无线装置及其制造方法

文档序号:7541102阅读:93来源:国知局
无线装置及其制造方法
【专利摘要】本发明的无线装置具有基板、功率放大器用高频IC芯片及工艺偏差检测单元。工艺偏差检测单元监视工艺偏差造成的电路特性的变动量。具有使用监视到的电路特性的变动量计算出的参数的底部填充剂被填充到基板和高频IC芯片之间。其结果,即使存在工艺偏差及底部填充剂的影响,也在无线装置中得到希望的电路特性。
【专利说明】无线装置及其制造方法
【技术领域】
[0001]本发明涉及无线装置及其制造方法,特别涉及具有高频电路的无线装置。
【背景技术】
[0002]主要在微波、毫米波段,使用例如金(Au)或者焊料的凸点(bump),将高频IC芯片组装在组装基板上的倒装片组装被广泛使用。在倒装片组装中,由于可以通过短距离(最短)连接组装基板和高频IC芯片,所以可以减小连接间的损耗。
[0003]根据图17说明一例。作为模块的母基板的组装基板1,例如使用陶瓷基板,例如,作为高频1C,将放大器的MMIC (单片微波集成电路)芯片4的电路通过凸点6连接到输入输出端子2、3。进而,为了增强连接,或者密封丽IC芯片4,在组装基板I和丽IC芯片4之间填充树脂作为底部填充剂7。
[0004]但是,如果填充上述的底部填充剂7,则由于寄生电容增大,所以丽IC芯片4的特性偏向低频侧,而且,产生增益降低的特性恶化。
[0005]因此,提出了不易受到倒装片组装的填充剂的影响的微波、毫米波电路装置(参照专利文献I)。
[0006]图18是表示专利文献I中记载的以往例子的倒装片组装的微波、毫米波电路装置的图。微波、毫米波电路装置对于组装基板1,倒装片组装对置配置的MMIC芯片4。MMIC芯片4在内测设置包围电路5的绝缘壁11,在外侧施加底部填充剂7。按照该方式,由于以包围电路5 (主部)来形成绝缘壁11,所以即使施加底部填充剂7,树脂也不进入电路5的下面,电路特性变化的情况少。
[0007]现有技术
[0008]专利文献
[0009]专利文献1:日本专利特开2000-269384号公报
【发明内容】

[0010]发明要解决的课题
[0011]但是,专利文献I中记载的进行了倒装片组装的微波、毫米波电路装置,MMIC芯片4需要在内测设置包围电路5的绝缘壁11,在外侧施加底部填充剂7。因此,在专利文献I的结构中,MMIC芯片4的电路5的下面成为空洞,难以得到足够的组装强度。
[0012]而且,由于高频IC芯片的制造偏差(工艺偏差(process variance)),高频IC芯片的特性也产生偏差的情况下,有电路特性变化,并且作为模块性能恶化的情况。
[0013]S卩,存在即使可以抑制倒装片组装中的特性恶化,仍残存起因于高频IC芯片的工艺偏差的特性恶化,作为模块的合格率降低的课题。
[0014]本发明是鉴于上述实际情况而完成的,目的是提供确保组装强度,而且抑制了特性恶化的无线装置及其制造方法。
[0015]用于解决课题的手段[0016]因此,本发明是无线装置,包括:组装基板;倒装片组装在所述组装基板上的高频IC芯片;以及在所述高频IC芯片和所述组装基板之间填充的底部填充剂,其特征在于,所述高频IC芯片包括:构成主电路的元件单元;以及检测所述高频IC芯片的工艺偏差的工艺偏差检测单元,所述底部填充剂具有与检测到的所述工艺偏差对应的参数。
[0017]而且,在本发明的所述的无线装置中,所述工艺偏差检测单元具有作为所述元件单元的一部分的功能。
[0018]而且,在本发明的所述的无线装置中,所述工艺偏差检测单元在所述高频IC芯片中与所述元件单元分离。
[0019]而且,在本发明的所述的无线装置中,所述工艺偏差检测单元使用晶体管构成。
[0020]而且,在本发明的所述的无线装置中,所述工艺偏差检测单元使用环形振荡器构成。
[0021]而且,在本发明的所述的无线装置中,所述底部填充剂的参数是作为底部填充剂填充的材料的介电常数。
[0022]而且,在本发明的所述的无线装置中,所述底部填充剂的参数是所述高频IC芯片和所述组装基板之间的距离。
