采用如碳化硅所制成的电加热元件的制作方法

文档序号:71080阅读:222来源:国知局
专利名称:采用如碳化硅所制成的电加热元件的制作方法
技术领域
本发明涉及电阻陶瓷加热元件,尤其,但却并不仅仅,适用于碳化硅的电加热元件。
背景技术
电阻加热是众所周知的处理过程。依据熟知的电气规则,电流会穿过产生热量的电阻元件。一组电阻加热元件包括具有电阻的多个碳化硅棒,其中电阻随着长度不同而变化。这些元件中能产生热量的大部分区域是在被称为“热区”的高阻抗部分,低阻抗部分则存在于产生较少热量被称为“冷端”的部分。这些棒通常是实心棒,管形棒或螺线切割管形棒。螺线切割管形棒的目的是为了增加穿过热区的电气路径的长度,并减少导电路程的截面区域,以便增加电阻。这种类型的典型棒是CrusiliteTM的X型元件和GlobarTM的SG棒。这种特性的螺线切割管形棒已经被人们了解了至少40年。
在这样的管形棒中,在任一热区边的冷端形成电连接。为符合一些目的,将接线端设置在一个末端是很合适的。因此人们知道提供一种具有双螺旋线的螺旋棒已经至少30年,其中棒的一个末端被裂开作为冷端的电接线端,其它末端则提供两个螺旋线之间的结点。这种类型的典型元件是CrusiliteTM的DS元件和GlobarTM的SGR或SR元件。
对CrusiliteTM元件(X,MF,DS和DM)的通用方法是使用金刚轮将螺旋槽切割在碳化硅管中。螺旋的节距取决于碳化硅管的电阻,和所需CrusiliteTM元件的电阻。越紧密的螺距,就会从所提供电子管中获得更高的电阻。对于双螺旋元件(DS或DM)会产生两个螺旋切割,起初相互为180度,在第一螺旋线弯曲部分之间具有第二螺旋的中间槽。螺旋线在末端由金刚锯切割并延伸开,切割末端成为进行电连接的接线端末端。
对于GlobarTM螺旋元件(SG,SGR)的制造,在燃烧前使用金刚钻在电子管中进行螺旋线的切割。对于双螺旋线元件(SGR)将使用相互为180度的双切割。在切割螺旋线之后,在控制最后电路的两阶段工序期间完成材料的燃烧。
所有这些元件(CrusiliteTMX,MF,DS,DM GlobarTMSG,SGR)都是单相元件,并广泛用于工业和实验室的燃烧室操作中,例如,温度在1000度到1600度之间的燃烧室中。
在需要高加热程度和加热单元的是3的倍数情况下,经常出现使用三相电源的情况。在三相中的每一相电源都相同的设置是非常合适的,因此单相元件通常被设置在3的复联端子中。另一方面,在所安装的元件数目并不是被3除尽的情况下可以使用三相碳化硅元件确保一个平衡的三相负载。碳化硅三相电子元件通常包括接合在一个相同电桥中的三个管脚。这些管脚通常布置在一个平面(这样元件具有板球棒形的外观),或布置在一个三角形中(这种形式有时称为牛奶管形式或Tri-U)。人们至少已经分别从1957年(见GB 845496)和1969年就知道这种板球棒型和Tri-U的配置。这类元件的制造通常需要单独制造元件的各个管脚,之后再连接到一个电桥上。过去也曾提出采用在整件上铸造来制造这类元件的方法,但整件的元件与市场中的不同。同时,也提出将三个螺旋切割元件合并到一个相同电的板球棒型设置。(见GB 1279478)。
众所周知,以通常U-形配置来合并成对的元件,使得元件的接线端都处在一个末端。一个这样的典型元件里是坎萨尔(Kanthal)U类型元件。(对其它U-型元件见专利文献如GB 838917和US 3964943)。这样的几个元件需要一个给定的加热操作。对于空间受到限制的应用,提供元件与电源连接的合适配置非常复杂的事情。而且,需要许多给这些元件提供电源的空穴。这些空穴会威胁加热设备热隔离的结构完整性,另外由于热量可以通过空穴或沿着导体传递出燃烧室,这对于热量的有效利用是不利的。GB 1123606中提出过一种所谓的“松鼠笼”条状元件配置。这些元件被安装并由耐火环隔开,通过螺旋体连接到桥接导体实现互连。这种布置过于复杂并包含许多电连接。

发明内容
本发明者已经意识到上述缺陷,并提出可以明显解决上述问题的加热元件,包括如下部件三个或以上的脚管,少于管脚数量的多个接线端部分,和提供管脚之间电连接的桥接部分。参照附图并根据随后的内容叙述,本发明的实质范围将表现在所附的权利要求
中。



图1是一种常规U-型元件的前视图。
图2是一种常规三相型电加热元件的前视图。
图3是一种常规三相型电加热元件的末端视图。
图4是一种常规单切割螺旋线电加热元件的侧视图。
