粘接剂和粘接膜的制作方法

文档序号:8026879阅读:360来源:国知局
专利名称:粘接剂和粘接膜的制作方法
技术领域
本发明涉及例如半导体元件和柔性配线板之间电连接所采用的各向异性导电性粘接剂。
图8(a)的符号130表示半导体元件,该半导体元件130具有元件本体131,配置在元件本体131表面上的配线膜135,配线膜135上配置的、在给定位置形成开口139的保护膜137。
图8(a)的符号110表示与半导体元件130连接的柔性配线板,该配线板110具有基膜111和在基膜111上形成的配线膜115。
柔性配线板110和半导体元件130的配线膜115、135分别具有后述连接所采用的连接部分115a、135a和插入柔性配线板110内、半导体元件130内的、另一端分别与连接部分115a、135a连接的配线部分115b、135b。
其中,在半导体元件130的连接部分135a上,配置保护膜137的开口139。在该开口139内,配置直立于连接部分135a上形成的凸起136,该凸起136的顶端从保护膜137表面突出。
连接上述柔性配线板110与半导体元件130,如图8(a)所示,首先,将形成半导体元件130的保护膜137一侧的面和配置柔性配线板110的配线膜115一侧的面相互对置,在其间配置由加入了导电性粒子125的粘接剂形成的粘接膜120。
接着,半导体元件130的凸起136以与柔性配线板110的配线膜115的连接部分115a对置的方式放置,同时用半导体元件130和柔性配线板110夹持粘接膜120,在对整体加压的同时进行加热,通过加热粘接膜120进行软化,软化的粘接膜120从半导体元件130的凸起136顶端挤出,剩下的粘接膜120被连接部分115a和凸起136夹持。
图8(b)表示该状态,被凸起136和连接部分115a夹持的粘接膜120中的导电性粒子125通过挤压卡在凸起136顶端表面和连接部分115a的表面中,通过该导电性粒子125连接配线膜115和135。
图8(b)的符号100表示加热、挤压后冷却得到的电器装置。
粘接膜120如果在加热后进行冷却,将会固化,因此,该电器装置100中,半导体元件130和柔性配线板110通过导电性粒子125进行电连接,不仅如此,还产生机械性连接。
但是,柔性配线板110具有柔软性,因此,从与凸起136连接的连接部分115a分离的部分在加热和挤压时,被压紧在半导体元件130的保护膜137表面上,半导体元件130的保护膜137和柔性配线板110的配线膜115形成的面紧密连接。
粘接膜120所采用的导电性粒子125通常平均粒径比半导体元件130的保护膜137的厚度大,并且由坚固的金属制成,因此,如果半导体元件130的保护膜137的表面和柔性配线板110的表面紧密连接,通过挤压,有时导电性粒子125会突破保护膜137。
图8(b)的图面右方是表示导电性粒子125突破保护膜137的状态的模型截面图,在柔性配线板110和半导体元件130紧密连接的部分,如果配线膜115、135各自的配线部分115b、135b相对放置,突破保护膜137的导电性粒子125与配线部分115b、135b接触,构成电器装置100的配线膜115、135会发生短路。
伴随着电子产品的高密度化,半导体元件130的配线膜135的模式近年来已微细化,突破保护膜137的导电性粒子125如果侵入了这些配线膜135之间,还存在相邻的配线膜135彼此通过导电性粒子125发生电连接,半导体元件130的配线膜135彼此发生短路。
