一种具有实时频率补偿功能的线性稳压器的制作方法

文档序号:12489560阅读:391来源:国知局
一种具有实时频率补偿功能的线性稳压器的制作方法与工艺

本发明属于模拟集成电路技术领域,具体涉及一种具有实时频率补偿功能的线性稳压器。



背景技术:

集成电路中,线性稳压器是一种很常用的电路模块,线性稳压器的基本结构如图1所示。例如在高速MOSFET驱动器中,为了向功率MOSFET提供稳定的电压,需要使用线性稳压器来产生驱动电压。

以线性稳压器在半桥MOSFET驱动器中的应用为例,如图2所示,MOSFET具有电容值较大的栅电容Cgd、Cgd,,在此将它们等效为单个栅电容CG。由于MOSFET驱动器需要控制MOSFET周期性开关,MOSFET驱动电路需要对CG进行快速的充放电操作,对当MOSFET驱动电路状态切换时,线性稳压器的负载情况也会发生突变。以低端N型MOSFET驱动及对应的线性稳压器N为例,如图3,当MOSFET关断时,线性稳压器输出与MOSFET断开,此时线性稳压器的负载电容很小,输出极点位置很高,这对于内置主极点的线性稳压器是稳定的,而当MOSFET开启时,线性稳压器输出与MOSFET的栅极相连,此时MOSFET驱动电路的负载主要为MOSFET的栅电容CG,此时输出极点位置显著降低,降低线性稳压器环路的相位裕量,容易降低环路性能甚至引起自激振荡。当MOSFET驱动电路状态切换时,将使MOSFET驱动电路周期性地接入、断开CG,这将严重影响无外置电容的线性稳压器的稳定性和响应速度。产生这种问题的原因主要是无电容线性稳压器通常是为电阻型负载和电容值稳定的电容性负载设计的。而处于开关中的MOSFET及驱动电路是一种周期性变化的电容负载,其稳定性与响应速度以及对应最优化的频率补偿电路需要依据负载的两种状态来分别讨论。

该类问题同样出现在其他负载电容可能发生突变的线性稳压器应用环境中,尤其是使用片外无电容技术的线性稳压器的稳定性更容易受到此类特殊负载的威胁。



技术实现要素:

本发明的目的,就是针对上述传统线性稳压器电路存在的问题,提出一种具有实时频率补偿功能的线性稳压器,采用可预知开关容性负载环境的线性稳压器频率补偿技术,为线性稳压器提供与容性负载开关同步的优化的频率补偿。

本发明的技术方案是:一种具有实时频率补偿功能的线性稳压器,所述线性稳压器由误差放大器EA、调整管MP、受开关信号控制的容性负载CG、双频率补偿网络及补偿切换开关和脉冲延时电路组成;

所述误差放大器EA的同相输入端与线性稳压器的输出端Vo相连接,反相输入端与稳压器基准电压VREF相连接,误差放大器EA的输出端与调整管MP的栅极相连接;调整管MP的源极接电源,调整管MP的漏极作为线性稳压器的输出端Vo;受开关信号控制的容性负载CG一端与调整管MP的漏极相连接,另一端接地;双频率补偿网络及补偿切换开关的一端接误差放大器EA输出端和调整管MP栅极的连接点,另一端与线性稳压器的输出相连接或者连接至信号地,双频率补偿网络及补偿切换开关的控制端接外部输入的开关脉冲信号脉冲延时电路的输入端Pi与外部输入的开关脉冲信号相连接,脉冲延时电路的输出端Po与容性负载CG的控制开关相连接;

所述双频率补偿网络及补偿切换开关由第一补偿网络、第二补偿网络和补偿切换开关构成;所述补偿切换开关用于控制并实时切换开关第一补偿网络、第二补偿网络的连接方式,并至少包括两个补偿网络单独接入、并联接入、串联接入等连接方式;

所述脉冲延时电路用于产生一个固定的延迟时间,使补偿网络的切换稍提前于接入线性稳压器电容负载的开关;