图5是根据本发明一种四管脚扁平的电加热的侧视图。
图6是根据本发明一种四管脚,矩形排列的电加热的侧视图。
图7是图6中元件的末端视图。
图8是根据本发明的另外一种四管脚,矩形排列的电加热元件的平面图。
图9是图5中元件的平面图。
图10是根据本发明的一种四管脚,曲线排列的电加热元件的平面图。
图11是根据本发明的一种六管脚,电加热元件的平面图。
具体实施方式
图1中显示一种常规的U-型元件。通常这样的元件由碳化硅构成,包括配置在平面中的两个管脚2,它们由电桥3联接。管脚2具有限定元件热区的部分4,以及限定冷端的部分5。在末端6进行与远处电桥3的电连接。通常根据碳化硅棒的电阻率变化来设置热区4和冷端5的装置。(例如,通过浸渍硅合金到低电阻)。换句话说,或另外地改变电阻率,通过改变管脚截面区域也能产生同样的效果。
图2显示一种常规的三相板球棒型三相元件7,它与图1的U-型元件的制造方式相同。
图3是一种常规的Tri-U或牛奶管型三相元件8的末端视图。这样的元件采用与常规的板球棒型元件相同的技术制成,但三个管脚2按三角形列阵肩并肩地排列,并由电桥9联接。这样的配置比板球棒型的配置要更紧密。
图4为一种常规的单相螺旋形单切割元件10的侧视图。元件10包括具有螺旋形切割部分11和未切割部分12的一个碳化硅的电子管,其中螺旋形切割部分11限定元件的热端,未切割部分12限定冷端。螺旋形切割表示热区比未切割电子管具有更狭窄的电截面,也具有更长的有效长度,因此比同样长度的未切割电子管具有更高的电阻。冷端的材料通常与热区的材料相同,但它的电阻率(例如采用浸渍硅合金的方法)可以变得更低,或连接到具有低电阻率的材料以进一步增加热区与冷端之间的电阻比。
图5和图9显示本发明一种通常的扁平加热元件13。它具有四个管脚14,15,管脚14比管脚15长,并包括一个热区16和冷端17,冷端17的末端18实现与电源的连接。管脚15完全是热区。管脚14和15由电桥19串行地连接。这种配置使四个热区被引入到燃烧室中,或使得其它加热设备只需要两个接线端就足够了。电桥19可以完全在燃烧室的绝缘部分内或其它加热设备内。通过这种方式,绝缘只能由两个冷端17来打破,虽然一种通常包含四个单棒而燃烧室,将会由八个冷端打破,包含两个U-型元件的燃烧室将会由四个冷端所打破。
图6和图7中显示为用于水平固定设计的元件20,但并不排除应用在套筒21中。套筒21可以是电子管。元件20包括四个管脚14,15,它们与图5和图9中的管脚类似。管脚14,15大体平行并通常正方形阵列来排列,设置电桥19是为了两个较长管脚14可以肩并肩地设置到正方形阵列的一边。这个配置使得元件的水平固定要比其它的设置要容易。阻塞22,23支撑套筒21中的电桥19,阻塞23还可以支撑管脚14。虽然只显示了一个正方形阵列的管脚,但将意识到可以使用矩形阵列或其它四边形阵列,这取决于所要安置元件的设备。该元件四个管脚的固定关系消除了现有元件存在的潜在危险,即元件的顶部装置落到底部装置上,并产生短路的情况。由于会出现这种危险情况,通常在这样的水平设备中只使用一种单U-型元件。
图8显示另外一种电桥19的设置,其中的一个电桥以对角线穿过阵列的方式设置。这意味着进行连接的管脚14要以对角线的方式排列。这种配置要优于图7的配置,在这样的环境中管脚能够垂直地排列。
图10显示一个元件24,它包括平行设置并设置在曲线阵列上的四个管脚。多个这样的曲线元件可以应用在曲线加热装置(线26所示)的构造中,例如符合管状燃烧室的曲度。
图11显示一种三相元件27。元件27包括管脚14,15,管脚14比管脚15长。管脚设置在一般为六角列阵中。电桥19将管脚以成对的长管脚14和短管脚15的形式连接在一起。电桥28将这些对连接在一起。在使用中三相电源连接到管脚14的接线端部分,并经过管脚14,电桥19,和到电桥28的管脚15连接,其中电桥28构成三相配置的星形连接。这种配置比通常Tri-U的配置更优越,通常Tri-U配置(图3)需要低电压和高电流,因此需要一个昂贵的电源供应,特别是在热区出现短路时,和/或大的管脚直径情况下。由于一个类似负载的Tri-U元件将有三个管脚,每个管脚的直径为一般情况的两倍。因此串联的六个管脚的电压将会更高。例如,一个具有热区长度500mm,管脚直径40mm的Tri-U元件,可能具有0.4Ω的相位电阻,需要电源额定值在50V(相位电压)和125A。相比之下,图11中所示的三相六管脚元件具有相位电阻1.6Ω,需要电源额定值为100V(相位电压)和62.5A。总之,在同等Tri-U的大约两倍电压和一半电流的情况下就可以运行。