而且,如果不将粘接剂成形为膜状,直接涂覆在柔性配线板110表面上,也可能用于与半导体元件130的连接,但是,上述导电性粒子125在糊状粘接剂中没有均一分散,容易沉降,因此,如果采用这类粘接剂容易发生连接不良。
为了解决上述课题,本发明是含有绝缘性粘接成分和分散在上述绝缘性粘接成分中的导电性粒子的粘接剂,其特征在于上述导电性粒子的平均直径在10nm以上90nm以下。
本发明是粘接剂,其特征在于上述粘接剂中所含的上述导电性粒子的比表面积在5m2/g以上80m2/g以下。
本发明是粘接剂,其特征在于在以上述绝缘性粘接成分和上述导电性粒子的总的体积为100时,上述粘接剂中所含的上述导电性粒子的总体积超过0.1但不到12。
本发明是粘接剂,其特征在于上述导电性粒子是由镍、钯、铜、铁、银构成的组中选择的至少一种金属为主要成分。
本发明是粘接剂,其特征在于上述绝缘性粘接成分含有环氧树脂和咪唑类潜在性固化剂。
本发明是粘接剂,其特征在于上述粘接剂在25℃的粘度为1000Pa·s以下。
本发明是粘接膜,它具有绝缘性粘接成分和上述绝缘性粘接成分中分散的导电性粒子,并且是上述导电性粒子的平均直径在10nm以上90nm以下的粘接剂成形为膜状的粘接膜。
发明的实施方案下面对本发明所涉及的粘接剂进行详细说明。
相对作为热固性树脂的一种的萘型环氧树脂(日本ィンキ化学(株)社制的商品名“HP4032D”)30重量份加入相同的作为热固性树脂的一种的缩水甘油胺树脂(住友化学(株)社制的商品名“ELM100”)18重量份,将固化这两种热固性树脂的潜在性固化剂(旭化成环氧(株)社制的商品名“HX3721”,平均粒径为5微米)50重量份和偶合剂(日本ュニカ-(株)社制的商品名“A-187”)2重量份并混合,制成糊状的绝缘性粘接成分。
接着,在该绝缘性粘接成分中加入导电性粒子并混合,制成所含的导电性粒子的体积占整体的2体积百分比的本发明的粘接剂。这里作为导电性粒子采用由镍制成的、其平均粒径为10nm的粒子。
虽然粘接剂中分散有潜在性固化剂,但是,由于常温下潜在性固化剂不溶解,因此,不会引起环氧树脂发生聚合反应,粘接剂也不发生固化。
下面说明采用本发明粘接剂贴合半导体元件和柔性配线板的工序。


图1的符号10和图2的符号30分别表示贴合所采用的柔性配线板和半导体元件。其中,图1所示的柔性配线板10具有基材11和在基材11表面上形成的配线膜15。这里,作为基材11,采用膜厚45微米的聚对苯二酸乙二醇酯膜,作为配线膜15采用将膜厚25微米的铝箔形成给定形状的图案的配线膜。
另一方面,图2中表示的半导体元件30具有元件本体31,元件本体31表面上配置的配线膜35和在元件本体31的配线膜35配置的面上配置的、在给定位置形成开口39的保护膜37。这里,作为半导体元件30采用厚度为0.3毫米,形成配线膜35的面的边长为4毫米大小的正方形形状的元件。
这些半导体元件30和柔性配线板10的配线膜15、35分别具有后述连接所采用的连接部分15a、35a和插入柔性配线板10、半导体元件30内的、其另一端与连接部分15a、35a连接的配线部分15b、35b。这里,连接部分15a、35a和配线部分15b、35b每个分别图示一个。
其中,在半导体元件30的连接部分35a上,配置保护膜37的开口39。在该开口39内,配置直立于连接部分35a上形成的凸起36,凸起36的顶端从保护膜37表面突出。这里,在保护膜37上形成其底面为边长100微米的正方形形状的开口39后,通过电镀法,在开口39内形成凸起本体,并且在凸起本体顶端表面上形成由金形成的电镀层,由该电镀层和凸起本体形成凸起36。
在将上述柔性配线板10与半导体元件30贴合时,首先,在柔性配线板10的配线膜15形成的面上涂覆在上述工序制备的本发明的粘接剂,形成粘接剂层。