[0023]而且,在本发明的所述的无线装置中,所述高频IC芯片经由凸点与所述组装基板连接,所述凸点在所述高频IC芯片中被非对称地配置。
[0024]而且,在本发明的所述的无线装置中,所述高频IC芯片与所述组装基板之间的底部填充剂,在倒装片组装了所述高频IC芯片的区域内厚度不同。
[0025]而且,在本发明的所述的无线装置中,所述工艺偏差检测单元使用工艺控制监视器(PCM, Process Control Monitor)数据。
[0026]而且,在本发明的所述的无线装置中,所述工艺偏差是在填充所述底部填充剂之前测量出的值。
[0027]本发明是无线装置的制造方法,特征在于,包括:制造具有构成主电路的元件单元、和工艺偏差检测单元的高频IC芯片的步骤;使用所述高频IC芯片的所述工艺偏差检测单元检测工艺偏差的步骤;以及填充与在所述进行检测的步骤中检测到的数据相应的参数的底部填充剂,在组装基板上组装所述高频IC芯片的步骤。
[0028]发明效果
[0029]按照本发明,可以提供确保组装强度,而且抑制了特性恶化的无线装置及其制造方法。
【专利附图】

【附图说明】
[0030]图1是包含与本发明的实施方式I的微波、毫米波电路对应的功率放大器的无线装置的说明图。
[0031]图2是包含与本发明的实施方式I的微波、毫米波电路对应的功率放大器的无线装置的等效电路图。
[0032]图3是构成功率放大器中的工艺偏差检测单元的MOSFET的等效电路图。
[0033]图4是表示阈值电压Vth由于工艺偏差而产生了变动的情况下的功率放大器的输入反射系数和输出反射系数的图(无底部填充剂的情况)。[0034]图5是表示将树脂作为底部填充剂填充的情况下的功率放大器的输入反射系数和输出反射系数的图(无/有底部填充剂的情况)。
[0035]图6是表示图3所示的MOS晶体管的栅极电压-漏极电流特性的图。
[0036]图7是表示反射系数的陷波频率的变动量对于树脂的介电常数Er的图。
[0037]图8是表示陷波频率的变动量对于组装基板和功率放大器IC芯片间的距离的图。
[0038]图9是表示反射系数的陷波频率即反射系数最小的频率的变动对于工艺偏差和底部填充剂的影响所产生的变化的关系的图。
[0039]图10是表示了示出包含为了补偿基于工艺偏差的电路特性的变动量而选择底部填充剂的组装步骤的流程图。
[0040]图11是表示本发明的实施方式2的无线装置中的工艺偏差检测单元的图。
[0041]图12的(a)是从下方观察构成本发明的实施方式3的无线装置的功率放大器IC芯片的图,(b)是表示实施方式3的无线装置的组装状态的截面图。
[0042]图13是本发明的实施方式3的无线装置的功率放大器IC芯片的变形例。
[0043]图14是本发明的实施方式3的无线装置的功率放大器IC芯片的变形例。
[0044]图15是本发明的实施方式3的无线装置的功率放大器IC芯片的变形例。
[0045]图16是表示一例用于形成本发明的实施方式4的无线装置的功率放大器IC芯片的晶片的图。
[0046]图17是表示以往例子的无线装置的图。
[0047]图18是表示以往例子的微波、毫米波电路装置的图。
[0048]标号说明
[0049]100高频IC芯片(功率放大器用高频IC芯片)
[0050]101 主电路
[0051]110工艺偏差检测单元
[0052]102 凸点
[0053]103输入端子
[0054]104输出端子
[0055]105组装基板
[0056]106底部填充剂
[0057]500 元件单元
[0058]501功率放大用晶体管
[0059]502输入端子
[0060]503输出端子
[0061]504、505隔直流电容
[0062]506、507输入匹配用的传输线路
[0063]508,509输出匹配用的传输线路
[0064]510栅极电压端子
[0065]511漏极电压端子
【具体实施方式】[0066](实施方式I)
[0067]在图1中表示一例作为本发明的实施方式I包含与微波、毫米波电路对应的功率放大器的无线装置(模块)的结构的图。
