发电装置的制作方法

文档序号:22259967发布日期:2020-09-18 14:23阅读:82来源:国知局
发电装置的制作方法

相关申请的交叉引用

本申请要求于2018年2月6日提交的申请号为62/627,096的美国临时申请的优先权,其全部内容通过引用合并于此。

本发明涉及发电和电力存储,尤其涉及使用磁流和重力流的发电和电力存储。



背景技术:

在发电和电力存储领域已经进行了大量的投资和研究,但是对于现有系统的效率仍然有许多限制。发电系统可以更高效,并向大气排放更少的污染物。电力存储系统也可以更高效,具有更高的功率密度和更低的单位成本。

具体地,在电动车辆领域中已经进行了大量投资和研究,然而,现有的电池和电池充电系统仅允许具有有限的范围和/或有限的充电率的车辆。用于车辆推进的现有电池限制了车辆的范围,因为它们缺少与矿物燃料的能量密度相近的能量密度。现有电池还需要花费大量时间去再充电,从而使用户在电池再充电时陷入困境。在现有电池上使用快速再充电系统时,它们趋向降低电池寿命。

为了扩展电动车辆的范围,许多人寻求添加给发电机供能的矿物燃料,以在使用时缓慢地为车载电池再充电。这的确扩展了范围,但是化石燃料的燃烧抵消了使用电力推进系统的好处。因此,需要一种不使用化石燃料且扩展电动车辆的范围的系统。

人们也越来越需要电力来为固定结构供电。当前的电网系统使用煤、天然气和核能的组合来发电。这些方法的每一种在它们的环境影响和安全方面都有局限性。现有技术中存在替代能源发电系统,包括太阳能和风力发电机,但是它们不是特别有效率,并且依赖自然现象的发生来产生电(光或风)。对自然现象的依赖使现有的替代能源发电系统的使用不可靠,并且可能在发电水平上产生波峰和波谷。因此,需要一种发电系统,该发电系统在没有传统发电系统的环境或安全的顾虑或在替代能源发电系统的发电特性中的波峰和波谷的情况下发电。



技术实现要素:

本发明是一种发电机,其与周围的磁力和重力反应以发电。发电机可用于为任何需要或存储电力的应用发电。可能的应用包括本文公开的用于固定结构的发电和车辆推进系统的发电机设备。本文公开的发电机也可以适用于发电设备、便携式或非便携式发电机或为发电机设备的预定发电量按尺寸缩放。发电机的某些实施例通过离子迁移、磁流、重力流和/或与电磁通量的相互作用发电。

本申请中提出的实施例被优化以用于车辆推进系统中,然而,应当理解为本发明可以缩放以用于本文所表达的发明构思内的其他应用中。发电机也可以用作独立设备以提供电能或为蓄电池系统充电。

附图说明

图1是结合了本发明的发电机的示例性车辆推进系统的系统图。

图2是发电机的顶部剖视图。

图3是发电机的侧部剖视图。

图4是发电机的替代实施例的顶部剖视图。

图5是示出了在替代实施例中磁流和重力流的流动的图。

图6是本文公开的超级电容器的侧视图。

图7是示出了内部结构的超级电容器的侧部剖视图。

具体实施方式

图1是结合了本发明的发电机11的示例性车辆推进系统10的系统图。尽管将发电机11示出为车辆推进系统10内的组件,但是本领域技术人员能够理解如何将其适应于其他应用。

发电机11通过正电连接21、负电连接22和通信连接23连接到超级电容器组12。通信连接23电连接至发电机控制器60。发电机11也通过接地连接31接地。在该实施例中,发电机11通常是圆柱形的形状,具有基本平坦的顶部44和周外壁41。顶板44优选允许大气从发电机11的外部进入和离开发电机11。通过使用发电机11上的通风口或用于空气自由通过的任何其他合适的管道,可以允许空气通过。

