(高温错误)的情况下,停止通常输电,并且如E2所示,在等待期间TOW的期间内,实施由输电部12进行的间歇输电。而且,在经过了等待期间TOW之后,如E4所示,再次开始由输电部12实施的通常输电。

如果采用这种方式,则在温度异常的情况下,设定等待期间TOW,并且在该等待期间TOW内,不实施作为连续输电的通常输电,从而也不实施蓄电池90的充电。由此,利用等待期间TOW,能够实现蓄电池90的散热等。另外,在经过了等待期间TOW之后,再次开始由通常输电实现的蓄电池90的充电。因此,能够实现例如高温的环境等下的适当的蓄电池90的充电控制等。

另外,在本实施方式中,如利用图5、图6所说明的那样,受电装置40在作为受电部52的输出电压的整流电压VCC降低,并经过了放电动作的起动期间TST之后,将来自蓄电池90的电力向电力供给对象100放出。具体而言,在从整流电压VCC低于判断电压(3.1V)起经过了起动期间TST之后,开始放电动作。即,如图5的C8或图6的D11所示,放电部60的放电动作成为开启,从而来自蓄电池90的电力被供给至电力供给对象100。而且,在本实施方式中,如图6的D2和D7所示,以短于起动期间TST(例如3秒)的期间TR1(例如1.5秒)的间隔,实施取走检测用的间歇输电。

如果采用这种方式,则由于在取走检测用的期间TR1的长度中,起动期间TST未经过,因此,在取走检测用的间歇输电的期间内,放电部60的放电动作不会变为开启。而且,如图6的D9所示,当取走了电子设备510时,如取走检测用的间歇输电的期间那样,整流电压VCC不会定期地上升,通过如D7所示的起动期间TST经过,从而如D11所示,放电部60的放电动作成为开启。因此,能够对电子设备510的取走进行检测,而自动地使放电部60的放电动作开启,从而将来自蓄电池90的电力供给至电力供给对象100。

4.存储于非易失性存储器内的状态信息和基于状态信息的控制

接下来,对受电装置40的控制装置50所包含的非易失性存储器62的详细情况和根据该信息而实施的输电装置10、受电装置40的控制进行说明。

4.1非易失性存储器

本实施方式中的非易失性存储器62通过基于受电部52的输出电压VCC而得到的电源电压进行工作。具体而言,根据利用图21而在后文叙述的调节器57的输出电压即VD5进行工作。调节器57为对受电部52的输出电压VCC进行调节并输出VD5的调节器。而且,具体而言,非易失性存储器62在内部对VD5进行升压,并根据升压后的电压进行工作。

图8为非易失性存储器62的结构示例。如图8所示,非易失性存储器62包括校验定序器69、控制电路66、存储单元阵列67、电荷泵电路(升压电路)68。但是,非易失性存储器62并不限定于图8的结构,能够实施各种各样的改变。

校验定序器69实施写入、读取、数据确认(校验)。以下,对各动作中的控制的一个示例进行说明,但是,具体的方法能够实施各种各样的改变。在写入时,校验定序器69从控制部54取得16位的写入数据,并根据所取得的写入数据而生成16位的ECC(Error Correcting Code,纠错码),且将使写入数据与ECC合在一起的32位的数据写入存储单元阵列67(狭义而言,包含于存储单元阵列67内的所给定的存储单元)中。

在读取时,从存储单元阵列67读取包含ECC在内的32位的数据,并根据ECC来实施数据是否损坏的判断,且将除了ECC之外的16位的数据向控制部54输出。另外,在数据损坏时,只需根据ECC实施错误订正处理,并将错误订正处理后的16位的数据向控制部54输出即可。但是,此处的错误订正例如被限定于1位的错误。

另外,在校验定序器69中,在数据写入后,对存储单元阵列67所包含的存储单元的信号电平是否适当进行确认。

具体的写入、读取动作通过控制电路66、存储单元阵列67、电荷泵电路68来实施。电荷泵电路68被供给基于受电部52的输出电压VCC而得到的电压(如上所述,例如为VD5),通过对该电压进行升压,从而输出消除、写入用的较高的电压VPP。而且,控制电路66通过根据来自校验定序器69的信号而向被设置于存储单元阵列67中的字线、源线、位线供给VPP等适当的电压,从而实施读取、写入、消除。并且,非易失性存储器62只需如上所述那样使用例如MONOS型等的结构即可,由于各存储单元的结构等已被广泛熟知,因此,省略进一步的详细的说明。

本实施方式所涉及的控制部54可以包含充电系统的控制部和放电系统的控制部。充电系统的控制部以基于受电部52的输出电压VCC而得到的电压进行工作,并实施充电系统的各部控制。具体而言,充电系统的控制部根据利用图19而在后文叙述的VD5进行工作,并实施负载调制部56、充电部58或非易失性存储器62等的控制。另外,放电系统的控制部以基于蓄电池电压 VBAT而得到的电压进行工作,并实施放电系统的各部控制。具体而言,放电系统的控制部根据蓄电池电压VBAT进行工作,并实施放电部60等的控制。

以取走为契机开始放电的控制通过放电系统的控制部来实施。具体而言,控制装置50也可以包含输出如下信号的电路,即,在VCC在3.1V以上的情况下成为低电平,在VCC低于3.1V的情况下成为高电平的信号。如果设为在低电平的情况下复位,在高电平的情况下解除复位,则该信号能够作为充电系统的控制部的通电复位信号来利用,上述电路能够被认为是通电复位电路。另外,也可以将该信号向放电系统的控制部输出,在放电系统的控制部中,根据该信号来实施起动电容器的充电以及放电的控制。作为一个示例,放电系统的控制部也可以具有如下的电路,即,在输入信号为高电平的情况下,向起动电容器供给基于VBAT而得到的电压从而实施充电,在低电平的情况下,使起动电容器(例如经由所给定的电阻)与地连接从而实施放电的电路。另外,放电系统的控制部对于放电部60(电荷泵电路61)的导通断开,也可以通过上述信号进行控制。

图9中图示了存储于非易失性存储器62中的信息的示例。如图9所示,非易失性存储器62对充电电流信息、温度补正信息、充电次数信息、蓄电池电压、温度异常检测信息进行存储。本实施方式中的蓄电池90的状态信息是指,包含充电次数信息、蓄电池电压、温度异常检测信息中的至少一种信息的信息。

充电电流信息例如为应用于CC充电的恒电流的电流值。进一步具体而言,可以为在充电时的蓄电池电压在某种程度上较高(例如2.5V以上)的情况下实施的通常充电中的电流值和在充电时的蓄电池电压在某种程度较低(例如小于2.5V)的情况下实施的预充电中的电流值。此处的预充电表示从过放电状态恢复时实施的充电。

另外,温度补正信息为,被用于根据来自温度检测部的温度检测电压等而由检测部64检测出的温度信息的补正的信息。本实施方式中的温度信息由于为使用于蓄电池控制的信息,因此,优选设为表示蓄电池90自身的温度的信息。但是,由于实际上设置有温度检测部的位置与蓄电池位置之间多少存在偏差,因此,温度检测部所检测的是例如设置有温度检测部的基板的温度,从而与蓄电池90的温度之间产生温度差。温度补正信息是指,例如用于对该温度差进行补正的信息。

