一种多通道信号同步与分集合并装置及方法与流程

文档序号:13168464阅读:416来源:国知局
一种多通道信号同步与分集合并装置及方法与流程

本发明涉及无线通信领域,具体涉及一种多通道信号同步与分集合并装置及方法。



背景技术:

近几年来,在通信领域,很多的技术都得到了发展和应用,通信质量问题也得到越来越多的关注。当信号在实际的无线通信系统中传输时,多径传输的存在会而使信号产生衰落,衰落会影响通信的质量,多径效应是影响无线通信质量的一个重要因素,多径效应通常会影响信号的传输,然而分集技术可以有效的减弱多径效应带给无线信道的不良的影响。使用分集技术可以获得分集增益,通过获得分集增益来提高通信的质量。

各种分集技术中,最大比合并方法的抗衰落特性最佳,是数字信号处理技术和数字接收技术的主要应用方式。实现最大比合并的关键技术是合并前各路信号要完全同频同相。

目前这种同频同相调整的方法主要有差模较相法,双环锁相法等,差模较相法针对实际传输过程中频率影响相对较小,相位不同导致的累积效应较大的问题,利用锁相环路对两路输入信号进行同相调整。这种方法最突出的问题是忽略了载波频率漂移和传输过程中存在的多普勒频偏,并不能彻底的进行同频同相调整;此外该方法还受制于调制类型,并且只能完成两路信号的相位调整,不满足多通道信号同步与分集合并的要求。

而双环锁相法中,采用差模环来完成2路信号同频同相的锁定,采用共模环来抑制载波频率的漂移和多普勒频偏,较差模较相法更优,能同时完成频相的调整,但同样只适合于两通道信号分集合并的情况。

当涉及到多通道信号的同步时,普通锁相环难以在同一时间内完成多路信号同频同相的处理,会造成合并后信噪比急剧下降的不良后果,影响通信质量。



技术实现要素:

本发明的目的在于提供一种多通道信号同步与分集合并装置及方法,实现简单且同步与分集合并效果较好,扩大了互相关鉴相算法的应用范围,使合并后的信号获取较高的合并增益。

实现本发明目的的技术解决方案为:一种多通道信号同步与分集合并的装置,包括信噪比估计及权重计算模块、正交下变频模块、低通滤波模块、内环互相关鉴相模块、同相i路最大比合并模块、正交q路最大比合并模块、外环鉴相模块、环路滤波模块和本地nco模块;其中:

设通道数为n,信噪比估计及权重计算模块接收n个通道的输入信号,并与同相i路、正交q路最大比合并模块相连,根据各路信噪比计算出权重系数传输给最大比合并模块;

正交下变频模块、低通滤波模块相连分别与i路及q路最大比合并模块连接,n个正交下变频模块分别接收n通道中频信号,接收到的n通道中频信号任选一路作为参考信号,设为第q路,1≤q≤n;将每路信号一分为二分别输入乘法器,与各支路对应的本地nco模块产生的同相正交支路的本振信号相乘,nco的初始频率由已知的载波中心频率确定;相乘之后的输出信号经过低通滤波模块滤除高频分量,得到n路基带的i路信号和n路基带的q路信号,分别送至i路最大比合并模块和q路最大比合并模块进行多路信号的合并处理,得到多通道信号的合并输出;

n个正交下变频模块及低通滤波模块还与n-1个内环互相关鉴相模块相连,n个正交下变频模块及低通滤波模块输出n路基带的i路信号和n路基带的q路信号,将除参考信号即第q路之外的每通道信号,包括i路和q路,与参考信号支路的i路q路信号,共四个支路的信号,分别输入对应的互相关鉴相模块,得到该路信号与参考支路信号的鉴相误差;完成n-1条支路与参考支路的互相关鉴相,需要n-1个互相关鉴相模块,对应输出n-1个鉴相误差;

n-1个互相关鉴相模块分别与n-1个环路滤波器相连,鉴相误差经环路滤波器处理后送给对应的n-1个nco模块,调整除控制参考支路的n-1个nco的输出频率;

i路及q路最大比合并模块和外环鉴相模块相连,得到的鉴相误差经环路滤波器处理后送给n个nco模块,调整n个支路的nco输出频率。

所述多通道信号同步与分集合并方法,对接收到的多通道信号的处理步骤如下:

接收n通道分集信号;根据所述多路分集信号,估算每路信号信噪比;选择其中任一作为参考信号支路;

对每路信号进行正交下变频,即由本地nco产生初始正弦及余弦载波信号,和接收信号输入到混频器,下变频后每路信号得到同相(i路)和正交(q路)两路信号,进入低通滤波模块,滤除高频信号,得到基带的同相正交支路信号。

将参考信号支路的i路q路信号与其他n-1条支路信号i路q路信号分别进行互相关鉴相,输出鉴相误差经过环路滤波器后控制各自的本地数控振荡器(除参考支路外的n-1个nco)产生新的频率控制字,改变nco输出频率。

将正交下变频及低通滤波后的所有i支路的信号输入到i路最大比合并模块,合并权重由信噪比估计算法的结果决定;同样的,将所有将正交下变频及低通滤波后的q支路信号输入到q路最大比合并模块,合并权重与i路情况相同。对合并后i路q路输出结果进行共模环鉴相,鉴相结果经过环路滤波器后控制各自的本地数控振荡器(nco)(包括参考支路在内的n个nco)产生新的频率控制字,改变nco输出频率。

本地nco的频率控制字还由载波中心频率所控制。

参见图2,下面以图中所选定的参考信号s2和其余任一支路(本处选择s1)为例进行说明互相关鉴相算法。假设接收到的信号为:

s1(t)=acos(ω1t+φ(t)+θ1)+n1(1)

s2(t)=acos(ω2t+φ(t)+θ2)+n2(2)

式中,a为两路信号的幅度(经agc调整之后两个信号幅度相等),ω1、ω2分别为两路信号的中心频率,θ1、θ2分别为两路信号的初始相位,φ(t)代表调制信息。

对两路信号分别进行正交下变频,nco提供同相、正交支路,初始频率由中心载波频率确定,表示如下:

nco1同相支路:

i1=2cos(ωt)(3)

nco1正交支路:

q1=2sin(ωt)(4)

nco2同相支路:

i2=2cos(ωt)(5)

nco2正交支路:

q2=2sin(ωt)(6)

信号1经过正交下变频后变为:

同相支路:

i1=acos[(ω1+ω)t+φ(t)+θ1]

+acos[(ω1-ω)t+φ(t)+θ1]+2n1cos(ωt)(7)

正交支路:

q1=asin[(ω-ω1)t-φ(t)-θ1]

+asin[(ω1+ω)t+φ(t)+θ1]+2n1sin(ωt)(8)

信号2经过正交下变频后变为:

同相支路:

i2=acos[(ω2+ω)t+φ(t)+θ2]

+acos[(ω2-ω)t+φ(t)+θ2]+2n2cos(ωt)(9)

正交支路:

q2=asin[(ω-ω2)t-φ(t)-θ2]

+asin[(ω2+ω)t+φ(t)+θ2]+2n2sin(ωt)(10)

低通滤波后得到:

信号1:

i1'=acos[(ω1-ω)t+φ(t)+θ1]+n’1i(11)

q1'=asin[(ω-ω1)t-φ(t)-θ1]+n’1q(12)

信号2:

i'2=acos[(ω2-ω)t+φ(t)+θ2]+n'2i(13)

q'2=asin[(ω-ω2)t-φ(t)-θ2]+n'2q(14)

将两路信号进行互相关处理:

f1=i1'*i'2+q1'*q'2=a2cos[(ω2-ω1)t+θ2-θ1]+ni(15)

f2=q1'*i'2-i1'*q'2=a2sin[(ω2-ω1)t+θ2-θ1]+nq(16)