超级电容器组12优选地包括一个或多个超级电容器来为车辆推进系统10提供足够的容量。在该实施例中,使用三个超级电容器,每个具有大约2法拉(farads)的容量。可以修改超级电容器的数量和/或容量以适应车辆推进系统10的电力需求。在某些实施例中,超级电容器组12包括6-10个超级电容器。超级电容器组12的尺寸优选为接收由发电机11能够产生的最大电量。可将由发电机11产生的电力配置为暂时存储在超级电容器组12中,直到可通过充电控制器将其转移到电池组为止。

超级电容器组12可能通过正电连接21、负电连接22和通信连接24连接到电池组13。超级电容器组12也可能通过正电连接21和负电连接22和连接到逆变器14。超级电容器组12也可通过接地连接32接地。当发电机11开始在超级电容器组12中累积电力时,电池组13可用于向车辆推进系统10提供初始电力。电池组13可能通过正电连接21、负电连接22和通信连接25连接到逆变器14。电池组13也可能通过接地连接33接地。通信连接25可能包括通常用于车辆中传输数据的can总线。

由发电机11产生并存储在超级电容器组12和电池组13中的电力可以是直流电(以下称为“dc”)或交流电(以下称为“ac”)。在电池组13是dc并且电动机是ac的情况下,逆变器14可用于将dc电力转换成ac电力。逆变器14可能通过三相电力电路26将三相ac电力传输到电动机控制器15。逆变器14也可能通过接地连接34接地。电动机控制器15通过三相电力电路将三相ac电力传输至电动机16,导致电动机16的输出轴17旋转并提供车辆推进力。该电动机控制器也可能通过接地连接35接地,且电动机16也可以通过接地连接36接地。

图2是发电机11的顶部剖视图,已通过发电机11的垂直中心将其水平地剖开。发电机11的示例性实施例可配置为产生ac或dc电功率。在使用dc发电机11为ac负载供电的例子中,可以使用dc到ac换流器。发电机11容纳在包括底板43、周向壁41和顶板44的壳体中。在壳体内是圆柱形的内壁42,其将壳体的内部分成两个空间,一个内部空间57和一个围绕内部空间57周向定位的外部空间56。发电机壳体优选地包括绝缘材料,然而,其可包括具有绝缘涂层的导电材料或绝缘体,以防止不期望的电连接。

在内部空间57的中心,将配置为在外部空间56中提供磁通量的磁体51安装到底板43。在某些实施例中,磁场可以影响离子的迁移和扩散速率。在某些实施例中,磁场引导和/或加速离子的流动。将磁体51优选地定向使得正极或南极面向上和负极或北极面向下,来为磁通量提供适当的方向。磁体51优选为圆柱形,以在距中心相等的距离处的壳体内提供相等量的磁通量。在某些实施例中,优选地使用大约1.5英寸高和大约2.5英寸直径的磁体。在某些实施例中,可优选地将磁体51安装在底板43上方约0.5至1英寸。尽管已经公开了圆柱形磁体51,但是如果放置成平衡磁通量,则可以使用其他形状的磁体。基于第一板53和第二板52的尺寸和数量来选择磁体51以提供一定量的磁通量。在某些实施例中,磁体51包括钕或其合金。在某些实施例中,磁体51包括钕、铁和硼。在某些实施例中,磁体51包括钕、铁和硼并具有超过1000高斯的磁感应强度。在某些实施例中,磁体51包括钕、铁和硼并具有在5000高斯和15,000高斯之间且包括5000高斯和15,000高斯的磁感应强度。在某些实施例中,磁体51包括钕、铁和硼并具有大约10,000高斯的磁感应强度。

在某些实施例中,第一板53包括铜或其合金。在某些实施例中,第二板52包括锌或其合金。在其它实施例中,第二板52包括铜合金,例如黄铜或青铜。在某些实施例中,板52和53可能包括其它有色金属或其合金。