并且,充电电流信息或温度补正信息根据如下情况而使适当的值发生变化,即,受电装置40如何被安装,例如,作为蓄电池90使用了哪一种电池,蓄电池90和温度检测部如何被配置等情况。因此,假定这些信息在安装受电装置40时被编程(写入非易失性存储器62)的情况。并且,此处的充电电流信息或后文叙述的充电电压信息(CV)为,被使用于蓄电池90的充电控制中的信息。也就是说,非易失性存储器62可以对蓄电池90的充电控制信息进行存储。

充电次数信息为表示实施了蓄电池90的充电的次数的信息。充电次数信息(以下,也记载为循环次数)如利用图20的S3、S5而在后文叙述的那样,原则上是在开始了充电的定时被增加。已知二次电池由于反复充电而导致性能逐渐劣化(例如,充满电时的蓄电池容量减少),因此,通过对充电次数信息进行存储,从而能够监控其劣化的程度。

蓄电池电压为,表示所给定的定时的蓄电池电压的信息。例如,对通过检测部64而检测到蓄电池的温度异常(温度高于正常范围的上限或者低于正常范围的下限)时的蓄电池电压进行存储。并且,虽然如上所述那样,温度检测部所检测的温度不为蓄电池90的温度本身,但通过实施补正处理,从而求出相当于蓄电池90的温度的温度。因此,虽然在本说明书中,有时会使用“蓄电池90的温度”或者“蓄电池90的温度异常”这样的词语,但这也可以表示基于设置于与蓄电池90不同的位置上的温度检测部的检测结果而得到的温度,或者基于该温度而得到的异常检测结果。

温度异常检测信息为表示温度异常是否被检测出的信息。温度异常检测信息也可以为例如1位的标志信息,并与图7中的温度错误标志对应。通过该内容可知,图9的各信息无需分别为相同的位数。例如,作为充电电流信息,既可以对使8位的通常充电中的恒电流值与8位的预充电中的恒电流值合在一起的16位的信息进行存储,也可以对该16位的信息附加16位的ECC。另外,也可以用12位来表现充电次数信息或蓄电池电压等,并对该12位的数据附加4位的数据(既可以为任意的标志信息,也可以为固定为0或1的数据),以作为16位的数据来处理。

并且,如上所述,非易失性存储器62以基于受电部52的输出电压VCC而得到的电源电压进行工作。因此,非易失性存储器62在如图3的A2那样具有受电装置40的电子设备510被放置于具有输电装置10的充电器500之 上的状态下进行工作,而在如A1或A5那样受电装置40被取走的状态下不进行工作。在本实施方式中,由于假定了无触点电力传输系统,因此受电装置40的取走容易被实施。例如,由于无需进行向支架等的安装,因此,存在用户轻松地取走的情况,也存在由于输电装置10或受电装置40(或者放置它们的桌子等)与某物体发生碰撞,从而非本意地被取走的情况。

因此,在本实施方式的非易失性存储器62中,与其他的一般的系统相比,容易产生在非易失性存储器62的写入过程中,工作用的电源供给停止的情况。在该情况下,由于成为写入错误,因此,写入中途的信息变得无法信赖。

因此,在本实施方式中,在实施向非易失性存储器62的写入时,可以设置时间差并向不同的地址写入数据。具体而言,控制部54在将状态信息向非易失性存储器62中进行存储时,在将状态信息写入到第一地址中之后,在经过了所给定的时间之后,将状态信息写入与第一地址不同的第二地址中。

如果采用这种方式,则在实施所给定的状态信息的写入时,在写入的定时以及写入目标的地址均发生变更的基础上能够实现多重化,因此,能够提高将状态信息适当地写入非易失性存储器62中的可能性。例如,考虑到如下情况,即,在实施了向一方的地址的写入时,即使受电装置40被取走而成为写入错误,也由于向另一方的地址的写入是在不同的定时所实施的,因此能够正常地执行。当然,两方的写入均成为错误的可能性并非为0,但是,与未采用这样的方法的情况相比,提高了能够正常写入的可能性。

例如,在作为包括充电次数信息在内的数据,而写入由12位的充电次数信息、4位的附加的信息(例如,NULL数据或上述的温度错误标志等)、16位的ECC构成的32位的数据的情况下,作为包括充电次数信息在内的数据的写入区域,确保了64位。而且,只需将表示该64位中的32位的地址(例如起始地址)设为上述第一地址,将表示接下来的32位的地址设为上述第二地址即可。

另外,非易失性存储器62也可以对除上述以外的信息进行存储,被存储于非易失性存储器62内的信息能够实施各种各样的改变。另外,设置时间差并将数据写入不同的地址中的处理并不限定于在状态信息的写入时所实施的处理,也可以在将其他信息(充电控制信息等)写入非易失性存储器62时实施。

4.2温度异常时的控制

在蓄电池90的温度过高时或过低时,存在蓄电池90自身损坏,或无法获得所期望的输出的情况。因此,在检测出温度异常的情况下,需要实施使温度返回正常范围(至少不促进异常状态或使异常状态持续)的控制。例如,在蓄电池90成为高温的情况下,在现有方法中,受电装置40停止充电,输电装置10也停止电力传输。如果停止充电,则可期待蓄电池90成为高温的情况被抑制,并且随着时间的经过而使温度的返回正常范围的情况。

但是,由于在现有方法中在高温时停止充电,因此,有可能导致充电不充分。因此,在本实施方式中,如利用图7而在上文所述的那样,在检测出温度异常的情况(E1)下,在所给定的等待期间TOW内使输电侧进行间歇动作(E2),而后,返回通常输电而实施蓄电池90的充电(E4)。如果采用这种方式,则由于能够在温度异常的检测时也继续充电,因此,能够抑制成为充电不充分的情况。

但是,在实施这样的控制的情况下,也如图7的E5所示那样,循环次数的计数会成为问题。在图7的等待期间TOW内,由于输电装置10以适当的间隔TR1进行间歇动作,因此,起动电容器电压不会低于VT,从而受电装置40的放电部60的动作不会开始。也就是说,即使检测出温度异常而临时停止蓄电池90的充电,也由于该期间(等待期间)较短而不会实施放电部60的放电,因此,对蓄电池90的性能劣化的影响较小。

也就是说,鉴于充电次数信息(循环次数)为蓄电池90的状态信息,狭义而言为表示蓄电池90的劣化状态的信息,因此,即使由于隔着等待期间TOW而使蓄电池90的充电被分为多次,也不会将各次充电理解为分别独立的充电,而是理解为一连串的(一次的)充电,这才是恰当的。

但是,如利用图20而在后文叙述的那样,原则上,循环次数在充电开始时被增加。若根据该原则,则在图7的E5所示的从等待期间恢复的定时,循环次数也会被增加。因此,在本实施方式中,如上所述,将温度异常检测信息存储于非易失性存储器62中。通过利用该温度异常检测信息,从而能够实施循环次数的恰当的计数。

并且,在检测出温度异常的情况下,负载调制部56通过负载调制而将温度异常检测信息向输电装置10发送。由此,由于在受电侧产生温度异常的情况也被传递至输电侧,因此,输电装置10能够实施适当的输电控制(间歇动作)。

