一种光模块的光功率控制系统及控制方法与流程

文档序号:13623860阅读:410来源:国知局
一种光模块的光功率控制系统及控制方法与流程

本发明涉及一种光功率装置,尤其涉及一种光模块的光功率控制系统。



背景技术:

目前,微波信号基本上都采用微波电缆传输微波信号,但是,微波电缆其差损比较大,特别是长距离传输时,其差损就非常大,大到无法满足系统的需求。现在,有些公司开始采用光传输微波信号,就是把微波信号直接调制到激光上,然后,通过光纤传输,因为激光在光纤里传输差损比较小,可以把微波信号传输比较远的距离。为了把微波信号调制到激光上,就需要采用微波光模块,这光模块其实就是一种电光转换装置。这装置非常关键的电路就是光功率控制电路,这控制电路来控制激光器的输出光功率,让其输出的光功率控制在系统要求的范围之内。目前,很多控制电路都采用模拟的控制电路,其电路需要人工手动调节电位器的电压来控制激光器的输出电压,这种模拟的控制电路,通过检测激光器的背光探测器的电压,来控制激光器的输出光功率,在高低温情况下,激光器的特性发生了改变,而模拟控制电路的放大倍数和基准是固定的,不能适应激光器的特性改变,这样,在高低温情况下,其激光器的输出光功率波动比较大,特别是低温情况下,其波动几乎不能满足系统的需求,无法让其输出光功率保持恒定。



技术实现要素:

本发明的目的在于提供一种光模块的光功率控制系统,所述光功率控制系统能控制激光器的输出光功率;还可以使激光器在高低温的情况下,使输出激光光功率保持恒定;在生产中,可以采用ATS(自动测试系统)来进行调试和生产,不需要人工调整电位器,可以大大提高生产效率。

为了实现上述目的,本发明的技术方案如下:

一种光模块的光功率控制系统,包括:

信号接收单元,用于接收微波信号并将微波信号输出至发光单元;

发光单元,包括激光器,用以接收微波信号,输出经过微波信号调制的激光信号;

发光功率检测单元,检测发光单元激光器的背向光功率并产生采样信号;

隔离单元,将放大电路、反馈单元与发光功率检测单元进行隔离,防止放大电路和反馈单元影响发光功率检测单元产生的采样信号;

放大电路,将发光功率检测单元产生的采样信号进行放大;

电流检测单元,检测发光单元的激光器电流大小,并向控制单元发出电流采样信号;

温度检测单元,检测系统的温度并产生温度信号传输给控制单元;

反馈单元,根据发光功率检测单元的采样信号和基准信号的比较结果控制发光单元的激光信号的输出功率;

电流控制单元,根据反馈单元输出的控制信号控制发光单元中激光器的工作电流,所述电流控制单元同时向电流检测单元输出与激光器的工作电流同值的电流;

控制单元,根据温度检测单元检测的光模块的温度设置基准信号;根据电流检测单元检测发出的电流采样信号判断激光器的寿命,决定是否发出预警信号;根据发光功率检测单元检测的激光器的背向光功率产生的采样信号设置基准信号。

所述信号接收单元与发光单元相连接,微波信号从信号接收单元进入后至发光单元,在发光单元中微波信号经过调制到激光信号后输出;所述发光单元与发光功率检测单元相连,所述发光功率检测单元与隔离单元相连,发光功率检测单元检测激光器的背向光功率并产生采样信号输出至隔离单元,通过隔离单元后一路采样信号输出至放大电路,在放大电路中将发光功率检测单元产生的采样信号进行放大后输出至控制单元,控制单元根据采样信号设置基准信号输出至反馈单元;通过隔离单元后另一路采样信号输出至反馈单元,所述反馈单元与电流控制单元相连,反馈单元根据采样信号和基准信号的比较结果产生控制信号并输出至电流控制单元,所述电流控制单元与电流检测单元和发光单元相连,所述电流控制单元根据反馈单元输出的控制信号产生出一路电流至发光单元,所述电流控制单元输出另一路同样大小的电流至电流检测单元,电流检测单元与控制单元相连,所述电流检测单元检测激光器的电流大小并产生电流采样信号输出至控制单元,控制单元根据电流采样信号设置基准信号并输出至反馈单元;所述温度检测单元与控制单元相连,并产生温度信号传输给控制单元,控制单元根据温度信号设置基准信号并输出至反馈单元。