在外部空间56中有一系列等间距的第一板53和第二板52,它们已经用纳米涂层和凝胶溶液进行了预处理。优选地首先用氧化层对第一板53和第二板52进行纳米涂覆。可以使用热源来施加该氧化层。如果用热源施加纳米涂层,则优选具有约1.0英寸至1.5英寸的喷嘴的焊炬(torch)。丙烷是用于施加纳米涂层的合适燃料来源,然而,在使用丙烷焊炬时,要格外小心,因为来自丙烷燃料喷嘴的火焰大于锌的熔点。优选在大气条件下完成纳米涂层以提供足够量的氧气和氮气来产生纳米涂层。

优选通过多次热循环第一板53和第二板52的表面来施加纳米涂层。可以使用丙烷焊炬对表面进行少至两次,多至50次的热循环。优选地,对第一板53和第二板52的每个平坦表面进行5次至15次之间的热循环,包括5次和15次。最优选地对第一板53和第二板52的表面进行大约10次热循环。当第一板包括铜时,热循环优选地将第一板53的表面加热到约3,300至3,600华氏度。当第二板包括锌时,热循环优选地将第二板52的表面加热到约1,500华氏度。优选地,在每个热循环之后,应允许第一板53和第二板52冷却至室温。

纳米涂覆工艺优选施加约2.0微米的氧化层。当包括铜时,第一板53上的纳米涂层氧化层优选为cuo。在某些实施例中,当包括铜时,第一板53上的纳米涂层氧化层可能为cu2o、cuo2或cu2o3。当包括锌时,第二板52上的纳米涂层氧化层优选为zno。在某些实施例中,由于环境污染物或对本文所表达的发明构思内的纳米涂层进行较小的修改,纳米涂层氧化层可以包括除以上所列化合物之外的化合物。

通过生成去离子水和氯化钠(nacl)的超溶液(supersolution)并将第一板53和第二板52悬浮在溶液的不同批次中来生成凝胶化合物。在某些实施例中,nacl可以用硫酸镁(mgso4)或其他具有相似性质的化合物替代。超溶液可以是按体积计的约11-21%的nacl和按体积计的79-89%的去离子水的溶液。超溶液优选为按体积计的约14-18%的nacl和按体积计的82-86%的去离子水的溶液。优选通过在约两周的时间内每天将溶液搅拌约2-3次来创造超溶液。当nacl或mgso4完全溶解在去离子水中时,超溶液通常变得有些透明。

某些实施例使用包含按体积计大于约5%mgso4的mgso4浓度的超溶液。可以通过将所需体积的mgso4溶解到所需体积的去离子水中来创造超溶液。当使用mgso4来创造超溶液时,优选工业纯净的mgso4以防止凝胶化合物中的污染物。如果在溶液中使用nacl,则所使用的nacl的类型优选为精制海盐,然而,其他类型的纯化nacl也可以充分发挥作用。

在一段时间内,超溶液与板52和53形成凝胶化合物。优选将单个第一板53和单个第二板52通过电导管(例如铜线)彼此电连接,并且浸入超溶液中一段时间。优选以本文公开的方法对连接第一板53和第二板52的电导管进行纳米涂覆。第一板53和第二板52必须浸入超级溶液中以生成凝胶化合物的时间量取决于溶液的温度以及溶液中nacl或mgso4的浓度。所需的时间量通常约为一周至四周。优选将板放置在超溶液中,以使它们与容纳超级溶液并在超溶液的表面上方部分地延伸的容器的底部间隔开。例如,在使用约五英寸乘七英寸乘0.06英寸的第一板53和第二板52的实施例中,约12英寸宽,乘8英寸宽和7英寸深并容纳约3.5公升超溶液的容器将是理想的,允许板与容器的底部间隔约一英寸并在超溶液的表面上方延伸约一英寸。