[0068]在本实施方式I的无线装置中,使用功率放大器用高频IC芯片100作为高频IC芯片,对构成功率放大器的功率放大器用高频IC芯片100,除了主电路101,还将构成偏差检测电路的工艺偏差检测单元110集成化。
[0069]图1是装载了具有本实施方式I的工艺偏差检测单元110的功率放大器用高频IC芯片100的无线装置的说明图。图2是该功率放大器用高频IC芯片100的等效电路图。图3是构成该功率放大器用高频IC芯片中的工艺偏差检测单元110的MOSFET的等效电路图。
[0070]在说明本发明的实施方式I的功率放大器用高频IC芯片之前,说明与微波、毫米波电路对应的功率放大器用高频IC芯片的动作。虽然功率放大器用高频IC芯片100的主电路101是一般的电路,但是在本实施方式中,如图1和图2所示,在构成主电路101的元件单元500中集成了工艺偏差检测单元110。
[0071]在图2中表示与本发明的实施方式I的微波、毫米波电路对应的功率放大器用高频IC芯片的等效电路。在功率放大器中,构成主电路101的元件单元500的输入端子502设置隔直流电容504,在输出端子503设置隔直流电容505。
[0072]功率放大用晶体管501的栅极G和输入端子502之间设置输入匹配用的传输线路506、507,在漏极D和输出端子503之间设置输出匹配用的传输线路508、509。
[0073]晶体管501用的栅极电压端子510和功率放大用晶体管501的栅极G之间,串联连接着输入匹配用的传输线路506、507。而且,在功率放大用晶体管501用的漏极电压端子511和功率放大用晶体管501的漏极D之间,串联连接着输出匹配用的传输线路508、509。
[0074]输入信号Sin从输入端子502经由隔直流电容504、传输线路507输入到晶体管501的栅极G。栅极G经由传输线路506、507与栅极电压端子510连接,被施加栅极电压Vg0晶体管501的源极S被接地。
[0075]晶体管501的漏极D经由传输线路509、508与漏极电压端子511连接,被施加漏极电压Vd。从传输线路509、508的连接点经由隔直流用电容505从输出端子503输出输出信号Sout。在功率放大用晶体管501中流过漏极电流Id,在晶体管501的源极S设置源极端子501S。
[0076]—般来说,晶体管由于工艺偏差,阈值电压Vth变动,并且在阈值电压Vth低时漏极电流Id增加,在阈值电压Vth高时漏极电流Id减少。而且,晶体管的最大动作频率fmax在阈值电压Vth低时增加,在阈值电压Vth高时减少,最大动作频率fmax高的一方晶体管的高频特性良好。
[0077]因此,如图3所示,对于构成工艺偏差检测单元的M0SFET,阈值电压Vth也由于工艺偏差而变动,并且在阈值电压Vth低时漏极电流Id’增加,在阈值电压Vth高时漏极电流Id’减少。
[0078]图4是表示将阈值电压Vth设为参数的功率放大器用高频IC芯片100的输入反射系数Sll及输出反射系数S22与频率特性之间的关系的曲线图。而且,由于工艺偏差,阈值电压Vth变动。纵轴表示反射系数,横轴表示频率(GHZ)。
[0079]实线是没有工艺偏差的情况下的理想的阈值电压,以后,记载为阈值电压Vth为中心的情况,波纹线是有工艺偏差,作为比理想的阈值电压低的电压,记载为阈值电压Vth低的情况,点划线是有工艺偏差,作为比理想的阈值电压高的电压,记载为阈值电压Vth高的情况。
[0080]在图4中,使用相同的轴表示反射系数Sll和反射系数S22,但是输入反射系数Sll和输出反射系数S22也可以是不同的特性。
[0081]阈值电压Vth越低,漏极电流Id越增加,由于漏极电流Id的增加,晶体管501的寄生电容也增加。
[0082]例如,即使进行了设计,使得在阈值电压Vth为中心的情况下输入反射系数Sll及输出反射系数S22的陷波,即反射系数为最小的位置为希望的频率(陷波频率)fc,由于作为工艺偏差的晶体管501的寄生电容,在如图4所示那样阈值电压Vth变低时,输入反射系数Sll及输出反射系数S22的陷波的位置向低频率侧偏移。