在控制部54中,只需在非易失性存储器62中存储有温度异常检测信息的情况下,不更新非易失性存储器62的充电次数信息,而在非易失性存储器62中未存储有温度异常检测信息的情况下,对非易失性存储器62的充电次数信息进行更新即可。如果采用这种方式,则能够适当地辨别由温度异常检测引起的从等待期间的恢复,即相当于图7的E5的充电开始和除此以外的充电开始。在存储有温度异常检测信息(温度错误标志=H)的情况下,此时的充电开始为从温度异常的恢复,从而不被包含于循环次数的计数中。另一方面,在未存储有温度异常检测信息(温度错误标志=L)的情况下,由于能够判断为此时的充电开始为通常的充电,例如为受电装置40在被用户使用之后被放置于输电装置10上的状态,因此,只需按照原则来增加循环次数即可。

但是,即使通过以上的控制,也有可能无法适当地实施循环次数的更新。具体而言,是在等待期间内取走了受电装置40的情况。图10中图示了具体示例。

图10的横轴方向表示时间,图10为表示输电装置10与受电装置40的动作顺序的一个示例的图。首先,在未检测到温度异常时,如G1所示,输电装置10实施通常输电,在受电装置40中,实施蓄电池90的充电。与此相对,如G2所示,在检测到温度异常的情况下,在受电装置40中,温度异常检测信息被写入非易失性存储器62(温度错误标志=H),从而如G3所示,停止充电,并进入等待期间。另一方面,温度异常检测信息也被发送至输电装置10,输电装置10如G4所示那样开始温度异常用的间歇输电。温度异常用的间歇输电也可以与如上所述的取走检测时的间歇输电相同。

在此,设为在等待期间结束之前(例如经过5分钟之前),如G5所示,受电装置40被取走。在该情况下,在受电装置40中,与图5等相同,在从受电部52的输出电压VCC低于判断阈值(3.1V)起经过了起动期间(TST)之后,开始进行放电部60的放电动作。另外,如G6所示,在输电装置10中,开始进行用于着陆检测的间歇输电。

在如下的情况下,循环次数的更新、不更新会成为问题,即,如G5所示,在等待期间结束前实施取走,而后,如G7所示那样实施了着陆检测的情况。在该情况下,如G8所示,在受电装置40的非易失性存储器62中,保持了在G2处所写入的温度异常检测信息(维持了温度错误标志=H的状态)。因此,如果实施如上所述的控制,则在G8的判断中,循环次数不会被增加。

如果在等待期间内被取走之后,直至具有受电装置40的电子设备510再次被放置于具有输电装置10的充电器500之上为止的期间内(图10的G5与G8之间的期间)的蓄电池90的消耗较少,则该期间内的蓄电池90的劣化也并不太大。也就是说,与将上述的等待期间TOW的前后的蓄电池充电理解为一连串的充电相同,该情况下的充电(G9处的充电)也能够理解为与取走前的充电(G1处的充电)连续的充电。因此,即使通过G8中的判断而不更新循环次数也没有问题。

但是,在等待期间内被取走之后,充分使用了蓄电池90、即与通常的动作相同地实施了放电的情况下,应该考虑由该放电导致的蓄电池90的劣化,如果此后开始充电,则需要将该充电与取走前的充电分开考虑。也就是说,由于在G8的判断中需要增加循环次数,因此,虽说在非易失性存储器62中写入有温度异常检测信息,但不更新循环次数是不恰当的。

因此,在本实施方式中,将如上所述那样检测到温度异常时的蓄电池电压存储于非易失性存储器62中。而且,对充电开始时的蓄电池电压VBAT与存储于非易失性存储器62中的蓄电池电压进行比较处理,从而对取走后在多大程度上消耗了蓄电池90进行判断。具体而言,即使在非易失性存储器62中存储有温度异常检测信息的情况下,在蓄电池电压VBAT比存储于非易失性存储器62中的蓄电池电压低预定电压时,控制部54也会对非易失性存储器62的充电次数信息进行更新。此处的预定电压能够进行各种设定,例如为0.15V的值。

如果采用这种方式,则即使在等待期间内实施了取走的情况下,也能够恰当地对循环次数进行计数。存储于非易失性存储器62中的蓄电池电压为温度异常检测时的蓄电池电压,也可以认为与取走时的蓄电池电压同等。即,充电开始时的蓄电池电压VBAT比存储于非易失性存储器62中的蓄电池电压低预定电压的情况相当于取走后在某种程度上实施了蓄电池90的放电的情况。也就是说,通过实施上述控制,从而能够实现与取走后的蓄电池90的使用状况向对应的循环次数的计数。

图11(A)、图11(B)为对以上的控制进行说明的流程图。图11(A)为经常实施的温度异常的检测工作,在控制部54中,以所给定的间隔对温度是否异常进行判断,在图11(A)的示例中,为对是否超过50℃进行判断(S11)。在S11中为否的情况下,由于温度异常未被检测出,因此,不进行特别的处 理而返回S11。另一方面,在S11中为是的情况下,由于温度异常被检测出,因此,在非易失性存储器62中写入温度异常检测信息(设为温度错误标志=H),并且,写入此时的蓄电池电压(S12)。

另外,图11(B)为对充电开始时的循环次数的计数控制进行说明的流程图。在后文叙述的图20中,由于将说明简化,因此,虽然在S5中必须要增加循环次数,但是,实际上只需将图20的S5的步骤置换为图11(B)即可。

在循环次数的控制中,首先对是否需要增加循环次数进行判断。首先,在非易失性存储器62中未存储有温度异常检测信息的情况下,由于只需按照原则进行处理即可,因此,能够判断为需要实施增加。另外,即使存储有温度异常检测信息,如果蓄电池电压出现降低,则也需要实施增加。也就是说,只需对是否满足上述的条件(未存储有温度异常检测信息)或者(VBAT0<VBATT-0.15)进行判断即可(S21)。在此,VBAT0为充电开始时的蓄电池电压,VBATT为在图11(A)的S12中被写入的温度异常检测时的蓄电池电压。

在S21中为是的情况下,增加循环次数(S22)。另一方面,在S21中为否的情况下,不更新循环次数。另外,无论在哪一种情况下,均对温度错误标志进行复位,而为下次以后的处理做准备(S23)。

并且,如上所述,检测部64根据来自温度检测部的信号来实施温度检测(温度异常检测)。本实施方式的温度检测部能够通过各种方式来实现。例如,可以如使用图21在后文中叙述的那样,利用控制装置50的外部的温度检测部(热敏电阻TH)。具体而言,检测部64可以向热敏电阻TH供给所给定的恒电流IREF,并通过由A/D转换电路65而对由该恒电流IREF产生的电压值进行A/D转换,从而实施温度检测。并且,IREF的值不需要为一个,例如,也可以在高温区域和低温区域中使IREF的值不同。

或者,控制装置50也可以包括BGR(Band Gap Reference,带隙基准源)电路,并根据该BGR电路的输出来实施温度检测。并且,关于利用了带隙的温度检测部,由于为众所周知的结构,因此省略详细的说明。

另外,虽然在图9中未图示,但在本实施方式的非易失性存储器62中,也可以存储对作为温度检测部是使用外部的热敏电阻TH还是使用BGR电路进行设定的设定信息。另外,也可以对热敏电阻TH用的补正信息和BGR电路用的补正信息这两个信息进行存储以作为上述温度补正信息。