在第一板53和第二板52浸入超溶液中的一段时间内,超溶液具有在板52和53的金属内容物与超溶液的nacl或mgso4之间的电化学反应。在一段时间内,在围绕第一板53和第二板53的空间中形成凝胶化合物65。通过洗涤过程可以进一步纯化凝胶化合物65以使污染物最小化。该洗涤过程可包括从容器中移除板52和53,允许凝胶化合物落到容器的底部,然后移除凝胶化合物上方的超溶液。然后可以将凝胶化合物与新鲜的去离子水一起转移到新的容器中,并重复洗涤过程。在某些实施例中,洗涤过程重复约5-15次以确保凝胶化合物的纯度。对洗涤过程优选重复约10次以确保凝胶化合物的纯度。

一旦第一板53和第二板52已经被纳米涂覆并且被上述凝胶化合物覆盖,就可以将它们插入到外部空间56中并且固定在适当的位置。优选将第一板53和第二板52定向使得它们的平面方向在外部空间56的径向方向上,使得板彼此等距间隔(在内壁42或外壁41上测量)并且材料可替换。在图2中标识了两个第一板53和两个第二板52以示出它们的交替构造。一旦放置在壳体中,第一板53和第二板52通过下部连接54在它们的底部电连接至其相邻板。第一板53和第二板52也通过上部连接58在它们的底部电连接至它们的相邻板。尽管公开了下部连接54和上部连接58,但是能够可选地用单个电连接代替它们。下部连接54和上部连接58优选地包括螺旋钯线,已经通过与第一板53和第二板52相似的工艺对该螺旋钯线进行纳米涂覆。在将第一板53和第二板52固定在壳体中之后,优选在每对第一板53和第二板52之间的空间中填充凝胶化合物65。外壁41优选在每对第一板53和第二板52之间的区域中包括开口或切口,以允许大气流入发电机11。

图3是发电机11的侧部剖视图,示出了下部连接54线的配置。第一板53和第二板52也通过上部连接58在它们的顶部电连接至它们的相邻板。优选不使用下部连接54或上部连接58将一个第一板53和一个第二板53彼此连接。而是,一个第一板53可以在一侧连接到一个第二板53并且在另一侧连接正极59,并且一个第二板52可以在一侧连接到一个第一板53并且在另一侧连接负极55。在某些实施例中,负极55可以连接到系统接地31。

壳体的底板43优选地是略微圆锥形的并且是凸形的,使得圆锥体的顶点向下地面对。圆锥体的高度优选地为二至四毫米,以使磁体51的底座移动到第一板53和第二板52的底座下方。在某些实施例中,圆锥体的高度约为3毫米。在某些实施例中,圆锥体的高度约为半毫米至十毫米。

第一板53和第二板52可以是均匀的厚度或变化的厚度以改变化学反应的速率。凝胶化合物65的厚度优选为在两个平坦表面上的第一板53或第二板52的厚度的约1.5倍。例如,如果板为1.0mm厚,则凝胶化合物65在板的任一侧上优选为1.5mm,创建4.0mm厚的板与凝胶化合物65的组装件。在某些实施例中,板约1.0-1.4mm厚。在其它实施例中,板约0.5-5.0mm厚。根据发电机11的预期功率输出要求,能够缩放板的厚度。在某些实施例中,在板的每个平坦表面上的凝胶化合物65的厚度在板的厚度的1.3至1.7倍之间。在其它实施例中,在板的每个平坦表面上的凝胶化合物65的厚度在板的厚度的0.75至4.0倍之间。

在图1-3中公开的实施例中,发电机11使用六个第一板53和六个第二板52,然而,可以使用更多或更少的板来调节发电速率和发电机11的预期寿命。在某些实施例中,第一板53和第二板52可以以它们的最近距离,如凝胶化合物65的厚度的三分之一,紧密地间隔在一起。例如,如果凝胶化合物65为2.0mm,则可将板放置成离相邻板0.67mm。由于板的圆形构造,在内壁42附近测量板之间的最近距离。在某些实施例中,第一板53和第二板52可以如凝胶化合物65的厚度的一半,紧密地间隔在一起。