[0083]图5是表示将有无底部填充剂106作为参数的功率放大器用高频IC芯片100的输入反射系数Sll及输出反射系数S22与频率特性之间的关系的曲线图。在装载了图2的功率放大器的功率放大器IC芯片,即功率放大器用高频IC芯片倒装片组装在组装基板105上,示出如图17所示那样,在功率放大器IC芯片和组装基板105之间填充了树脂作为底部填充剂106 (UL)的情况,和不填充的情况。
[0084]作为底部填充剂使用的树脂为一般的电介质,所以寄生电容增加。实线表示无底部填充剂(UF)的情况下、波纹线表示进行倒装片组装并有底部填充剂的情况下的反射系数S11、S22。
[0085]在图5中,在功率放大用晶体管501的阈值电压Vth为中心,无底部填充剂(UF)的状态中,即使反射系数S11、S22的陷波的位置设为了频率fc,在填充底部填充剂时,由于作为底部填充剂的影响的寄生电容,反射系数S11、S22的陷波的位置也向低频率侧偏移。
[0086]而且,在图5中,底部填充剂的介电常数为3.3,如图8所示,组装基板-功率放大器IC芯片间的距离为20 μ m以上。
[0087]本发明是着眼于上述要点而完成的,在实施方式I中,解决在具有高频电路的无线装置中,倒装片组装中的底部填充剂产生的影响以及工艺偏差导致的频率特性恶化的课题。
[0088]为了解决该课题,具有在对象的功率放大器IC芯片中使用构成工艺偏差检测单元110的晶体管来检测工艺偏差的结构。并且,通过填充满足补偿检测结果的材质或者填充量的条件的底部填充剂,得到希望的频率特性。
[0089]这里,返回本发明的实施方式I的无线装置的说明。图1是表示本发明的实施方式I中的无线装置的结构的图。无线装置具有:与微波或者毫米波对应的功率放大器用高频IC芯片100 ;凸点102、输入端子103、输出端子104、组装基板105、底部填充剂106和工艺偏差检测单元110。功率放大器用高频IC芯片100经由凸点102与组装基板105上的输入端子103和输出端子104连接。而且,在功率放大器用高频IC芯片100和组装基板105之间填充树脂作为底部填充剂106。而且,功率放大器用高频IC芯片100还具有检测功率放大器用高频IC芯片100的工艺偏差的工艺偏差检测单元110。
[0090]图3中表示一例作为工艺偏差检测单元110的MOS晶体管的等效电路图。在图6中表示图3所示的MOS晶体管的栅极电压-漏极电流特性。图3的工艺偏差检测单元使用MOS晶体管构成。一般来说,晶体管示出图6所示的栅极电压-漏极电流特性,并且在图3的栅极电压Vg’超过阈值电压Vth’时流过漏极电流Id’。通过测量图6所示那样的栅极电压-漏极电流特性,能够得到构成工艺偏差检测单元110的MOS晶体管的阈值电压Vth’。
[0091]另一方面,如图5所示,在倒装片组装中填充树脂作为底部填充剂时,与反射系数的陷波的位置对应的频率(以后,记载为陷波频率)即反射系数为最小的频率降低。陷波频率的变动量如图7所示那样,也根据树脂的介电常数Er而变化。
[0092]图7示出相对于树脂的介电常数Er的反射系数Sll、S22的陷波频率即反射系数为最小的频率的变动量,在介电常数Er变大时,寄生电容变大,陷波频率降低。通过改变作为底部填充剂填充的树脂材料、或者调合而介电常数改变,可以调整陷波频率的变动量。
[0093]图8表不相对于图1的组装基板105和功率放大器用闻频IC芯片100之间的距离的陷波频率的变动量。组装基板105和功率放大器用高频IC芯片100之间的距离近时,寄生电容变大,陷波频率的变动量大。
[0094]组装基板105和功率放大器用高频IC芯片100之间的距离变远时,相对于距离的寄生电容的值固定,陷波频率的变动量固定。将陷波频率的变动量与组装基板105-功率放大器用高频IC芯片100间的距离成比例的组装基板105-功率放大器用高频IC芯片100间的距离设为距离A时,通过使距离A变化,可以控制陷波频率的变动量。例如,通过调整底部填充剂的填充量,可以控制陷波频率的变动量。