4.3智能充电

另外,基于存储于非易失性存储器62中的信息的控制并未限定于上述的温度异常的示例。例如,在实施专利文献3所公开的智能充电时,也可以参照存储于非易失性存储器62中的信息。

如专利文献3的图1(现有技术)那样,在专利文献3以前,便已知充电电压、充满电时的蓄电池电压(充电电力)与循环次数之间的关系。由图1可知,如果升高充电电压,则充电电力变大,从而能够有效地运用蓄电池容量,但循环次数减少。并且,此处的循环次数为,表示相对于蓄电池本来的容量,可充电的容量减少至预定比例(例如90%)的充电次数的信息。

在专利文献3中,以图1的关系为前提,提出了效率地使用蓄电池(锂离子电池)的算法。具体的方法如图3所示,在充电开始时的蓄电池电压为3.22V~3.5V的情况下,保持上一次的充电时的充电电压。另一方面,在为3.5V以上的情况下,与上一次相比降低充电电压,在为3.22V以下的情况下,与上一次相比升高充电电压。

在充电时蓄电池电压成为3.22V以下的情况下,设想为经常使用对象设备的情况。也就是说,由于设想蓄电池90的消耗较厉害,因此,为了避免充电不充分,而升高充电电压,以加大相对于蓄电池容量的充电电力。

另一方面,在充电时蓄电池电压成为3.5V以上的情况下,设想为并不太使用对象设备的情况。也就是说,由于设想蓄电池90的消耗不厉害,因此,通过抑制充电电压,从而抑制蓄电池的劣化。

也就是说,如图1所示,相对于蓄电池容量的充电电力与蓄电池的劣化程度存在此消彼长的关系,因此在专利文献3的智能充电中,可以说是与实际的蓄电池的使用状况相对应而设定适当的充电电压的值的方法。

本实施方式的非易失性存储器62也可以对在图9中未图示的充电控制中的充电电压进行存储,控制部54也可以根据所存储的充电电压而实施充电控制。

在图12中图示了对具体的处理流程进行说明的流程图。当开始该处理时,首先,取得充电开始时的蓄电池电压VBAT0(S31)。然后,对VBAT0是否在3.22V以下进行判断(S32)。在S32中为是的情况下,由于认为对象蓄电池90使用得较多,因此,为了充分运用蓄电池容量(为了使充电的电力变大)而升高充电电压。具体而言,实施从非易失性存储器62读取上一次的充 电电压CV并将其升高所给定的电压(0.05V)的更新处理(S33)。并且,将更新后的电压值CV存储于非易失性存储器62中。所存储的更新后的CV将在下一次以后的充电开始时被利用。并且,在S33的处理中,为了不使充电电压变得过高,只需对更新后的充电电压设置上限即可,例如,将CV的最大值设定为4.20V。

另一方面,在S32中为否的情况下,对VBAT0是否在3.5V以上进行判断(S34)。在S34中为是的情况下,由于认为对象的蓄电池90不太被使用,因此降低充电电压。具体而言,实施从非易失性存储器62读取上一次的充电电压CV并降低所给定的电压(0.05V)的更新处理(S35)。在该情况下,也将更新后的电压值CV存储于非易失性存储器62中。然后,在S35的处理中,为了不使充电电压变得过低,只需对更新后的充电电压设置下限即可,例如,将CV的最小值设定为4.00V(或者4.05V)。

另外,在S34中也为否的情况下,蓄电池90的使用处于中间的状态,如果实施与上一次同样的充电,则判断为没有问题。因此,不实施CV的更新处理而结束处理。在图12的处理后,只需利用所设定的充电电压CV来实施蓄电池90的充电即可。并且,作为对蓄电池90的使用状况进行判断的阈值的3.22V、3.50V,或作为CV的极限值的4.20V、4.00V之类的值并不限定于此,能够实施各种各样的改变。

如上所示,本实施方式的方法能够应用于具有输电装置10和受电装置40的无触点电力传输系统的受电侧的控制装置50中,制装置50包括:根据从输电装置10接收电力的受电部52所接收到的电力而对蓄电池90进行充电的充电部58;实施充电控制的控制部54;和非易失性存储器62。而且,非易失性存储器62对蓄电池的状态信息进行存储,控制部54根据存储于非易失性存储器62中的状态信息而实施充电控制。

如果采用这种方式,例如,如上述的温度异常检测时的控制那样,能够实现与蓄电池90的状态相对应的适当的充电控制。

另外,本实施方式的方法能够应用于具有输电装置10和受电装置40的无触点电力传输系统的输电侧的控制装置20中,控制装置20包括:对向受电装置40输送电力的输电部12的输电驱动器(DR1、DR2)进行控制的驱动器控制电路22;对驱动器控制电路22进行控制的控制部24;实施与通过负载调制而发送通信数据的受电装置40之间的通信处理的通信部30。而且, 控制部24在从受电装置40接收到包括温度异常检测信息在内的通信数据的情况下,使输电部12实施间歇输电。具体而言,控制部24只需使驱动器控制电路22执行用于实施间歇输电的控制即可。

如果采用这种方式,则由于在接收侧检测到温度异常的情况被传递至发送侧,因此,能够适当地执行在温度异常检测时所需的输电控制(实施间歇输电的控制)。

另外,本实施方式的方法能够应用于包括控制装置50或者控制装置20的电子设备中。包括控制装置50的电子设备510可以如上所述那样考虑为助听器等各种方式。包括控制装置20的电子设备例如为上述的充电器500等。

另外,本实施方式的方法能够应用于包括上述的输电装置10和受电装置40在内的无触点电力传输系统中。输电装置10向受电装置40输送电力,并且实施与通过负载调制而发送通信数据的受电装置40之间的通信处理,受电装置40具有对蓄电池90的状态信息进行存储的非易失性存储器62,并根据从输电装置10接收到的电力和存储于非易失性存储器62中的状态信息,而对蓄电池90进行充电,并且通过负载调制而向输电装置10发送通信数据。另外,受电装置40在温度异常被检测到的情况下,将温度异常检测信息作为状态信息而存储于非易失性存储器62中,并且通过负载调制而将温度异常检测信息向输电装置10发送,输电装置10在从受电装置40接收到包括温度异常检测信息在内的通信数据的情况下,通过间歇输电而向受电装置40输送电力。

5.通信方法

图13为对通过负载调制而实现的通信方法进行说明的图。如图13所示,在输电侧(初级侧),输电部12的输电驱动器DR1、DR2对初级线圈L1进行驱动。具体而言,输电驱动器DR1、DR2根据从电源电压控制部14供给的电源电压VDRV而进行工作,并对初级线圈L1进行驱动。

另一方面,在受电侧(次级侧),受电部52的整流电路53对次级线圈L2的线圈端电压进行整流,从而整流电压VCC被输出至节点NVC。并且,通过初级线圈L1和电容器CA1而构成了输电侧的谐振电路,通过次级线圈L2和电容器CA2而构成了受电侧的谐振电路。