所述的一种光模块的光功率控制系统,其信号接收单元包括:RF输入口101,微带线102,隔直电容103和宽带电感121;微波信号从RF输入口101输入,通过微带线102传输,通过隔直电容103后输出到发光单元,所述宽带电感121用以防止微波信号进入电流控制单元。

所述的一种光模块的光功率控制系统,其所述的发光单元包括:微带匹配线104,激光器LD105和光纤106;由隔直电容103输入的微波信号经过微带匹配线104调制在激光器LD105上,激光器LD105产生的激光信号通过光纤106输出。

所述的一种光模块的光功率控制系统,其所述发光功率检测单元检测激光信号的背向光功率并产生的采样信号是电压信号;所述发光功率检测单元包括:激光器的背光检测器PD117和采样电阻120;激光器LD105产生激光信号时,激光器LD105背面的激光传输到激光器的背光检测器PD117上,此时,激光器的背光检测器PD117产生的电流经过电路线116传输到采样电阻120,在采样电阻120上产生相应的电压信号,隔离单元113将所述电压信号与放大电路115和反馈单元隔离,防止放大电路115和反馈单元影响采样电阻120上产生相应的电压信号。

所述的一种光模块的光功率控制系统,其所述控制单元设置的基准信号是基准电压信号;所述反馈单元是积分负反馈电路112,所述积分负反馈电路112的一路输入电压是发光功率检测单元的采样电阻120的电压信号经过隔离单元113输入的电压信号;另一路输入电压是控制单元设置的基准电压信号;所述积分负反馈电路112把两个输入电压进行比较并且积分输出一个控制电压信号至电流控制单元107。

所述的一种光模块的光功率控制系统,其积分负反馈电路112输出的控制电压信号输出至所述电流控制单元107,所述电流控制单元107根据积分负反馈电路112输出的控制电压信号产生出一路电流至发光单元的激光器LD105,以控制激光器LD105的发光功率,所述电流控制单元107输出另一路同样大小的电流至电流检测单元108以检测激光器LD105的电流大小。

所述的一种光模块的光功率控制系统,其所述控制单元包括CPU电路114、数模转换电路110、两组负压/正压转换电路111;所述一组负压/正压转换电路111的输入与放大电路115输出相连,所述放大电路115输出的采样信号通过负压/正压转换电路111输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的采样信号转换成数字信号制式的采样信号后输出至CPU电路114,所述CPU电路114根据采样信号设置基准信号输出至积分负反馈电路112;所述另一组负压/正压转换电路111的输入与电流检测单元108输出相连,所述电流检测单元108产生的电流采样信号通过负压/正压转换电路111输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的电流采样信号转换成数字信号制式的电流采样信号后输出至CPU电路114,所述CPU电路114根据电流采样信号设置基准信号并通过负压/正压转换电路111输出至积分负反馈电路112;所述温度检测单元118与CPU电路114相连,并产生温度信号传输给CPU电路114,CPU电路114根据温度信号设置基准信号并通过负压/正压转换电路111输出至积分负反馈单元123;

所述的一种光模块的光功率控制系统,其所述控制单元包括CPU电路114、232、数模转换电路110;所述放大电路115输出的采样信号输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的采样信号转换成数字信号制式的采样信号后输出至CPU电路114,所述CPU电路114根据采样信号设置基准信号输出至积分负反馈电路112;所述电流检测单元108产生的电流采样信号输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的电流采样信号转换成数字信号制式的电流采样信号后输出至CPU电路114,所述CPU电路114根据电流采样信号设置基准信号并输出至积分负反馈电路112;所述温度检测单元118与CPU电路114相连,并产生温度信号传输给CPU电路114,CPU电路114根据温度信号设置基准信号并输出至积分负反馈单元123、223;