对其进行反正切鉴相(arctan(f2/f1)),得到误差信号(ω2-ω1)t+θ2-θ1,本处也可采用正弦鉴相(f1·f2)或者正切鉴相(tan(f2/f1)),相应的误差信号分别为a4[(ω2-ω1)t+θ2-θ1]和(ω2-ω1)t+θ2-θ1。误差信号通过环路滤波器,得到控制信号,控制本地的nco2,使其产生新的频率控制字,进而完成合并前信号1和信号2的同频同相调整。

对其余支路的处理与之相同,分别与参考支路作互相关处理,得到的鉴相误差为(ωi-ω1)t+θi-θ1,i=2,3,...n(本处以反正切鉴相算法进行说明),i为除参考信号外的任一支路。通过环路滤波器得到nco的控制信号,控制各自的nco产生新的频率控制字,最终使各路信号下变频低通滤波后都与参考支路同频同相。

完成两路信号同频同相调整后即可进行最大比合成。通过接收信号信噪比计算的结果确定每路信号合并时的权重,下面具体说明合并算法:

设下变频低通滤波后各路信号分别为i1,i2,...,in及q1,q2,...qn,信噪比估计模块得到得两路信号信噪比分别snr1,snr2,...,snrn。当各路信噪比的值不是差距很大(小于10db)时,适当的加权函数c1,c2,...,cn可由下式定义:

c1+c2+…+cn=1(18)

由式(17)和式(18)可以计算出加权系数。将各路加权系数与下变频低通滤波后的信号输入最大比合并模块,对i路q路分别进行合并:

i=c1i1+c2i2+…cnin(19)

q=c1q1+c2q2+…+cnqn(20)

最大比合并后得到同相和正交两路输出信号,一路输出供后续信号处理,另一路进行i路q路的鉴相,即所述共模环鉴相或外环鉴相。假设差模环已经锁定,则输入鉴相器的信号可表示为:

i=acos[(ωc-ω)t-φ](21)

q=asin[(ωc-ω)t-φ](22)

采用正弦鉴相(也可采用正切或反正切鉴相),得

当α很小时,sinα≈α,由此得到共模环鉴相误a2[(ωc-ω)t-φ]。鉴相误差经环路滤波后控制环路中每个nco,完成与载波的同步,抑制载波频率的漂移和多普勒频偏。

在共模环与差模环的共同作用下完成合并前信号同频同相的调整,进而进行最大比合并。

本发明与现有技术相比,其显著优点:(1)可以完成多通道信号的同频同相调整,通过多路并行工作的n-1个差模环,使除参考通道外的其他n-1条通道信号在合并前均与参考支路信号同频同相。对通道数没有限制,可以同时并行处理,适用范围广。(2)n-1个差模环中,采用互相关鉴相算法,不受限于调制方式;并且能同时考虑到传输频率和多普勒频移的影响。(3)能获得较大的合并增益,提高合并后的信噪比。通过公式可计算得,若n路等信噪比支路合并,合并后信噪比为合并前的倍,从而提高了通信质量。

附图说明

图1为本发明多通道信号同步与分集合并方法总体框图。

图2为以三通道信号为例,给出一种信号同步与分集合并的细节框图。

图3为互相关鉴相算法框图。

图4为以三通道单频信号的合并为例进行仿真时差模环1的鉴相误差曲线。

图5为以三通道单频信号的合并为例进行仿真时差模环2的鉴相误差曲线。

图6为以三通道单频信号的合并为例进行仿真时共模环的鉴相误差曲线。

具体实施方式

下面结合附图对本发明作进一步描述。

一种多通道信号同步与分集合并装置,如图1和图2所示,包括信噪比估计及权重计算模块,正交下变频及低通滤波模块,互相关鉴相模块,最大比合并模块,外环鉴相模块,环路滤波模块,本地nco模块。