图3(a)的符号20表示其粘接剂层,在该状态下,与柔性配线板10的彼此相邻的配线膜15之间填充该粘接剂层20,配线膜15被粘接剂层20埋没。
接着,使半导体元件30的保护膜37形成的一侧表面和柔性配线板10的粘接剂层20形成的一侧表面相对(图3(b)),半导体元件30的凸起36和柔性配线板10的连接部分15a相对,在处于这种位置的同时,凸起36顶端和粘接剂层20的表面紧密相接。
如果在对整体加压的同时进行加热(即,半导体元件30整体以9.8N的力加压的同时,在210℃加热5秒钟),通过加热,粘接剂层20的粘度下降,粘度下降的粘接剂层20的一部分通过加压从凸起36的顶端表面挤出,残留的粘接剂层20被凸起36顶端和连接部分15a夹住,该粘接剂层20中的导电性粒子25卡在凸起36顶端表面和连接部分15a表面中。
通过加热,粘接剂层20升温到给定温度以上,粘接剂层20中的潜在性固化剂熔融。熔融的潜在性固化剂一旦与热固性树脂混合,潜在性固化剂和热固性树脂反应,热固性树脂发生聚合,结果,粘接剂层20固化。柔性配线板10和半导体元件30通过固化的粘接剂层20贴合。
图3(c)的符号1表示通过贴合柔性配线板10和半导体元件30得到的电器装置,该电器装置1的配线膜15、35通过凸起36形成电连接。
由于粘接剂层20具有绝缘性,柔性配线板10和半导体元件30通过粘接剂层20不仅产生机械性连接,而且,它们的配线膜15、35中,配线部分15b、35b相互绝缘。
粘接剂所采用的导电性粒子的平均直径在10nm以上90nm以下,因此,即使在半导体元件保护膜的膜厚小的情况下,通过加压导电性粒子也不会突破保护膜。
在上述工序中制成的粘接剂和电器装置1作为实施例1,采用实施例1的粘接剂和电器装置1,进行由如下表示的“粘度”、“导电性粒子分散性试验”、“导通阻抗试验”、“短路试验”组成的评价试验。[粘度]实施例1的粘接剂的粘度采用回转粘度计测定(JIS K7117-2)。此时,在温度25℃、回转粘度计转子的回转数20/分钟的条件下进行测定。[导电性粒子分散性试验]在室温下将实施例1的粘接剂放置1周后,目测确定粘接剂中的导电性粒子有无分离。
以看不到导电性粒子分离的为“○”、导电性粒子分离并发生沉降的为“×”进行评价。[导通阻抗试验]测定实施例1的电器装置1的导通阻抗,接着,在温度85℃、相对湿度85%的高温、高湿条件下保存500个小时后,再次测定该电器装置1的导通阻抗。这时,以各导通阻抗的测定值在不到100mΩ时为“○”、100mΩ以下500mΩ以下时为“△”、超过500mΩ时为“×”进行评价。[短路试验]研究在上述“导通阻抗试验”中高温高湿保存后的电器装置1的配线膜15、35有无短路。以没有短路的为“○”、发生短路的为“×”进行评价。该评价结果记载于下面的表1。
进而,这些评价结果全部为“○”的为“○”,一个以上为“×”的为“×”。
这些各评价试验和综合评价的结果与导电性粒子25的比表面积一起记载于下面的表1。
表1导电性粒子的平均直径、含量、比表面积和各试验结果
<实施例2~4>
代替上述实施例1中采用的平均直径10nm的导电性粒子25,分别采用平均直径为35nm、50nm、90nm三种导电性粒子25,以与实施例1相同的工序和相同的配合比例制备实施例2~4的粘接剂。并采用实施例2~4的粘接剂,以与实施例1同样的工序贴合实施例1采用的半导体元件30和柔性配线板10,制成实施例2~4的电器装置1。