所述的一种光模块的光功率控制系统,其所述控制单元还包括I2C接口电路119,所述I2C接口电路119与CPU电路114相连,所述控制单元可以通过I2C接口电路119跟外部设备通信或者外部设备通过I2C接口电路119控制CPU电路114的工作。

所述的一种光模块的光功率控制系统,其所述光功率控制系统还包括过流保护电路109,以防止激光器LD105的电流过大而烧毁激光器LD105。

一种光模块的光功率控制系统的控制方法,所述方法包括如下步骤:

a)发光功率检测单元检测发光单元的激光器的背向光功率并产生采样信号,所述发光功率检测单元产生的采样信号传输至反馈单元;

b)所述反馈单元将发光功率检测单元的采样信号和基准信号进行比较,判断激光器的发光功率是否在系统的设定值,如果激光器的发光功率不在系统的设定值,反馈单元产生控制信号并输出至电流控制单元,所述电流控制单元根据控制信号调整激光器的电流,以控制激光器的发光功率回到系统设定值,所述电流控制单元同时向电流检测单元输出与发光单元的激光器的电流同值的电流,以供电流检测单元检测发光单元的激光器电流大小,所述电流检测单元检测激光器电流后向控制单元发出电流采样信号;如果激光器的发光功率在系统的设定值,则电流检测单元检测发光单元的激光器电流大小后向控制单元发出电流采样信号;

c)控制单元根据电流检测单元发出的电流采样信号判断激光器的电流是否超过正常电流值,如果未超过正常电流值,则重复步骤a)和b);如果超过正常电流值,则控制单元根据电流检测单元检测发出的电流采样信号,判断出激光器的电流超过激光器的电流的绝对额定值,控制单元发出激光器老化预警信号;

d)控制单元还可以根据温度检测单元检测的光模块的温度设置基准信号,温度检测单元检测系统的温度并产生温度信号传输给控制单元,所述控制单元针对相应温度设置相应的基准信号并输出基准信号至反馈单元,所述反馈单元将发光功率检测单元的采样信号和基准信号进行比较产生控制信号,所述控制信号输出至电流控制单元,所述电流控制单元根据控制信号控制发光单元中激光器的工作电流,以控制激光器的发光功率回到系统设定值。采用本发明的技术方案后现有技术相比,本发明具备如下优点和有益效果:

1.本发明中的控制采用控制单元CPU(单片机)智能控制的方式,能够根据每一款激光器的特性进行智能控制,保证输出光功率稳定在高低温-40~85度稳定在0.5dB变化范围之内。

2.本发明中,可以通过CPU(单片机)进行基准电压设置,不需要人工机械调整,特别在研发和生产中,极大提高了工作效率。

3.本发明中,可以通过CPU(单片机)对激光器的光功率进行实时检测,在算法中可以设置一个门限,当检测的光功率大于或小于设定的范围,就开始报警,当光功率大于设定的范围,CPU(单片机)通过设置基准电压的方式关闭激光器,防止激光器烧坏。

4.本发明中,可以通过CPU(单片机)对激光器工作电流进行实时检测,可以结合检测激光器光功率的大小,对激光器的性能进行评估,特别是其老化程度,可以结合算法判断出激光器的寿命,并提前预警,让工程人员提前更换光模块,防止系统崩溃。

5.本发明中,集成了过流保护电路,可以防止CPU软件出现缺陷而崩溃的时候,有效保护激光器由于过大的电流而烧毁。

6.本发明中,集成温度检测单元,CPU实时读取模块工作温度,当温度过低或过高,CPU将自动关闭激光器,保护激光器不受伤害。

7.本发明中,采用CPU(单片机)技术,对激光器光功率、激光器的工作电流和基准电压,进行检测和调整,在研发和生产中完全可以采用ATS(自动化测试系统)进行测试,不用人工测试,极大地提高了工作效率。

附图说明

图1为光模块的光功率控制系统框图;

图2为本发明实施例一的电路图;