在受电侧,通过使负载调制部56的开关元件SW导通或断开,从而使电流源IS的电流ID2从节点NVC向GND侧间歇地流通,由此使受电侧的负载状态(受电侧的电位)发生变动。

在输电侧,由于因负载调制而引起的受电侧的负载状态的变动,从而向设置于电源线上的检测电阻RCS流通的电流ID1发生变动。例如,在输电侧的电源(例如图1(A)的电源适配器502等的电源装置)与电源电压控制部14之间,设置有用于对向电源流通的电流进行检测的检测电阻RCS。电源电压控制部14经由该检测电阻RCS而从电源被供给电源电压。而且。由于因负载调制而引起的受电侧的负载状态的变动,从而从电源向检测电阻RCS流通的电流ID1发生变动,通信部30对该电流变动进行检测。而且,通信部30根据检测结果而实施通过负载调制而被发送的通信数据的检测处理。

图14表示通信部30的具体的结构的一个示例。如图14所示,通信部30包括电流检测电路32、比较电路34、解调部36。另外,能够包括信号放大用的放大器AP、滤波器部35。并且,通信部30并不限定于图14的结构,能够实施省略其结构要素的一部分,或追加其他结构要素(例如带通滤波器部),或对连接关系进行变更等各种改变。

电流检测电路32对从电源(电源装置)向输电部12流通的电流ID1进行检测。具体而言,对从电源经由电源电压控制部14而向输电部12流通的电流ID1进行检测。该电流ID1也可以包括例如向驱动器控制电路22等流通的电流。

在图14中,电流检测电路32通过IV转换用放大器IVC而被构成。IV转换用放大器IVC的非反相输入端子(+)被连接于检测电阻RCS的一端,反相输入端子(-)被连接于检测电阻RCS的另一端。而且,IV转换用放大器IVC对通过微少的电流ID1在检测电阻RCS中流通而生成的微少的电压VC1-VC2进行放大,从而作为检测电压VDT而输出。该检测电压VDT通过放大器AP而被进一步放大,并作为检测电压VDTA而被输出至比较电路34。具体而言,放大器AP的非反相输入端子被输入检测电压VDT,反相输入端子被输入基准电压VRF,并输出以基准电压VRF为基准而被放大的检测电压VDTA的信号。

比较电路34实施由电流检测电路32产生的检测电压VDTA与判断用电压VCP=VRF+VOFF之间的比较判断。而且,输出比较判断结果CQ。例如,实施 检测电压VDTA是大于判断用电压VCP还是低于判断用电压VCP的比较判断。该比较电路34例如能够通过比较器CP而构成。在该情况下,例如,判断用电压VCP=VRF+VOFF的电压VOFF可以通过比较器CP的失调电压电压等来实现。

解调部36根据比较电路34的比较判断结果CQ(滤波处理后的比较判断结果FQ)而对负载调制模式进行判断。即,通过实施负载调制模式的解调处理,而对通信数据进行检测,并作为检测数据DAT而输出。输电侧的控制部24根据该检测数据DAT而实施各种处理。

并且,在图14中,在比较电路34与解调部36之间设置有滤波器部35。而且,解调部36根据由滤波器部35实施的滤波处理后的比较判断结果FQ,而对负载调制模式进行判断。作为该滤波器部35,例如能够使用数字滤波器等,但作为滤波器部35,也可以使用无源的滤波器。通过设置滤波器部35,例如能够降低后文叙述的图16的F1、F2处的噪声的不良影响等。

滤波器部35、解调部36例如被供给驱动时钟信号FCK而进行工作。驱动时钟信号FCK为对输电频率进行规定的信号,驱动器控制电路22被供给该驱动时钟信号FCK而对输电部12的输电驱动器DR1、DR2进行驱动。而且,初级线圈L1以由该驱动时钟信号FCK规定的频率(输电频率)而被驱动。

并且,在通信部30中可以设置实施使负载调制的频带的信号通过,而使负载调制的频带以外的带宽的信号衰减的带通滤波处理的带通滤波器部。在该情况下,通信部30根据带通滤波器部的输出而对来自受电装置40的通信数据进行检测。具体而言,带通滤波器部对由电流检测电路32产出的检测电压VDT实施带通滤波处理。而且,比较电路34实施对由带通滤波器部实施的带通滤波处理后的检测电压VDTA与判断用电压VCP的比较判断。该带通滤波器部例如能够被设置于IV转换用放大器IVC与放大器AP之间。

图15为对受电侧的通信结构进行说明的图。受电部52提取与驱动时钟信号FCK相对应的频率的时钟信号,并供给至通信数据生成部55。通信数据生成部55被设置于图2的控制部54中,并根据所供给的时钟信号而实施通信数据的生成处理。而且,通信数据生成部55将用于发送所生成的通信数据的控制信号CSW输出至负载调制部56,通过该控制信号CSW而实施例如开关元件SW的导通或断开控制,从而使负载调制部56实施与通信数据相对应的负载调制。

负载调制部56例如以成为第一负载状态、第二负载状态的方式,而使受电侧的负载状态(通过负载调制调而形成的负载)发生变化,从而实施负载调制。第一负载状态为,例如开关元件SW成为导通的状态,且为受电侧的负载状态(负载调制的负载)成为高负载(阻抗小)的状态。第二负载状态为,例如开关元件SW成为断开的状态,且为受电侧的负载状态(负载调制的负载)成为低负载(阻抗大)的状态。

而且,在目前为止的负载调制方法中,例如,使第一负载状态与通信数据的逻辑电平“1”(第一逻辑电平)相对应,使第二负载状态与通信数据的逻辑电平“0”(第二逻辑电平)相对应,而实施从受电侧向输电侧的通信数据的发送。即,通过在通信数据的位的逻辑电平位为“1”的情况下,使开关元件SW导通,在通信数据的位的逻辑电平为“0”的情况下,使开关元件SW断开,从而发送预定的位数的通信数据。

但是,例如,在线圈间的耦合度降低,或者线圈为小型线圈,或者输电电力也为低功率之类的用途中,通过这种现有的负载调制方法,难以实现适当的通信。即,即使通过负载调制而使受电侧的负载状态以成为第一负载状态、第二负载状态的方式而发生变化,也会由于噪声等原因,而产生通信数据的逻辑电平“1”、“0”的数据检测错误。即,即使在受电侧实施负载调制,通过该负载调制,向输电侧的检测电阻RCS流通的电流ID1也会成为非常微少的电流。因此,当噪声叠加时,会产生数据检测错误,从而产生原因在于噪声等的通信错误。

例如,图16为,模式化地表示检测电压VDTA、比较电路34的判断用电压VCP以及比较判断结果CQ的信号波形的图。如图16所示,检测电压VDTA成为以基准电压VRF为基准而发生变化的电压信号,判断用电压VCP成为该基准电压VRF加上比较器CP的失调电压VOFF而计算出的电压信号。

而且,如图16所示,例如,当在检测电压VDTA的信号上叠加有噪声时,如F1、F2所示,比较判断结果CQ的信号的沿的位置将发生变化,从而期间TM1的宽度(间隔)以变长或者变短的方式发生变动。例如,当期间TM1为与逻辑电平“1”相对应的期间时,如果期间TM1的宽度发生变动,则会产生通信数据的采样错误,从而产生通信数据的检测错误。尤其在通常输电期间内实施经常性的负载调制而实施通信的情况下,存在叠加于通信数据上的噪声变多的可能性,从而产生通信数据的检测错误的概率变高。