每对第一板53和第二板52和它们之间的凝胶化合物层65产生电能。一个第一板53,当包含铜时,用作阳离子选择电极,和一个第二板52,当包含锌时,用作阴离子选择电极。由于每对第一板53和第二板52也通过下部连接54和上部连接58电连接,因此当第一板53和第二板52释放离子以保持它们的电中性时,沿下部连接54和上部连接58产生电流。每对第一板53和第二板52与相邻的一对第一板53和第二板52电连接,以形成终止于正极59和负极55的串联电路。在某些实施例中,可以优选地将成对的第一板53和第二板52并联连接或串联和并联的组合以实现期望的电压。

图4和图5是发电机111的替代实施例,该发电机111包括串联线圈171和172以及填充有球体166的凝胶化合物165。图4是在发电机111的中心垂直向下剖开的发电机111的侧面剖视图。可在包括周向壁141、底板143和顶板144,形成大致上圆柱形的壳体中构造发电机111。在某些实施例中,周向壁141包括可向壳体内部的组件提供通风的开口。

发电机111包括内衬于周向壁141的内表面上的多组外线圈171和内线圈172。线圈171和172优选地包括导电金属材料。线圈171和172优选工业纯铜导线,例如美国联合编号系统(uns)等级c11000至c130000。

优选地使用先前描述的方法对发电机111中的线圈171和172进行纳米涂覆,并且涂覆有以本文公开的方法生产的凝胶化合物65。可以通过对线圈171和172的表面进行约5至15次,约3,300至3,600华氏度的热循环来对纳米管171和172进行纳米涂覆。优选地,在每个热循环之后,应允许线圈171和172冷却至室温。

纳米涂覆工艺优选向线圈171和172施加约2.0微米的氧化层。线圈171和172上的纳米涂层氧化层优选为cuo。在某些实施例中,线圈171和172上的纳米涂层氧化层可能为cu2o、cuo2或cu2o3。在某些实施例中,由于环境污染物或在本文所表达的发明构思内对纳米涂层进行较小的修改,纳米涂层氧化层可包括除以上所列化合物之外的化合物。

一旦被纳米涂覆,优选以本文公开的方法产生的凝胶化合物65对线圈171和172进行涂覆,然后允许其干燥。凝胶化合物65是板52和53的金属内容物与超溶液的nacl或mgso4之间电化学反应的产物。优选在凝胶化合物65中涂覆线圈171和172并干燥5-15次。然后沿着周向壁141的内表面配置包括纳米涂层和干燥的凝胶化合物65涂层的线圈171和172,使得内线圈172放置在外线圈171里面。如本文所用,术语“在...里面”是指内线圈172基本上在由外线圈171的导线限定的区域内。线圈171和172可包括以线圈形状缠绕的导线,使得所得的线圈形状限定形状和体积。在某些实施例中,内线圈172的形状和体积基本上适合于外线圈171的形状和体积。

在发电机111的中央有至少一个包含凝胶化合物165的球体166。由于线圈171和172的数量,图4中的发电机111具有3个球体166。球体166可包括塑料或聚合物(天然的或合成的)。在某些实施例中,凝胶化合物165与本文所述的凝胶化合物65相同。在某些实施例中,凝胶化合物165是板52和53的金属内容物与超溶液的nacl之间电化学反应的产物。在某些实施例中,凝胶化合物165是板52和53的金属内容物与超溶液的mgso4之间电化学反应的产物。

包含凝胶化合物165的球体166不必电连接到线圈171和172,但是相反地,它们引导磁流和重力流来发电。在某些实施例中,磁流和重力流源自地球。线圈171和172根据图5配置和布线。当根据图5配置时,磁流沿箭头182指出的方向移动,且重力流沿箭头181指出的方向移动。可将线圈171和172配置为具有正极159和负极155。电极极性是示例性的,并且可将其与所示实施例相反地配置。