采用这些实施例2~4的粘接剂、电器装置1,以与实施例1同样的条件进行各评价试验。这些评价结果和实施例2~4的导通性粘接剂中所含的导电性粒子25的比表面积记载在上述表1中。
对后述的实施例5、6和比较例1~4的粘接剂和电器装置也在与实施例1相同的条件下进行“粘度”、“导电性粒子分散性试验”、“导通阻抗试验”和“短路试验”的各评价试验,这些结果和各粘接剂中所含的导电性粒子的比表面积记载在上述表1中。
<实施例5、6>
以与实施例3同样的工序制备上述实施例3所采用的导电性粒子25的含量分别为粘接剂整体的0.2体积百分比、10体积百分比的粘接剂,得到实施例5、6的粘接剂和实施例5、6的电器装置1。
<比较例1~3>
代替实施例1所采用的导电性粒子,采用平均粒径分别为5nm、100nm和2000nm的三种导电性粒子,以与实施例1相同的工序和相同的配合比例分别制成比较例1~3的粘接剂和比较例1~3的电器装置。
<比较例4、5>
分别以粘接剂整体的0.1体积百分比、12体积百分比的比例加入实施例3、5、6所采用的平均直径为50nm的导电性粒子,除此之外,以与实施例3、5、6同样的工序制备比较例4、5的粘接剂和比较例4、5的电器装置。
如上述表1所示,在导电性粒子25的平均直径在10nm以上90nm以下,并且其含量为粘接剂整体的0.2体积百分比以上体积百分比的实施例1~6中,“导电性粒子分散性试验”、“导通阻抗试验”和“短路试验”的各评价结果良好,如果采用本发明的粘接剂,可确保能够坚固地连接柔性配线板10和半导体元件30。
另一方面,导电性粒子的平均直径为5nm的比较例1或其含量为0.1的比较例4中,由于卡在凸起和连接部分表面中的导电性粒子的量少,因此“导通阻抗试验”的结果差。
反之,在平均直径分别在100nm以上的比较例2和3中,“导通阻抗试验”的结果优良、而“导电性粒子分散性试验”的结果差。这是因为由于粒径大且比表面积小至不足5m2/g,因此导电性粒子在粘接剂中容易沉降。而且,在比较例2、3中,“短路试验”中也获得了不好的结果。这被推测为由于导电性粒子的平均粒径为100nm以上太大,因此,连接时导电性粒子突破保护膜,结果,配线膜发生短路。
而且,在导电性粒子的含量为粘接剂整体的0.1体积百分比的比较例4中,卡在凸起和连接部分中的导电性粒子的量过少,因此,“导通阻抗试验”的结果差。与之相反,含量为粘接剂整体的12体积百分比的比较例5中,柔性配线板和半导体元件之间导电性粒子重叠,这重叠的部分突破保护膜,因此,“短路试验”的结果都不好。
下面对由本发明粘接剂构成的粘接膜进行说明。
相对于作为热固性树脂的一种的苯氧基树脂(ュニォンカ-バィト(株)社制的商品名“PKHH”)40重量份加入相同的作为热固性树脂的一种的萘型环氧树脂(日本インキ化学(株)社制的商品名“HP4032D”)20重量份、作为添加剂的潜在性固化剂(旭化成环氧(株)社制的商品名“HX3721”,平均粒径为5微米)38重量份和偶合剂(日本ュニカ-(株)社制的商品名“A-187”)2重量份,进行混合,制成绝缘性粘接成分。
接着,在该绝缘性粘接成分中加入导电性粒子,制成由绝缘性粘接成分和导电性粒子的混合物组成的粘接剂。这里,作为导电性粒子,采用平均直径为60nm的由钯制成的金属粒子,将导电性粒子和绝缘性粘合剂混合,使导电性粒子为粘接剂整体体积的4体积百分比。
相对于绝缘性粘接剂和导电性粒子的混合物100重量份,加入分别为20重量份的有机溶剂甲苯和醋酸乙酯,搅拌至绝缘性粘接成分中的热固性树脂完全溶解,制成粘接剂溶液。
以一定的厚度将该粘接剂溶液涂覆在隔板(剥离衬板)49表面上,形成粘接剂层41(图4(a))。同图的符号45表示粘接剂层41中分散的导电性粒子。