[0095]而且,在将功率放大器用高频IC芯片100倒装片组装到组装基板105的情况下,从功率放大器用高频IC芯片100的上方施加压力进行加工,但是通过改变来自上方的压力可以使距离A变化。
[0096]图9表示相对于工艺偏差及底部填充剂的影响造成的变动的、输入反射系数Sll及输出反射系数S22和陷波频率的变动之间的关系。
[0097]这里,所谓工艺偏差产生的变化,是晶体管的阈值电压Vth造成的变化。而且,所谓底部填充剂的影响的变化,是底部填充剂的介电常数Er造成的变化、与组装基板105-功率放大器用高频IC芯片100之间的距离成比例的组装基板105-功率放大器用高频IC芯片100间的距离A造成的变化的其中一个。
[0098]图9的陷波频率fc与图4和图5同样处于以MOS晶体管的Vth为中心、在无底部填充剂(UF)的情况下的输入反射系数Sll和输出反射系数S22的陷波的位置。由于工艺偏差,陷波频率在范围X中变化,并将上限、下限分别设为fxh、fxl。而且,由于底部填充剂的影响,陷波频率在范围Y中变化,并将上限、下限分别设为fyh、fyl。
[0099]这里,在无底部填充剂的情况下的陷波频率fc和基于底部填充剂的影响的陷波频率的上限fyh相等。工艺偏差和底部填充剂的影响造成的变动量为从fyl至fxh的范围,希望的频率ft只要进入该范围即可。在将工艺偏差造成的频率的变动量设为dfx,将底部填充剂造成的影响的频率的变动量设为dfy时,受到两者的影响后的频率fz为fz=fc+dfx+dfy,使频率fz设为希望的频率ft即可。
[0100]以下,说明装载了功率放大器用高频IC芯片100的无线装置的制造方法。首先,在图10中表示示出了包含为了补偿基于工艺偏差的特性变动而选择底部填充剂的组装步骤的流程图。
[0101]制造功率放大器用高频IC芯片100 (步骤S1001),监视功率放大器用高频IC芯片100的工艺偏差(步骤S1002)。这里,例如工艺偏差使用晶体管的阈值电压Vth。
[0102]接着,使用监视到的工艺偏差,计算电路特性的变动量(步骤S1003)。这里,例如电路特性设为功率放大器的输入反射系数Sll及输出反射系数S22。
[0103]接着,根据计算出的电路特性的变动量决定成为希望的电路特性的底部填充剂的影响下的变动量(步骤S1004)。最后,根据决定的底部填充剂的影响下的变动量进行倒装片组装(步骤S1005)。这里,例如,关于为了得到希望的电路特性所需要的底部填充剂的选择,根据步骤S1005中决定的底部填充剂的影响下的变动量,通过树脂的介电常数的变更、或者组装基板-功率放大器用高频IC芯片100间的距离的控制来执行。
[0104]例如,将起因于由步骤S1002得到的工艺偏差的晶体管的阈值电压设为Vths。对于晶体管的阈值电压Vth为中心的陷波频率fc,使用图4的输入反射系数Sll及输出反射系数S22计算工艺偏差造成的陷波频率的变动量(dfx)。
[0105]接着,使用陷波频率的变动量dfx,根据图7的结果来选择底部填充剂的介电常数Er的材料,使得陷波频率为希望的频率ft。
[0106]决定底部填充剂造成的陷波频率的变动量(dfy),选择与决定的变动量dfy对应的介电常数Er的材料,以便抵消工艺偏差造成的陷波频率的变动量dfx。或者决定与决定的变动量dfy对应的组装基板105-功率放大器用高频IC芯片100间的距离。
[0107]如上所述,通过使用图10所示的流程图决定组装条件,即使发生了工艺偏差造成的特性的变动和底部填充剂造成的影响的变动,也可以将电路特性调整为希望的特性。
[0108]S卩,在工艺偏差检测单元110中监视基于高频IC芯片的工艺偏差的电路特性的变动量,使用监视到的电路特性的变动量,计算底部填充剂的参数,填充计算出的参数的底部填充剂。通过该结构,即使存在工艺偏差和底部填充剂的影响,也可以得到希望的电路特性。
[0109]而且,在本实施方式中,作为工艺偏差检测单元110,设为监视晶体管的阈值电压Vth,但是不特别限定于此。例如,也可以是电阻的电阻值,也可以是电感器的电感值,也可以是电容的电容值。而且,电阻例如可以使用多晶硅电阻。