所述差模环,即内环,由正交下变频模块及低通滤波模块,内环互相关鉴相模块及环路滤波模块,本地nco模块构成。

所述共模环,即外环,由正交下变频及低通滤波模块、最大比合并模块、外环鉴相及环路滤波模块,本地nco模块构成。

所述基于互相关鉴相得多通道信号同步与分集合并的方法,对接收到的多通道信号进行处理的步骤包括:

步骤一:接收n通道信号,记为si(t),i=1,2,...,n。信号可表示为

si(t)=acos(ωit+φ(t)+θi)+ni(24)

式中,a为信号的幅度,ωi为信号的中心频率,θi分别为信号的初始相位,φ(t)代表调制信息。假设接收到的信号已经完成agc控制,即每路信号幅度均相同,且已将射频信号下变频至中频信号。选定其中任一通道信号作为参考信号,设为第q路,1≤q≤n。

步骤二:信噪比估计及权重计算模块中对每路信号进行信噪比估计,并根据信噪比估计的结果计算每路信号合并时的权重,其算法如下:

信噪比估计采用二阶四阶矩方法。设第i路接收信号的二阶矩为:

四阶矩为

式中,si(n)为接收到的任一通道信号的离散形式,a为信号的幅度,σ2为高斯白噪声方差,则信噪比可表示为snr=a22

联立(25)、(26)解得

实际中,二阶、四阶矩是由接收信号的时间平均来计算的,其估计值为

信噪比估计值为

由此得到各通道信噪比估计结果snr1,snr2,...,snrn,可确定各路信号合并时的加权系数c1,c2,...,cn:

步骤三:正交下变频及低通滤波模块中对各通道接收信号进行正交下变频和低通滤波处理。每路nco各自产生同相和正交两路信号,分别与接收信号进行混频,其中,本地nco的初始频率控制字由已知载波中心频率产生。

第i路对应的nco产生的初始同相正交支路信号如下所示:

同相支路:

incoi=2cos(ωt)(33)

正交支路:

qncoi=2sin(ωt)(34)

式中,ω为nco初始频率,即为已知的载波中心频率。

信号i经过正交下变频后变为:

同相支路:

正交支路:

低通滤波后得到:

同相支路:

ii=acos[(ωi-ω)t+φ(t)+θi]+nii(37)

正交支路:

qi=asin[(ω-ωi)t-φ(t)-θi]+niq(38)

步骤四:将正交下变频及低通滤波后的参考信号与其他通道信号分别在对应的互相关鉴相模块中进行互相关鉴相处理,鉴相误差通过环路滤波器后产生各自nco的控制信号,改变nco的输出频率,进而使下变频低通滤波后其余通道信号频率逐渐靠近参考信号,最终使合并前的信号与参考信号同频同相。互相关鉴相原理框图如图3所示。根据图3,简要说明互相关鉴相处理的过程。假设第2通道信号为参考信号。

由步骤三可知,第i个通道信号经正交下变频和低通滤波后得到的同相及正交支路信号分别可表示为:ii,qi。具体公式如式(37)、(38)所示。

通道1信号和通道2信号作互相关:

f1i=i1*i2+q1*q2=a2cos[(ω2-ω1)t+θ2-θ1]+n'i(39)

f1q=q1*i2-i1*q2=a2sin[(ω2-ω1)t+θ2-θ1]+n'q(40)

对通道3与通道2信号、通道4与通道2信号,直至通道n与通道2信号同样的作互相关处理,给出普适公式如下所示:

fii=ii*i2+qi*q2=a2cos[(ω2-ωi)t+θ2-θi]+n’ii(41)

fiq=qi*i2-ii*q2=a2sin[(ω2-ωi)t+θ2-θi]+n’iq(42)