由于独特的纳米和凝胶165涂覆的线圈171和172,通过发电机111收集磁波和重力波,从而激励线圈绕组。凝胶165本身吸引并响应于磁波和重力波。纳米和凝胶165涂覆的线圈是聚焦的吸引器(attractor)和集中器(concentrator)以发电。在某些方面,发电机111同时充当天线并用作静态发电机。

当如本文所公开的那样首先组装发电机111时,可以将其配置为提供ac电力和dc电力中的一种和极性。为了开始发电过程,发电机111必须通过使电流流过线圈171和172并且安排与电流串联的负载来经历启动过程,以防损坏线圈171和172。如果ac电流随着串联安排的ac负载,流经线圈171和172,则将发电机111配置为产生ac电。启动过程优选地持续预定的一段时间,其中电流随着串联安排的电负载通过线圈171和172,并且持续预定的一段时间,其中线圈171和172在没有外部电源的情况下为电负载供电。在某些实施例中,电力可以通过线圈171和172与电负载之间的一组超级电容器。

本文公开的发电机111的尺寸可以是特定大小的以向例如机动车辆提供动力。在机动车辆应用中,使用具有至少为2.0kwh的功率输出的发电机111可能是有益的。可将本文公开的附图配置为建造具有2-5kwh的功率输出的发电机。也可将本文公开的附图缩放以建造具有小于2kwh或大于5kwh的功率输出的发电机。

图6和7是利用本文描述的方法和组件构造的超级电容器。超级电容器280包括芯281、隔膜283和线圈282。芯281可以是任何大规格的导电金属材料,例如绞铜线、铜棒、金属绞线或金属棒。线圈282包括导电金属材料,例如铜导线或金属导线。芯281和线圈282优选工业纯铜线,例如uns等级c11000至c130000。在某些实施例中,芯281和线圈282包括导线,其中芯具有的导线规格为线圈282的导线规格的约2-8倍。

优选地使用先前描述的工艺对芯281和线圈282进行纳米涂覆。可以通过对芯281和线圈282的表面进行约5至15次,约3,300至3,600华氏度的热循环来对芯281和线圈282进行纳米涂覆。优选地,在每个热循环之后,应允许芯和线圈282冷却至室温。

纳米涂覆工艺优选向芯281和线圈282施加约2.0微米的氧化层。芯281和线圈282上的纳米涂层氧化层优选为cuo。在某些实施例中,芯281和线圈282上的纳米涂层氧化层可能为cu2o、cuo2或cu2o3。在某些实施例中,由于本文中的环境污染物或在本文所表达的发明构思内对纳米涂层进行较小的修改,纳米涂层氧化层可以包括除以上所列化合物之外的化合物。

隔膜283包括彼此固定并围绕芯281卷缠的一层纸和一层铝箔。通过两边用凝胶化合物65涂覆纸层和铝箔层并使其干燥来创造隔膜283。凝胶化合物65是板52和53的金属内容物与超溶液的nacl或mgso4之间电化学反应的产物。然后用钛酸盐粉末涂覆纸层和铝箔层。然后将纸和铝层的结合层围绕芯281卷缠以形成隔膜283。

本文公开的超级电容器280具有比本领域中已知的其他超级电容器轻得多并且更小的优点。在某些实施例中,图1中的超级电容器组12包括一个或多个超级电容器280。

尽管已经公开了发电机11和111并将其描述为独立的发电和电力存储系统以及示例性车辆推进系统10的一部分,但是其也可以用于固定结构的发电。本文公开的发电机也可以适应于发电设备、便携式或非便携式发电机或为预定发电量按尺寸缩放。

已经描述了的是发电和电力存储装置以及并入示例性车辆推进系统中的发电和电力存储单元。尽管本发明示出了车辆推进系统内的发电机,但是本发明的全部或部分能够用于其他应用中。在本发明中,仅示出和描述了优选实施例,但是,如前所述,应当理解为,本发明能够在各种其他组合和环境中使用,并且能够在本文所述的发明构思的范围内进行改变或修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1