将整个在加热干燥炉内在80℃的条件下进行干燥,将有机溶剂完全蒸发后,如果将其从隔板上剥离(图4(b)),可得到由粘接剂制成的本发明的粘接膜40。
图5(a)的符号40表示通过上述工序制备的本发明的粘接膜。
下面说明采用该粘接膜40连接半导体元件和柔性配线板的工序。
同图的符号10、30分别表示与上述实施例1的电器装置1中采用的相同的柔性配线板和半导体元件,连接该柔性配线板10和半导体元件30,如图5(a)所示,首先,在夹持粘接膜40的状态下,柔性配线板10的配线膜15和半导体元件30的保护膜37相对接。
然后,使半导体元件30的凸起36和柔性配线板10的连接部分15a以相互对接的状态放置,同时,用半导体元件30和柔性配线板10夹持粘接膜40。
接着,如果在对整体加压的同时加热(这里是在与上述实施例1相同的条件下进行加压和加热),粘接膜40的一部分从凸起36的顶端挤出,凸起36和连接部分15a夹住粘接膜40的剩余部分,该部分中所含的导电性粒子45卡在凸起36和连接部分15a的表面中,配线膜15和35彼此连接。
与此同时,粘接膜40通过加热固化,因此,也可在柔性配线板10和半导体元件30之间产生机械性连接。
图5(b)的符号5表示柔性配线板10和半导体元件30连接的电器装置。
以该电器装置5作为实施例7,采用实施例7的电器装置5,在与上述实施例1同样的条件下进行“导电性粒子分散性试验”、“导通阻抗试验”和“短路试验”。其评价结果和导电性粒子的比表面积记载在下面的表2。
表2构成导电性粒子的金属种类、平均直径、含量、比表面积和各试验结果
<实施例8~10>
代替实施例7采用的导电性粒子45,采用由铜制成的并且其平均直径为65nm的导电性粒子45,以与实施例7同样的配合比例和同样工序制成粘接膜40,采用该粘接膜40制成实施例8的电器装置5。
实施例9和10中,作为导电性粒子45,分别采用由铁制成的并且其平均直径为70nm的产品和由银制成的并且其平均直径为90nm的产品。
采用实施例8~10的电器装置5,在与上述实施例1同样的条件下进行“导电性粒子分散性试验”、“导通阻抗试验”和“短路试验”。评价结果和实施例8~10的粘接膜40中所含的导电性粒子的比表面积记载在上述表1中。
由上述表1可见,在由除镍之外的金属构成导电性粒子45的实施例7~10中,在各试验中均得到高的评价结果。由这些结果可以认定,采用平均粒径在10nm以上90nm以下的导电性粒子时,与导电性粒子的材质无关,可得到很高的连接可靠性。
以上是对绝缘性粘接成分采用环氧树脂和苯氧基树脂等热固性树脂的情况进行的说明,但是本发明并不限于这些。
例如,代替热固化性树脂,也可以采用丙烯酸单体或者丙烯酸低聚物等紫外线固化性树脂。这时,由柔性配线板10和半导体元件30夹持由粘接剂形成的粘接剂层或者粘接膜,在该状态下,如果整体照射紫外线,粘接剂层发生固化。
采用热固性粘接剂时,热固性树脂也不限于环氧树脂和苯氧基树脂,可以采用各种树脂。
添加剂也不限于偶合剂和潜在性固化剂,可以采用各种添加剂,在热固性树脂采用环氧树脂时,可以加入潜在固化剂这样的固化剂。
混合导电性粒子和绝缘性粘接成分的方法没有特别限制,可以采用滚筒分散法、球磨(ビ-ズミル)分散法、高速分散机分散法等通常所用的分散方法。
作为平均直径为90nm以下的导电性粒子(金属超微粒子)的制造方法,有气体中蒸发的方法,特别是,通过等离子体电弧溶解蒸发原料金属的活性等离子体熔融金属法适用于本发明。
图6是通过活性等离子体熔融金属法得到的导电性粒子(平均粒径为50nm的镍粒子)的电子显微镜照片(倍率12万倍),图6中的每0.6cm的长度相当于实际的长度50nm。