图5-11的所有配置中,所需接线端的数量比元件管脚的数量要少。这比通常配置中使用连接的数量要少,并减少需要提供在燃烧室内或绝热材料中的空穴的数量。此外,通过提供元件管脚的固定配置,就有可能使元件管脚的配置比通常燃烧室中的配置更紧密,这是因为已经消除元件移动的担心和随之发生的短路危险。这种紧密配置比通常的配置能获得更高的电源密度。在管脚和电桥之间进行连接是一种合适的方法,它将会保持理想的操作温度。
在图5-11的所有配置中使用偶数数字的元件管脚。这是非常方便的,因为它使接线端位于元件的一边,但本发明在配置接线端的另一面使用奇数数字的元件管脚。
我们将意识到管脚的热扩张特性能理想地匹配以减小元件受热时电桥部分的运动。例如参照图6,如果管脚14比管脚15的扩张大,则电桥19可能会被拉出阻塞23。通过匹配管脚14和管脚15的热扩张特性(例如选择热区16的长度,或使用不同热扩张系数的材料),就能减少这种危险。
另一种方式,很多应用中使一些管脚中具有长的热区,以提供加热的背景级别,使其它管脚比所述的热区要短,以提供额外的定位加热。例如,图5中,如果管脚14的热区16比管脚15长,则由具有管脚15产生的额外定位加热的热区16将会提供一个通用化的加热级别。
作为一个应用,其中这样的不均匀热区的长度将会是有用的,这是在陶瓷燃烧室中向基座安装更高功率元件的标准实践,目标是提供更大温度的均匀性。
在其它这种使用不均匀功率分布类型的应用中,包括电铸加热器,其中典型的设计为具有下限一半功率的2/3,和上限一半功率的1/3。
在上面叙述中是参照碳化硅作为电加热元件的材料进行叙述。但很显然本发明应用在任何电导体陶瓷材料中。在这个说明书中,术语“电传导陶瓷”将解释为任何非金属无机材料的含义,这些材料将能充分程度的导电,并具有合适的热性能,能够作为电加热元件来使用。
权利要求
1.一种电阻陶瓷加热元件,包括a)三个或以上的陶瓷管脚,这些管脚包括其中至少产生大部分电加热的元件区域,至少一个管脚是完全有效的热区,至少两个管脚的每个管脚包括一个热区(16)和一个冷区(17);b)多个管脚接线端部分(18),其少于管脚数目并且邻近冷区设置,以用于提供电源连接;以及c)在管脚之间提供电连接的陶瓷桥接部分(19)。
2.如权利要求
1所述的电阻陶瓷加热元件,其特征在于所述管脚的热扩张特性相互匹配,以减少所述元件受热时该桥接部分的移动。
3.如权利要求
1所述的电阻陶瓷加热元件,包括四个管脚,两个接线端和三个桥接部分。
4.如权利要求
3所述的电阻陶瓷加热元件,其特征在于所述管脚充分直立和平行,设置成大致矩形排列。
5.如权利要求
4所述的电阻陶瓷加热元件,其特征在于所述接线端为对角的设置。
6.如权利要求
4所述的电阻陶瓷加热元件,其特征在于所述接线端肩并肩的沿矩形排列的一边来设置。
7.如权利要求
4所述的电阻陶瓷加热元件,其特征在于所述管脚以大致正方形的排列来设置。
8.如权利要求
1所述的电加热元件,其特征在于所述管脚充分直立和平行,并设置成弧形,借此多个这样的元件就可以构成一个曲线。
9.如权利要求
1所述的电阻陶瓷加热元件,所述陶瓷桥接部分形成电桥,还包括一个至少与三个管脚相连的电桥,该电桥作为三相或更多相的电源的星形连接。
10.如权利要求
9所述的电阻陶瓷加热元件,具有六个管脚,三个接线端和四个桥接部分,一个桥接部分作为一个三相电源的星形连接。
11.如前面权利要求
中任一所述的电阻陶瓷加热元件,其特征在于一些所述管脚中的热区比其它所述管脚中的热区长,借此在所述一些管脚中的热区提供整体加热,而所述的其它管脚则提供定位加热。
专利摘要
一种电阻陶瓷加热元件包括a)三个或以上的陶瓷管脚,这些管脚包括元件中至少产生大部分电加热(热区)的元件区域,至少一个管脚是完全有效的热区的管脚,以及至少两个管脚,每个管脚各包括一个热区和一个冷区;b)少于管脚数目的多个管脚接线端部分,用于提供电源连接;和c)在管脚之间提供电连接的陶瓷桥接部分。
文档编号H05B3/64GKCN1163107SQ00816720
公开日2004年8月18日 申请日期2000年5月26日
发明者J·G·贝特森, J G 贝特森 申请人:坎塔尔有限公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1