在此,在本实施方式中,采用了如下方法,即,使用负载调制模式而从受电侧发送通信数据的各位的逻辑电平“1”(数据1)、逻辑电平“0”(数据0),并在输电侧进行检测的方法。

具体而言,如图17所示,受电侧的负载调制部56针对向输电装置10发送的通信数据的第一逻辑电平“1”,实施使负载调制模式成为第一模式PT1的负载调制。另一方面,针对通信数据的第二逻辑电平“0”,实施使负载调制模式成为与第一模式PT1不同的第二模式PT2的负载调制。

而且,输电侧的通信部30(解调部)在负载调制模式为第一模式PT1的情况下,判断为是第一逻辑电平“1”的通信数据。另一方面,在负载调制模式为与第一模式PT1不同的第二模式PT2的情况下,判断为是第二逻辑电平“0”的通信数据。

在此,负载调制模式为由第一负载状态和第二负载状态构成的模式。第一负载状态为,由负载调制部56形成的受电侧的负载例如成为高负载的状态。具体而言,在图17中,第一负载状态的期间TM1为,负载调制部56的开关元件SW成为导通,电流源IS的电流从节点NVC向GND侧流通的期间,且为与第一、第二模式PT1、PT2的高电平(位=1)相对应的期间。

另一方面,第二负载状态为,由负载调制部56形成的受电侧的负载例如成为低负载的状态。具体而言,在图17中,第二负载状态的期间TM2为负载调制部56的开关元件SW成为断开的期间,且为与第一、第二模式PT1、PT2的低电平(位=0)相对应的期间。

而且,在图17中,第一模式PT1成为第一负载状态的期间TM1的宽度与第二模式PT2相比变得较长的模式。这样,对于第一负载状态的期间TM1的宽度与第二模式PT2相比较长的第一模式PT1,被判断为是逻辑电平“1”。另一方面,对于第一负载状态的期间TM1的宽度与第一模式PT1相比较短的第二模式PT2,判断为是逻辑电平“0”。

如图17所示,第一模式PT1例如为与(1110)的位模式相对应的模式。第二模式PT2例如为与(1010)的位模式相对应的模式。在这些位模式中,位=1与负载调制部56的开关元件SW成为导通的状态相对应,位=0与负载调制部56的开关元件SW成为断开的状态相对应。

例如,受电侧在发送的通信数据的位为逻辑电平“1”的情况下,通过与第一模式PT1相对应的(1110)的位模式,而将负载调制部56的开关元件 SW置于导通或断开。具体而言,对开关元件SW实施依次置于导通、导通、导通、断开的开关控制。而且,输电侧在负载调制模式为与(1110)的位模式相对应的第一模式PT1的情况下,判断为通信数据的位的逻辑电平为“1”。

另一方面,受电侧在发送的通信数据的位是逻辑电平“0”的情况下,通过与第二模式PT2相对应的(1010)的位模式,而将负载调制部56的开关元件SW置于导通或断开。具体而言,对开关元件SW实施依次置于导通、断开、导通、断开的开关控制。而且,输电侧在负载调制模式为与(1010)的位模式相对应的第二模式PT2的情况下,判断为通信数据的位的逻辑电平为“0”。

在此,在将输电部12的驱动频率设为FCK,将驱动周期设为T=1/FCK的情况下,第一、第二模式PT1、PT2的长度例如能够表示为512×T。在该情况下,一个位区间的长度被表示为(512×T)/4=128×T。因此,受电侧在通信数据的位为逻辑电平“1”的情况下,例如以128×T的间隔,并通过与第一模式PT1相对应的(1110)的位模式,而将负载调制部56的开关元件SW置于导通或断开。另外,受电侧在通信数据的位为逻辑电平“0”的情况下,例如以128×T的间隔,并通过与第二模式PT2相对应的(1010)的位模式,而将负载调制部56的开关元件SW置于导通或断开。

另一方面,输电侧例如以图18所示的方法来实施通信数据的检测处理以及取入处理。例如,通信部30(解调部)从第一模式PT1中的被设定于第一负载状态的期间TM1内的第一采样点SP1起,以所给定的采样间隔SI而实施负载调制模式的采样,并取入所给定的位数的通信数据。

例如,图18的采样点SP1、SP2、SP3、SP4、SP5、SP6为每隔采样间隔SI而被设定的采样点。该采样间隔SI为与负载调制模式的长度相对应的间隔。即,为与作为负载调制模式的第一、第二模式PT1、PT2的长度相对应的间隔。例如,在图17中,由于第一、第二模式PT1、PT2的长度成为512×T(=512/FCK),因此采样间隔SI的长度也变成512×T。

而且,在图18中,期间TS1、TS2、TS3、TS4、TS5、TS6内的负载调制模式分别成为PT1、PT2、PT1、PT2、PT2、PT2。在此,期间TS1、TS2、TS3、TS4、TS5、TS6为,与采样点SP1、SP2、SP3、SP4、SP5、SP6相对应的期间。 因此,在图18的情况下,通过从第一采样点SP1起,以采样间隔SI而实施负载调制模式的采样,从而取入例如位数=6的通信数据(101000)。

具体而言,通信部30对信号电平成为高电平的脉冲进行检测,在该脉冲的宽度在第一范围宽度内(例如220×T~511×T)的情况下,实施位同步。而且,在位同步的情况下,在该脉冲宽度的中心点设定第一采样点SP1,从第一采样点SP1起,每隔采样间隔SI(例如512×T)而取入信号。而且,取入的信号的电平如果是高电平,则判定为是逻辑电平“1”(第一模式PT1),如果是低电平,则判定为是逻辑电平“0”(第二模式PT2)。通过这种方式,在图18中,取入了通信数据(101000)。实际上,在位同步后(取入了SP1处的1位量的数据后),通过取入15位量的数,从而作为整体而取入了16位量的通信数据。在该16位的通信数据中,最初的1位(位同步的位)必定为“1”。

如此,在在本实施方式中,在第一负载状态的期间TM1的宽度处于第一范围宽度内(220×T~511×T)的情况下,如图18所示,在第一负载状态的期间TM1内设定第一采样点SP1。即,在信号电平成为高电平的期间TM1的宽度处于第一范围宽度内的情况下,实施位同步,并在该期间TM1内的例如中心点设定第一采样点SP1。而且,从所设定的第一采样点SP1起,每隔采样间隔SI而实施采样。在此,第一范围宽度(220×T~511×T)为,对应于第一模式PT1中的第一负载状态的期间TM1(384×T)而被设定的范围宽度。

即,如在图16中所说明的那样,由于噪声等原因,期间TM1的宽度将发生变动。而且,第一模式PT1中的期间TM1的宽度的典型值为与3位量(111)相对应的宽度即128×3×T=384×T。因此,设定包含该384×T这样的第一范围宽度220×T~511×T。而且,对于处于第一范围宽度220×T~511×T内的高电平的期间,判断为是第一模式PT1的期间TM1,并实施用于设定第一采样点SP1的位同步。通过采用这种方式,从而即使在如图16所示那样,噪声叠加于信号上的情况下,通过实施适当的位同步,从而能够设定适当的第一采样点SP1。