图3为本发明实施例二的电路图。

图中,101—RF输入口,102—微带线,103—隔直电容,104—微带匹配线,105—激光器LD,106—光纤,107—电流控制单元,108—电流检测单元,109—过流保护电路,110—数模转换电路,111—负压/正压转换电路,112—积分负反馈电路,113—隔离单元,114—CPU电路,115—放大电路,116—电路线,117—激光器的背光检测器PD,118—温度检测单元,119—I2C接口电路,120—采样电阻,121—宽带电感。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。

实施例一

本发明的实施一见图2,主要包括RF输入口101、微带线102、隔直电容103、微带匹配线104、激光器LD105、激光器的背光检测器PD 117、电路线116、宽带电感121、采样电阻120、电流控制单元107、电流检测单元108、过流保护电路109、负压/正压转换电路111,数模转换电路110、积分负反馈电路112、隔离单元113、CPU电路114、放大电路115和温度检测单元118。

微波信号从RF输入口101输入,通过微带线102传输,必须用隔直电容103隔直,以隔离光模块的光功率控制系统的直流电压避免受到外部影响,微波信号通过隔直电容103之后,经过微带匹配线104调制在激光器LD105上,调制后的激光信号通过光纤106输出,激光器LD105工作时,背面同时有激光输出,传输到激光器的背光检测器PD117上,激光器的背光检测器PD117产生电流,经过电路线116传输到采样电阻120,在采样电阻120上产生相应的电压也即采样信号,这电压跟采样电阻120的电流成正比关系,而采样电阻120的电流跟激光器的背光检测器PD117检测到激光功率有关,当激光功率越大,其采样电阻120的电流就越大,也是成正比关系,那么,采样电阻120上产生的电压跟激光器LD105的光功率成正比关系;采样电阻120上产生的电压也即采样信号传送至隔离单元113,这两个隔离单元起到隔离作用,从隔离单元113输出的电压不变,隔离单元113主要是防止后面的电路影响采样电阻120上产生的电压。

通过一个支路隔离单元113的电压,输入到放大电路115进行放大,然后输入到负压/正压转换电路111上,把负压转为正压,其绝对值不变,转换之后的正压输入到数模转换电路110后转换成数字信号输入至CPU电路114,这个支路主要进行光功率检测,所述CPU电路114根据电压设置基准电压输出至积分负反馈电路112;在CPU电路114的算法里将设置两个门限,一个是高门限,另外一个低门限,只要超过这两个门限,CPU电路114就产生一个告警,通过I2C电路133传输给外部设备。

通过另一个支路隔离单元113的电压,输入至积分负反馈电路112中,这积分负反馈电路112还有一个输入信号是CPU电路114设置的基准电压,所述基准电压是由CPU电路114产生,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电流控制单元107相连,电流控制单元107接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的输入电流大小,当电流超过激光器LD105的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

电流检测单元108产生的电流采样信号通过负压/正压转换电路111输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的电流采样信号转换成数字信号制式的电流采样信号后输出至CPU电路114,所述CPU电路114根据电流采样信号设置基准电压并输出至积分负反馈电路112,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电源控制单元111相连,电源控制单元111接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的电流大小,当电流超过激光器的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

所述温度传感器150与CPU电路114相连,并产生温度信号传输给CPU电路114,CPU电路114根据温度信号设置基准电压,并传输至积分负反馈单元123,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电源控制单元111相连,电源控制单元111接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的电流大小,当电流超过激光器的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

实施例二

本发明实施例二见图3,主要包括RF输入口101、隔直电容103、微带匹配线104、激光器LD105、激光器的背光检测器PD 117、宽带电感121、采样电阻120、电流控制单元107、电流检测单元108、过流保护电路109,数模转换电路110、积分负反馈电路112、隔离单元113、CPU电路114、放大电路115和温度检测单元118。