[0110]而且,在实施方式I中,工艺偏差检测单元110与构成主电路100的MOS晶体管501另行独立地使用MOS晶体管分离形成。
[0111]而且,作为变形例,也可以将构成主电路101的MOS晶体管501兼作偏差检测电路(工艺偏差检测单元)使用。
[0112]对于其它部件,也可以与实施方式I的无线装置同样地形成。由此,能够进行可靠性高的工艺偏差检测和工艺偏差补偿而不导致芯片的大型化。
[0113]而且,除了工艺偏差以外,即使目的是在与周边电路的关系中进行电容调整,也可以调整底部填充剂的参数。
[0114](实施方式2)
[0115]接着,说明变更了偏差检测电路的电路结构的实施方式。
[0116]在本实施方式中,作为构成偏差检测电路的工艺偏差检测单元110,取代MOSFET而使用图11所示的环形振荡器。关于其它结构,由于与实施方式I相同,所以这里省略说明。
[0117]在本实施方式中,也通过测量工艺偏差检测单元110的栅极电压-漏极电流特性来检测阈值电压Vth的变动量。然后,根据检测到的阈值电压Vth的变动量决定在组装中使用的底部填充剂的参数。即通过由工艺偏差检测单元Iio监视MOS晶体管的阈值电压Vth,可以估计图4所示的电压放大器的输入反射系数Sll、输出反射系数S22的陷波的位置(陷波频率)。
[0118]如图11所示,环形振荡器将奇数个反相器121?125串联连接,从输出侧的反相器125输出的输出信号被反馈到输入侧的反相器121的输入。在对环形振荡器的反相器121提供电源电压时,在依赖于反相器的动作延迟时间的频率中进行振荡,并从输出端子126输出。
[0119]在图11的环形振荡器中,反相器的动作延迟时间由于工艺偏差而变化。例如,在晶体管的阈值电压Vth由于工艺偏差而降低时,反相器的动作延迟时间变短,环形振荡器的振荡频率变高。相反,在晶体管的阈值电压Vth由于工艺偏差而升高时,反相器的动作延迟时间变长,环形振荡器的振荡频率变低。
[0120]通过监视环形振荡器的振荡频率,能够得到晶体管的阈值电压Vth。通过由工艺偏差检测单元110监视晶体管的阈值电压Vth,例如可以估计图2所示的电压放大器的输入反射系数S11、输出反射系数S22的陷波的位置(陷波频率)。
[0121]因此,在本实施方式中,也与实施方式I相同,使用图10所示的流程计算参数,决定用于补偿工艺偏差的组装条件。
[0122](实施方式3)
[0123]接着,说明本发明的实施方式3。图12(a)是从下方观察构成本发明的实施方式3中的无线装置的功率放大器IC芯片的图。图12 Ca)中,在功率放大器用高频IC芯片100的下面非对称地配置凸点102。
[0124]在将功率放大器用高频IC芯片100倒装片组装在组装基板105上时,从芯片的上方施加压力而进行加工,但是如图12 (a)所示,在非对称的凸点的配置中,凸点数少的区域中,对每一个凸点施加的压力变大。因此,如图12 (b)所示的截面图那样,组装基板-功率放大器IC芯片间的距离变短。
[0125]因此,在对于功率放大器用高频IC芯片100整体施加相同压力而进行了加工的情况下,底部填充剂的厚度也是在凸点数少的区域变薄。由于凸点配置为非对称的结构,所以在功率放大器用高频IC芯片100进行倒装片组装的区域内120中,能够使底部填充剂造成的影响的电特性变化。
[0126]例如,在将功率放大器配置在图12 Ca)和图12 (b)所示的功率放大器用高频IC芯片100的左侧和右侧的情况下,左侧的底部填充剂的厚度变薄,寄生电容增加,右侧的底部填充剂的厚度变厚,寄生电容降低。因此,左侧的功率放大器的输入反射系数S11、输出反射系数S22为最低的陷波频率比图8大幅度降低。因此,右侧的功率放大器的输入反射系数S11、输出反射系数S22的陷波频率与左侧的功率放大器相比变动量变小。
[0127]因此,在本实施方式中,与所述实施方式I相同,使用图10所示的流程计算参数,决定组装条件并调整凸点配置。
[0128]接着,说明本发明的实施方式3的变形例。