而且,在以此方式设定了第一采样点SP1之后,每隔采样间隔SI而实施采样,并根据各采样点处的信号电平,而对为第一、第二模式PT1、PT2中的哪一个进行判断。即,通信部30在第一采样点SP1接下来的第二采样点SP2处,在负载状态为第一负载状态的情况(信号电平为高电平的情况)下,判 断为,第二采样点SP2处的负载调制模式为第一模式PT1。即,判断为通信数据的位的逻辑电平为“1”。

另一方面,在第二采样点SP2处,在负载状态为第二负载状态的情况(信号电平为低电平的情况)下,判断为第二采样点SP2处的负载调制模式为第二模式PT2。即,判断为通信数据的位的逻辑电平为“0”。在此后的采样点处,也同样如此。

例如,在图18中,由于采样点SP2处的负载状态为第二负载状态(低电平),因此,判断为是第二模式PT2,并判断为逻辑电平为“0”。由于采样点SP3处的负载状态为第一负载状态(高电平),因此,判断为是第一模式PT1,并判断为逻辑电平为“1”。由于采样点SP4、SP5、SP6处的负载状态为第二负载状态(低电平),因此,判断为是第二模式PT2,并判断为逻辑电平为“0”。

并且,可以在图18的各采样点SP2~SP6处,对包含该采样点的负载状态的期间的宽度是否处于预定的范围宽度内进行确认。

例如,在第二采样点SP2处,在负载状态为第一负载状态(高电平),并且包含第二采样点SP2的第一负载状态的期间TM1的宽度处于第一范围宽度内(220×T~511×T)的情况下,判断为第二采样点SP2处的负载调制模式为第一模式PT1(逻辑电平“1”)。

另一方面,在第二采样点SP2处,在负载状态为第二负载状态(低电平),并且包含第二采样点SP2的第二负载状态的期间TM2的宽度处于第二范围宽度内(例如80×T~150×T)的情况下,判断为,第二采样点SP2处的负载调制模式为第二模式PT2(逻辑电平“0”)。

在此,第二范围宽度(80×T~150×T)为,对应于第二模式PT2中的第二负载状态的期间TM2(128×T)而被设定的范围宽度。由于期间TM2的典型值成为与1位对应的宽度即128×T,因此,设定了包含该128×T这样的第二范围宽度80×T~150×T。

如上所述,在本实施方式中,对负载调制模式进行辨别,从而对通信数据的逻辑电平进行判断。例如,一直以来,采用了如下的方法,即,将负载调制部56的开关元件SW成为导通的第一负载状态判断为逻辑电平“1”,将开关元件SW成为断开的第二负载状态判断为逻辑电平“0”的方法。但是, 在该现有示例的方法中,如图16中所说明的那样,有可能由于噪声等原因而产生通信数据的检测错误。

与此相对,在本实施方式中,通过对负载调制模式为例如图17所示的第一、第二模式PT1、PT2中的哪一个进行辨别,从而对通信数据的各位的逻辑电平进行检测。因此,即使在如图16那样的噪声较多的状况下,也能够实现通信数据的恰当的检测。即,在图17的第一、第二模式PT1、PT2中,例如,第一负载状态(高电平)的期间TM1的宽度大不相同,在本实施方式中,通过对该期间TM1的宽度的不同进行辨别,从而对模式进行辨别,并检测出通信数据的各位的逻辑电平。例如,在图18的最初的位同步中,在期间TM1的宽度处于第一范围宽度内(220×T~511×T)的情况下,在该期间TM1的中心点设定采样点SP1,并实施此后的采样点SP2、SP3、SP4……处的信号的取入。因此,例如,即使在由于噪声的原因而使采样点SP1处的期间TM1的宽度等发生了变动的情况下,也能够实现通信数据的恰当的检测。另外,以后的采样点SP2、SP3、SP4……由于能够根据采样间隔SI而以简单的处理进行设定,因此,具有还能够减轻通信数据的检测处理的处理负荷的优点。

并且,本实施方式的通信方法并不限定于在图17~图18等中说明的方法,能够实施各种各样的改变。例如,在图17中,虽然使逻辑电平“1”与第一模式PT1相对应,使逻辑电平“0”与第二模式PT2相对应,但是该对应也可以是相反的。另外,图17的第一、第二模式PT1、PT2为负载调制模式的一个示例,本实施方式的负载调制模式并不限定于此,能够实施各种各样的改变。例如,虽然在图17中,第一、第二模式PT1、PT2被设定为相同的长度,但是也可以设定为不同的长度。另外,虽然在图17中,使用了位模式(1110)的第一模式PT1和位模式(1010)的第二模式PT2,但是,也可以采用与这些模式不同的位模式的第一、第二模式PT1、PT2。例如,第一、第二模式PT1、PT2只需是至少第一负载状态的期间TM1(或者第二负载状态的期间TM2)的长度不同的模式即可,能够采用与图17不同的各种模式。

在图19(A)、图19(B)中,图示了在本实施方式中所使用的通信数据的格式的示例。

在图19(A)中,通信数据由64位构成,并由该64位构成了一个包。第一个16位成为00h。例如,在对受电侧的负载调制进行检测并且输电侧开始通常输电(或者间歇输电)的情况下,在通信部30的电流检测电路32等 进行工作而能够恰当地检测出通信数据之前,需要某种程度的时间。因此,在第一个16位,设定虚设(空)的数据即00h。输电侧在该第一个16位的00h的通信期间内,例如,实施位同步所需的各种处理。

在接下来的第二个16位,设定数据代码和整流电压(VCC)的信息。数据代码为,如图19(B)所示,用于对以接下来的第三个16位被实施通信的数据进行确定的代码。整流电压(VCC)作为输电装置10的输电电力设定信息而被使用。具体而言,电源电压控制部14根据该整流电压(VCC)的信息等而以可变的方式对供给至输电驱动器DR1、DR2的电源电压VDRV进行控制,由此以可变的方式对输电部12的输电电力进行控制。

在第三个16位中,根据数据代码的设定,而设定温度、蓄电池电压、充电电流、状态标志、循环次数或者IC编号等信息。温度例如为蓄电池温度等。蓄电池电压、充电电流为蓄电池90的蓄电池电压(VBAT等)、充电电流,且为表示充电状态的信息。状态标志例如为表示温度错误(高温异常、低温异常)、蓄电池错误(1.0V以下的蓄电池电压)、过电压错误、计时错误、充满电(正常结束)等受电侧的状态的信息。循环次数(循环时间)为表示充电次数的信息。IC编号为用于对控制装置的IC进行确定的编号。在第四个16位中设定了CRC的信息。CRC为用于CRC的错误检查的信息。

并且,在图4中,在检测到电子设备510的着陆,从而成为VCC>6.0V的情况下,在B5的负载调制中,首先,最先发送例如1包(64位)的空数据(虚设数据)的通信数据。而且,输电侧对该空数据的通信数据进行检测而开始通常输电。