式中,i=1,3,...n。fii和fiq分别为通道2信号(参考信号)与第i个通道信号作互相关后的同相正交结果输出。对其进行反正切鉴相(arctan(fiq/fii)),得到误差信号(ω2-ωi)t+θ2-θi,本处也可采用正弦鉴相(fiq·fii)或者正切鉴相(tan(fiq/fii)),相应的误差信号分别为a4[(ω2-ωi)t+θ2-θi]和(ω2-ωi)t+θ2-θi。误差信号通过环路滤波器,得到控制信号,控制本地第i个nco,使其产生新的频率控制字,进而完成合并前第i个通道信号和2通道信号同频同相的调整。最终使各路信号下变频低通滤波后都与参考支路同频同相。

步骤五:将正交下变频及低通滤波后的所有的(n路)同相支路信号与所有正交支路信号分别输入最大比合并模块,同时输入的还有步骤二所述加权系数c1,c2,...,cn,分别进行i路q路的最大比合并。合并算法如下所示:

i=c1i1+c2i2+…cnin(43)

q=c1q1+c2q2+…+cnqn(44)

式中,c1,c2,...,cn为权利要求四中所述各路信号合并时的加权系数,i1,i2,...,in为n通道接收信号经正交下变频、低通滤波后得到的同相支路信号;q1,q2,...,qn为n通道接收信号经正交下变频、低通滤波后得到的正交支路信号;i和q分别为合并之后的同相支路信号和正交支路信号,将其输出供后续信号处理,同时将合并后的i路q路信号分别输入外环鉴相模块。

步骤六:在外环鉴相模块对合并后的i路和q路信号再次进行鉴相,鉴相误差经环路滤波后控制每个通道对应的nco,以抑制载波频率漂移。假设已经完成互相关鉴相环路的锁定,则输入鉴相器的信号可表示为:

式中,ωc为载波中心频率,ω为经合并处理过信号的频率,代表相位信息。由于载波频率存在漂移以及多普勒频偏的存在,ω和ωc之间仍存在一定偏差,需要通过鉴相环路来处理。

采用正弦鉴相(也可采用正切或反正切鉴相),得

当α很小时,sinα≈α,由此得到鉴相误差鉴相误差经环路滤波后控制环路中每个nco,完成与载波的同步,抑制载波频率的漂移和多普勒频偏。

在外环共模环和n-1个内环差模环全部锁定后,即完成多通道信号同步与分集合并。

下面通过具体仿真实例说明本发明的可行性。以三通道单频信号的合并为例进行说明。载波中心频率为70mhz,三通道信号初始频偏分别为10khz,20khz,30khz,初始相位分别为0,π/3,2π/3。信噪比均为30db。参考图2,以2信号作为参考信号,1信号和3信号分别与2信号作互相关,2个差模环的鉴相结果分别控制1信号和3信号的nco,使其都与2信号同频同相;根据各路信噪比计算每路信号合并时的权重,最大比合并后将进行整个的共模环鉴相,与载波同步;仿真过程中给出了下变频低通滤波后,即合并前每路信号的信噪比以及合并后信号的信噪比(均为基带信号的信噪比),如下所述。

合并前:

snr1=28.0943;snr2=28.4945;snr3=28.0032(单位:db)

合并后:

snr=32.9508(单位:db)

图4,图5,图6给出了两个差模环及共模环的鉴相误差曲线。

由仿真结果可知,差模环鉴相误差和共模环鉴相误差最终都趋于0,说明完成了三信号同频同相的调整,即信号的同步;根据理论计算的结果,三路等信噪比信号合并,合并后信噪比应上升与仿真计算结果4.75db基本吻合。由此证明了本发明的实际可行性。

本发明能有效利用所有通道接收的信号信息;获得较大的合并增益,提高合并后的信噪比;差模环中采用基于互相关的鉴相算法,不受限于调制方式,并能同时考虑到传输频率和多普勒频移的影响;对通道数没有限制,多路互相关鉴相同时并行处理,适用范围广。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1