[0129]通常,是将功率放大器IC芯片的凸点数设为最小的结构,但是为了调整组装基板-功率放大器IC芯片间的距离,或者在倒装片组装功率放大器用高频IC芯片内的区域内120中将距离设为非对称,除了所述实施方式3的无线装置用的功率放大器用高频IC芯片100的结构,也可以配置图13所示的预备的凸点115。
[0130]预备的凸点115例如作为电路的接地端子使用即可,可以抑制电路特性的恶化。
[0131]而且,在本实施方式中,如图12 (a)所示,虽然凸点被配置在外围,但是不特别限定。例如,在图14那样,即使在将凸点一样地配置在功率放大器IC芯片对组装基板的装载面上的结构中,在倒装片组装功率放大器用高频IC芯片100的区域内120中,为了使与组装基板的距离非对称,通过将凸点102的配置设为非对称,可以得到相同的效果。
[0132]在本实施方式中,通过凸点的非对称配置,在倒装片组装功率放大器用高频IC芯片100的区域内120中将与组装基板的距离设为非对称,但是,也可以在倒装片组装功率放大器用高频IC芯片100的区域内120中,调整底部填充剂的厚度而不使凸点配置为非对称。
[0133]例如,可以调整经由凸点将功率放大器用高频IC芯片100组装到组装基板上的回流焊工序中的加压力。在组装功率放大器用高频IC芯片100的工序中,只要使功率放大器用高频IC芯片100和组装基板间的底部填充剂的厚度在倒装片组装功率放大器用高频IC芯片100的区域内120中不同就可以。
[0134]因此,在本实施方式中,也与实施方式I相同,使用图10所示的流程计算参数,并可以决定组装条件。
[0135](实施方式4)
[0136]接着说明本发明的实施方式4。在本发明的实施方式I和2中,作为工艺偏差检测单元110的一例,为了检测晶体管的阈值电压Vth而使用了晶体管或者环形振荡器,但是在本发明的实施方式4中,使用PCM (Process Control Monitor,工艺控制监视器)数据作为偏差检测单元的检测值。而且,PCM数据是功率放大器IC芯片的制造中的、用于芯片的质量管理的数据(表示做出的结果的数据)。
[0137]以往,在使用半导体工艺制造芯片的情况下,为了监视芯片的质量,在同一晶片上装载各种器件从而进行监视。例如,为晶体管的阈值电压vth、漏极电流Id、铝或铜的布线的电阻值、多晶硅的电阻值。而且,阈值电压Vth例如将下限表现为FF,将上限表现为SS,将中心表现为TT,作为PCM数据进行管理。
[0138]在图15中表示芯片的结构。在功率放大器用高频IC芯片100上形成主电路101、监视器单元M,在监视器单元M中例如形成多晶硅电阻31。多晶硅电阻31两端的电压及电流能够测量,电阻值可以计算。
[0139]在PCM数据中,使用多晶硅电阻31的电阻值,在电阻值大的情况下,可以判断产生了图案宽度变小的工艺偏差。
[0140]S卩,通过使用PCM数据,可以监视工艺偏差,与实施方式I 一样使用监视的数据,可以计算底部填充剂的参数。因此,通过调整在组装中使用的底部填充剂的参数,可以补偿工
艺偏差。
[0141]由此,即使存在工艺偏差和底部填充剂的影响,也能够得到希望的电路特性。
[0142]而且,在实施方式4中,对每个功率放大器用高频IC芯片100形成了监视单元M,但是也可以对每个晶片形成监视单元M。
[0143]该方法包括:制造对每个晶片至少具有一个工艺偏差检测单元,并且具有包括构成主电路的元件单元的多个高频IC芯片形成单元的晶片的步骤;使用所述工艺偏差检测单元检测工艺偏差的步骤;将所述晶片分割为多个高频IC芯片的步骤;根据在所述进行检测的步骤中检测到的数据调整底部填充剂的参数的步骤;填充具有在所述进行调整的步骤中得到的所述参数的底部填充剂,在组装基板上组装所述高频IC芯片的步骤。
[0144]S卩,如图16所示,在晶片W的规定位置,例如形成排列了功率放大器用高频IC芯片100的元件单元500和监视单元M,在监视单元M上例如形成多晶硅电阻。而且,多晶硅电阻两端的电压和电流能够测量,所以电阻值可以计算。