微波信号从RF输入口101输入,通过微带线102传输,必须用隔直电容103隔直,以隔离光模块的光功率控制系统的直流电压避免受到外部影响,微波信号通过隔直电容103之后,经过微带匹配线104调制在激光器LD105上,调制后的激光信号通过光纤106输出,激光器LD105工作时,背面同时有激光输出,传输到激光器的背光检测器PD117上,激光器的背光检测器PD117产生电流,经过电路线116传输到采样电阻120,在采样电阻120上产生相应的电压也即采样信号,这电压跟采样电阻120的电流成正比关系,而采样电阻120的电流跟激光器的背光检测器PD117检测到激光功率有关,当激光功率越大,其采样电阻120的电流就越大,也是成正比关系,那么,采样电阻120上产生的电压跟激光器LD105的光功率成正比关系;采样电阻120上产生的电压也即采样信号传送至隔离单元113,隔离单元起到隔离作用,从隔离单元113输出的电压不变,隔离单元113主要是防止后面的电路影响采样电阻120上产生的电压。

通过一个支路隔离单元113的电压,输入到放大电路115进行放大,然后输入到数模转换电路110后转换成数字信号输入至CPU电路114,所述CPU电路114根据电压设置基准电压输出至积分负反馈电路112;积分负反馈电路112还有一个输入信号是CPU电路114设置的基准电压,所述基准电压是由CPU电路114产生,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电流控制单元107相连,电流控制单元107接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的输入电流大小,当电流超过激光器LD105的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小;在CPU电路114的算法里将设置两个门限,一个是高门限,另外一个低门限,只要超过这两个门限,CPU电路114就产生一个告警,通过I2C电路233传输给外部设备。

通过另一个支路隔离单元113的电压,输入至积分负反馈电路112中,这积分负反馈电路112还有一个输入信号是CPU电路114设置的基准电压,所述基准电压是由CPU电路114产生,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电流控制单元107相连,电流控制单元107接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的输入电流大小,当电流超过激光器LD105的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

电流检测单元108产生的电流采样信号输出至数模转换电路110,所述数模转换电路110与CPU电路114相连,在数模转换电路110中将模拟信号制式的电流采样信号转换成数字信号制式的电流采样信号后输出至CPU电路114,所述CPU电路114根据电流采样信号设置基准电压并输出至积分负反馈电路112,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电源控制单元211相连,电源控制单元211接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的电流大小,当电流超过激光器的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

所述温度检测单元118与CPU电路114相连,并产生温度信号传输给CPU电路114,CPU电路114根据温度信号设置基准电压,并传输至积分负反馈单元223,积分负反馈电路112把两个输入电压进行比较并且积分产生一个控制信号,所述积分负反馈电路112的输出与电源控制单元211相连,电源控制单元211接收积分负反馈电路112产生的控制信号后控制的激光器LD105的电流,也就控制了激光器LD105的电流大小,当电流超过激光器的阈值就会发出激光,电流越大其输出光功率越大,电流越小光功率越小。

采用本发明的实施例后现有技术相比,本实施例具备如下优点和有益效果:

1.本发明中的控制采用控制单元CPU(单片机)智能控制的方式,能够根据每一款激光器的特性进行智能控制,保证输出光功率稳定在高低温-40~85度稳定在0.5dB变化范围之内。

2.本发明中,可以通过CPU(单片机)进行基准电压设置,不需要人工机械调整,特别在研发和生产中,极大提高了工作效率。

3.本发明中,可以通过CPU(单片机)对激光器的光功率进行实时检测,在算法中可以设置一个门限,当检测的光功率大于或小于设定的范围,就开始报警,当光功率大于设定的范围,CPU(单片机)通过设置基准电压的方式关闭激光器,防止激光器烧坏。

4.本发明中,可以通过CPU(单片机)对激光器工作电流进行实时检测,可以结合检测激光器光功率的大小,对激光器的性能进行评估,特别是其老化程度,可以结合算法判断出激光器的寿命,并提前预警,让工程人员提前更换光模块,防止系统崩溃。

5.本发明中,集成了过流保护电路,可以防止CPU软件出现缺陷而崩溃的时候,有效保护激光器由于过大的电流而烧毁。

6.本发明中,集成温度检测单元,CPU实时读取模块工作温度,当温度过低或过高,CPU将自动关闭激光器,保护激光器不受伤害。

7.本发明中,采用CPU(单片机)技术,对激光器光功率、激光器的工作电流和基准电压,进行检测和调整,在研发和生产中完全可以采用ATS(自动化测试系统)进行测试,不用人工测试,极大地提高了工作效率。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1