图20为对本实施方式的通信处理的详细示例进行说明的流程图。首先,受电侧(控制部54)对整流电压是否为VCC>6.0V进行判断(步骤S1)。例如,当输电侧输送电力时,整流电压VCC因受电侧所接收到的电力而上升,从而VCC>6.0V。例如,受电侧的控制装置50通过由输电侧的输电电力产生的电源而进行工作。因此,在未从输电侧输送电力的期间内,控制装置50(除放电系统的电路以外)未被供给电源,从而成为例如复位状态。

当整流电压成为VCC>6.0时,受电侧首先开始通过负载调制而将IC编号发送至输电侧(步骤S2)。例如,在图19(A)、图19(B)中,通过数据代码而指定IC编号的通信,从而发送包括IC编号的信息在内的通信数据。

而且,例如,在蓄电池电压为VBAT<2.5V时的预充电(对过放电蓄电池的充电)的情况或VBAT<1.0V时的蓄电池错误的情况等无法开始通常充电的情况下(步骤S3:否),受电侧通过负载调制而发送包括整流电压、充电电压、充电电流、温度、状态标志等信息在内的通信数据(步骤S4)。

另一方面,在能够开始通常充电的情况下(步骤S3:是),将充电的循环次数增加1(步骤S5),并通过负载调制而发送增加后的循环次数(步骤S6)。而且,在通常充电的期间内,反复发送包括整流电压、充电电压、充电电流、温度、状态标志等信息在内的通信数据(步骤S7)。输电侧能够根据这些信息来对受电侧的充电状态等进行判断。

并且,虽然以上示出了本实施方式的通信方法的一个示例,但是,本实施方式的通信方法并不限定于此,能够实施各种各样的改变。例如,本实施方式的通信方法并不限定于如图17、图18那样将负载调制模式与逻辑电平相对应的方法,还可以采用例如将第一负载状态与逻辑电平“1”相对应,将第二负载状态与逻辑电平“0”相对应的方法等。另外,通信数据的格式或通信处理也不限定于图18、图19所示的方法,能够实施各种各样的改变。

6.受电部、充电部

在图21中,图示了受电部52、充电部58等的详细的结构示例。如图21所示,受电部52的整流电路53具有整流用的晶体管TA1、TA2、TA3、TA4和对这些晶体管TA1~TA4进行控制的整流控制部51。

晶体管TA1被设置于次级线圈L2的一端的节点NB1与GND(低电位侧电源电压)的节点之间。晶体管TA2被设置于节点NB1与整流电压VCC的节点NVC之间。晶体管TA3被设置于次级线圈L2的另一端的节点NB2与GND的节点之间。晶体管TA4被设置于节点NB2与节点NVC之间。这些晶体管TA1~TA4的各个漏极与源极之间设置有体二级管。整流控制部51实施用于向晶体管TA1~TA4的栅极输出控制信号而生成整流电压VCC的整流控制。

在整流电压VCC的节点NVC与GND的节点之间串联设置有电阻RB1、RB2。通过电阻RB1、RB2对整流电压VCC进行分压而得到的电压ACH1例如被输入至图2的A/D转换电路65。由此,能够监控整流电压VCC,并能够实现基于整流电压VCC的信息的电力控制等。

调节器57实施整流电压VCC的电压调节(调节),并输出电压VD5。该电压VD5经由晶体管TC1而被供给至充电部58的CC充电电路59。晶体管TC1 例如在蓄电池电压VBAT超过所给定的电压(例如4.25V)的过电压的检测时,根据控制信号GC1而成为断开。并且,控制装置50的各电路(除放电部60等放电系统的电路以外的电路)将基于该电压VD5而得到的电压(对VD5进行调节所得到的电压等)作为电源电压而进行工作。

CC充电电路59具有晶体管TC2、运算放大器OPC、电阻RC1、电流源ISC。晶体管TC2根据运算放大器OPC的输出信号而被控制。运算放大器OPC的非反相输入端子被连接于电阻RC1的一端。电阻RC1的另一端被连接于作为控制装置50的外设部件而被设置的检测电阻RS的一端。检测电阻RS的另一端被连接于运算放大器OPC的反相输入端子。电流源ISC被设置于运算放大器OPC的非反相输入端子与GND的节点之间。向电流源ISC流通的电流根据信号ICDA而被控制。

通过运算放大器OPC的虚拟接地,以电阻RC1的一端的电压(非反相输入端子的电压)与检测电阻RS的另一端的电压VCS2(反相输入端子的电压)相等方式而对晶体管TC2进行控制。将通过信号ICDA的控制而向电流源ISC流通的电流设为IDA,并将向电阻RS流通的电流设为IRS。于是,以成为IRS×RS=IDA×RC1的方式而被控制。即,在该CC充电电路59中,向检测电阻RS流通的电流IRS(充电电流)以成为通过信号ICDA而被设定的恒定的电流值的方式被控制。由此,能够实施CC(Constant-Current)充电。

在充电时,信号CHON成为激活。由此,晶体管TC3、TC4成为导通状态,从而实施向蓄电池90的充电。另外,通过被设置在晶体管TC3的栅极与蓄电池电压VBAT的节点NBAT之间的电阻RC2等,也防止了自蓄电池90的逆流。另外,在节点NBAT与GND的节点之间串联设置有电阻RC3、RC4,通过电阻RC3、RC4对蓄电池电压VBAT进行分压而得到的电压ACH2被输入至A/D转换电路65。由此,能够监控蓄电池电压VBAT,并能够实现与蓄电池90的充电状态相对应的各种控制。

另外,在蓄电池90的附近设置有热敏电阻TH(广义而言,温度检测部)。该热敏电阻TH的一端的电压RCT被输入至控制装置50,由此,能够实施蓄电池温度的测量。

并且,虽然如上所述,对本实施方式进行了详细说明,但是本领域技术人员应该能够容易理解如下内容,即,能够实施实质上不脱离本发明的新颖事项和效果的多种多样的改变。因此,这种改变例也全部包含在本发明的范 围内。例如,在说明书或附图中至少一次与更为广义或同义的不同的用语一起被记载的用语在说明书或附图中的任意位置,均能够被替换为该不同的用语。另外,本实施方式以及改变例的全部组合也包含于本发明的范围内。另外,输电侧、受电侧的控制装置、输电装置、受电装置的结构或动作等也不限定于本实施方式中所说明的内容,能够实施各种各样的改变。

符号说明

L1初级线圈;L2次级线圈;DR1、DR2输电驱动器;

IS、ISC电流源;SW开关元件;CM电容器;

IVC IV转换用放大器;AP放大器;CP比较器;

TA1~TA4、TC1~TC4晶体管;

RCS、RS检测电阻;RB1、RB2、RC1~RC3电阻;

OPC运算放大器;TH热敏电阻(温度检测部);

10输电装置;12输电部;14电源电压控制部;16显示部;

20控制装置;22驱动器控制电路;24控制部;

30通信部;32电流检测电路;

34比较电路;35滤波器部;36解调部;

37时钟生成电路;38振荡电路;

40受电装置;50控制装置;51整流控制部;52受电部;

53整流电路;54控制部;55通信数据生成部;56负载调制部;57调节器;58充电部;59CC充电电路;60放电部;61电荷泵电路;62非易失性存储器;64检测部;

69校验定序器;66控制电路;67存储单元阵列;68电荷泵电路;

90蓄电池;100电力供给对象;

500充电器;502电源适配器;510电子设备;514开关部。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1