[0145]如上所述,与实施方式I 一样,使用用PCM数据监视的工艺偏差的值,计算底部填充剂的参数,并通过填充计算出的参数的底部填充剂,即使存在工艺偏差和底部填充剂的影响,也能够得到希望的电路特性。
[0146]而且,与实施方式4的无线装置不同,由于没有在功率放大器用高频IC芯片100上形成监视器单元和偏差检测单元,所以可以抑制芯片面积的增大。
[0147]如上所述,在将与微波、毫米波段的高频电路对应的功率放大器用高频IC芯片倒装片组装在组装基板上的无线装置中,在工艺偏差检测单元中,监视基于功率放大器用高频IC芯片制造中的工艺偏差的电路特性的变动量,使用监视的电路特性的变动量,计算底部填充剂的参数,通过填充与算出的参数对应的材料或者介电常数的底部填充剂,可以抑制工艺偏差和底部填充剂造成的影响的频率特性变动,提供得到希望的电路特性的无线装置。
[0148]特别是,在使用毫米波段进行无线通信的无线装置中,由于信号的频率高,底部填充剂的影响大,所以得到更大的效果。
[0149]即,在本发明中,不是必须在高频IC芯片内具有工艺偏差检测单元。即,也可以使用包括以下步骤的无线装置的制造方法:制造具有构成主电路的元件单元的高频IC芯片的步骤;使用工艺偏差检测单元检测所述高频IC芯片的工艺偏差的步骤;填充与所述进行检测的步骤中检测到的数据对应的参数的底部填充剂,在组装基板上组装所述高频IC芯片的步骤。
[0150]详细并且参照特定的实施方式说明了本发明,但是本领域的技术人员可以明白,在不脱离本发明的精神和范围的情况下可以增加各种变更和修改。
[0151]本申请基于2011年11月8日提出申请的日本专利申请(特愿2011-244970),其内容在此作为参考引入。
[0152]工业上的可利用性
[0153]如上说明的那样,根据本发明,在使用高频,特别是使用微波、毫米波段进行无线通信的无线装置中,可以提供高频特性优良的半导体装置。
【权利要求】
1.无线装置,包括: 组装基板; 倒装片组装在所述组装基板上的高频IC芯片;以及 在所述高频IC芯片和所述组装基板之间填充的底部填充剂, 所述闻频IC芯片包括: 构成主电路的元件单元;以及 检测所述高频IC芯片的工艺偏差的工艺偏差检测单元, 所述底部填充剂具有与检测到的所述工艺偏差对应的参数。
2.如权利要求1所述的无线装置, 所述工艺偏差检测单元具有作为所述元件单元的一部分的功能。
3.如权利要求1所述的无线装置, 所述工艺偏差检测单元在所述高频IC芯片中与所述元件单元分离。
4.如权利要求1至3中任意一项所述的无线装置, 所述工艺偏差检测单元使用晶体管构成。
5.如权利要求1至3中任意一项所述的无线装置, 所述工艺偏差检测单元使用环形振荡器构成。
6.如权利要求1所述的无线装置, 所述底部填充剂的参数是作为底部填充剂填充的材料的介电常数。
7.如权利要求1所述的无线装置, 所述底部填充剂的参数是所述高频IC芯片和所述组装基板之间的距离。
8.如权利要求1所述的无线装置, 所述高频IC芯片经由凸点与所述组装基板连接, 所述凸点在所述高频IC芯片中被非对称地配置。
9.如权利要求1所述的无线装置, 所述高频IC芯片与所述组装基板之间的底部填充剂,在倒装片组装了所述高频IC芯片的区域内厚度不同。
10.如权利要求1所述的无线装置, 所述工艺偏差检测单元使用工艺控制监视器数据。
11.如权利要求1所述的无线装置, 所述工艺偏差是在填充所述底部填充剂之前测量出的值。
12.无线装置的制造方法,包括: 制造具有构成主电路的元件单元、和工艺偏差检测单元的高频IC芯片的步骤; 使用所述高频IC芯片的所述工艺偏差检测单元检测工艺偏差的步骤;以及填充与在所述进行检测的步骤中检测到的数据相应的参数的底部填充剂,在组装基板上组装所述高频IC芯片的步骤。
【文档编号】H03F1/30GK103650357SQ201280031121
【公开日】2014年3月19日 申请日期:2012年10月19日 优先权日:2011年11月8日
【发明者】筑泽贵行 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1