所述第一补偿网络、第二补偿网络用于为两种不同负载环境下的线性稳压器提供对应的频率补偿。

本发明的方案中,所述第一补偿网络、第二补偿网络通常由电阻、电容等无源器件构成,设计者须根据所需的频率特性来选取对应元器件的值;补偿切换开关通常由MOSFET开关或者CMOS传输门构成。

本发明所述脉冲延时电路通常由RC延时电路和反相器延时链等常规延时电路构成。

本发明所述双频率补偿网络中补偿网络1、补偿网络2与补偿切换开关的连接方式有多种等同结构。补偿网络1、补偿网络2可以通过单个选通、并联接通、串联短接三种方法实施。单个选通方式中,开关仅接通两个补偿网络中的一个,另一个补偿网络开路;并联接通方式中,补偿网络1常接,当开关断开时,补偿网络的特性与补偿网络1相同,当开关闭合时,补偿网络将呈现补偿网络1、2并联的特性;串联短接方法中,开关并联接在补偿网络2的两端后,与补偿网络1串联后构成新的补偿网络,当开关断开时,将呈现补偿网络1、2串联的特性,当开关闭合时,补偿网络的特性与补偿网络1相同。补偿网络的接入方式有双端接入与单端接入两种,其中双端接入时A端连接至误差放大器EA输出,B端连接至线性稳压器输出,单端接入时A端连接至误差放大器EA输出,B端接至小信号地。因此以上三种方式又分别存在两种形式,总计6种。

本发明所涉及技术方案中,补偿网络1、补偿网络2的作用是分别为两种不同负载环境下的线性稳压器提供对应的频率补偿,以保证在不同的负载环境下,线性稳压器具有最优的稳定性和负载瞬态响应时间;补偿切换开关为接入不同的频率补偿网络切换线性稳压器的内部信号通路;脉冲延时电路的功能为产生一个固定的延迟时间,使补偿网络的切换稍提前于接入线性稳压器电容负载的开关。当有从外部输入的开关脉冲信号脉冲时,延时电路将开关脉冲信号进行延迟,产生稍滞后于的脉冲信号用于控制容性负载接入开关,而将原始脉冲信号作为补偿切换开关的控制信号,其作用是使补偿切换开关控制信号稍超前于容性负载接入开关信号延迟时间应大于补偿切换开关的建立时间,以保证每次线性稳压器负载出现容性突变时,与负载所对应的补偿网络已经切换就绪。

本发明的有益效果为,电路结构简单、额外功率消耗极低、没有复杂的反馈控制电路,针对特殊的具有开关容性负载的线性稳压器应用,实时优化环路频率补偿,保证在不同的负载环境下,线性稳压器具有最优的稳定性和负载瞬态响应时间,相对于传统频率补偿技术,本发明的线性稳压器的容性瞬态响应性能得到了极大的提高。

附图说明

图1为传统线性稳压器结构示意图,其中(a)采用P型调整管,(b)采用N型调整管;

图2为线性稳压器在半桥MOSFET驱动器中的应用以及其电容负载的示意图;

图3为MOSFET驱动的状态与线性稳压器容性负载的关系示意图;

图4为本发明所涉及的频率补偿技术在线性稳压器中的应用原理图;

图5为本发明的频率补偿技术一种实现方式示意图;

图6为本发明中描述的频率补偿技术的其他等同结构;

图7为本发明所述频率补偿技术的一种实际应用电路原理图;

图8为本发明中所涉及技术对线性稳压器容性负载瞬态响应的改善示意图。

具体实施方式

下面结合附图和实施例对本发明的具体实施方式进行描述:

本发明所涉及技术的一个电路实例如图7所示,本例为该技术在MOSFET驱动器中线性稳压器中的应用,具体电路结构为,本例由PMOS管M3、M4、M5、MP、MC,NMOS管M1、M2、M6,反相器X1、X2、X3,电流源IBIAS,基准电压源VREF电阻RC1、RC2,电容CC、CG构成。M1的栅极接VREF的正极,其源极接IBIAS的负极,其漏极接M3的漏极;基准电压源VREF的负极接地;电流源IBIAS的正极接地;M2的源极接IBIAS的负极,同时与M1的源极相连接,其栅极接稳压输出节点Vo,其漏极接M4漏极;M3的栅极接M4的栅极并与M3的漏极、M1的漏极相连接,其源极接电源VDD;M4的源极接电源VDD,其漏极接M2的漏极并与MP的栅极相连接;MP的源极接电源VDD,其漏极接稳压输出节点Vo;RC1、RC2、CC依次串联后RC1端接至稳压输出节点Vo,CC端接至MP的栅极、M2和M4的漏极;MC的源极接稳压输出节点Vo,其漏极接到RC1、RC2之间的节点,其栅极接至外部输入的开关脉冲信号X1、X2、X3三个反相器依次首尾相连接,即X1的输出接X2的输入,X2的输出接X3的输入,且X1的输入接开关脉冲信号X3的输出接M5、M6的栅极;M5、M6构成MOSFET驱动的末级反相器,其栅极相连接,其漏极相连接,M5的源极接稳压输出节点Vo,M6的源极接地;功率MOSFET的栅电容等效为CG,其一端接地,另一端接至M5、M6的漏极。

本实例中,M1、M2、M3、M4、IBIAS构成误差放大器,RC1构成补偿网络1,RC2、CC构成补偿网络2,MC为补偿切换开关,X1、X2、X3串联构成脉冲延时电路,MP为线性稳压器的调整管。CG为MOSFET MN的等效栅电容,M5、M6、CG构成了接入线性稳压器输出的脉冲容性负载。

本实例的工作原理为:

M1~M4构成一个典型的单级误差放大器,其同相输入端和反相输入端分别接至基准电压源VREF和稳压输出节点Vo,与调整管MP构成一个线性稳压器。可以得出该稳压器的低频增益为:

|Av|≈gm1ro3gmprop

其中gm1,gmp分别表示M1、MP的跨导,ro1,rop表示M1、MP的小信号输出阻抗,考虑其频率特性,在未加入补偿电路之前,系统包含两个极点,则系统的交流小信号增益可以表示为:

其中极点1位于误差放大器输出节点处,极点2位于线性稳压器输出节点Vo。极点1在引入米勒补偿后,远远低于极点2的位置,成为主极点,同时也引入了一个零点:

该零点位置通常处于极点1、极点2之间。因此在未加入电容负载CG之前,系统是稳定的,而当CG接入后,极点2的位置发生了变化,CG电容式节点处原有电容的百倍以上,此时极点的位置可能靠近甚至降至极点1与零点之间,这将导致环路的相位裕度的降低。

极点2的位置的表达式可以写作:

在引入补偿切换开关MC后,CG接入以前,MC关断使零点补偿电阻RC的值增大了,根据表达式可知,RC增大可以使零点频率位置降低。因此零点频率位置将随着MC的关断降低,随着MC的导通上升,利用信号控制MC的开关,可以使补偿零点的位置随着极点p2的位置变化同步移动。

由于MOSFET的栅电容CG的值是已知的,如果依据CG引入极点2变化量精确设计RC1、RC2的取值,可以保证当补偿零点始终低于或者靠近极点2的位置,无论负载电容CG是否接入稳压器负载中,系统始终有足够的相位裕量。

利用本发明中的技术,本实例中的电路的容性负载瞬态响应有一定程度的改善。通过软件仿真对比,其瞬态响应波形如图8所示,未使用该技术的瞬态响应较长,建立时间约6.6μs;使用该技术后,瞬态响应更快,建立时间约3.1μs。可见该频率补偿技术相对于传统频率补偿在线性稳压器的容性瞬态响应性能的改善幅度可超过50%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1