图7是现有技术中通常采用的导电性粒子(平均粒径2微米的镍粒子)的电子显微镜照片(倍率为7500倍),图7中的每1.5cm的长度相当于实际的长度2微米。
如图6、图7所示,采用活性等离子体熔融金属法,可以制造与现有技术的导电性粒子相比粒径更小的导电性粒子。
采用活性等离子体熔融金属法,可大量制造粒径小,且杂质的混入也少,粒子体系均一的导电性粒子。而且,如果采用两种以上的金属,通过活性等离子体金属法制造金属微粒,可以得到由金属合金微粒制成的导电性粒子。
作为绝缘性粘接成分,例如具有热固性树脂、潜在性固化剂和各种添加剂等,在以绝缘性粘接成分和导电性粒子的总体积为100时,由于加入总体积超过0.1的导电性粒子,因此,可确保进行半导体元件和柔性配线板的连接,而且,由于其上限不到12,即使在配线膜上贴合没有绝缘层的柔性配线板的情况下,相邻的配线膜彼此间也不会因导电性粒子发生短路。
绝缘性粘接成分中所含的潜在性固化剂在粘接剂中不以分散的状态溶解,但是,如果将粘接剂加热到给定的温度以上,就会溶解并与环氧树脂反应,进而使粘接剂发生固化。因此,通过将本发明的粘接剂加热到给定温度以上,可进行对象物的粘接。
将该粘接剂涂覆在剥离纸这样的剥离衬垫表面上,干燥后,剥离剥离衬垫,可得到由粘接剂形成的粘接膜。
发明效果根据上述的本发明,提供了在半导体元件和柔性配线板的连接中具有很高可靠性的粘接剂。
图2是用于说明采用本发明粘接剂连接的半导体元件的图。
图3(a)~(c)用于说明采用本发明粘接剂连接半导体元件和柔性配线板的工序的图。
图4(a)、(b)用于说明制备本发明粘接膜的工序的图。
图5(a)、(b)用于说明采用本发明粘接膜连接半导体元件和柔性配线板的工序的图。
图6是本发明粘接剂所采用的导电性粒子的显微镜照片图7是现有技术的粘接剂中所采用的导电性粒子的显微镜照片。
图8(a)、(b)用于说明采用现有技术的粘接膜连接半导体元件和柔性配线板的工序的图。符号说明25、45……导电性粒子,40……粘接膜。
权利要求
1.一种粘接剂,它含有绝缘性粘接成分和在上述绝缘性粘接成分中分散的导电性粒子,其中上述导电性粒子的平均直径在10nm以上90nm以下。
2.权利要求1记载的粘接剂,其中上述粘接剂中所含的上述导电性粒子的比表面积在5m2/g以上80m2/g以下。
3.权利要求1记载的粘接剂,其中在以上述绝缘性粘接成分和上述导电性粒子的总体积为100时,上述粘接剂中所含的上述导电性粒子的总体积超过0.1但不到12。
4.权利要求1记载的粘接剂,其中上述导电性粒子以选自镍、钯、铜、铁、银构成的组的至少一种金属为主要成分。
5.权利要求1记载的粘接剂,其中上述绝缘性粘接成分中含有环氧树脂和咪唑类潜在性固化剂。
6.权利要求1记载的粘接剂,上述粘接剂在25℃的粘度为1000Pa·s以下。
7.一种粘接膜,它含有绝缘性粘接成分和上述绝缘性粘接成分中分散的导电性粒子,并且通过将上述导电性粒子的平均直径在10nm以上90nm以下的粘接剂成形为膜状而制成。
全文摘要
本发明得到了能够不发生短路的、并可确保连接半导体元件和柔性配线板的导电性粘接剂。在本发明的粘接剂中,加入了平均直径在10nm以上90nm以下的导电性粒子25,在采用这种导电性粘接剂连接柔性配线板10和半导体元件30时,由于导电性粒子25不突破半导体元件30的保扩膜37,所以保护了保护膜37下配置的配线膜35的信号部分35b,并且得到的电器装置1的配线膜15和35不发生短路。
文档编号H05K13/04GK1348976SQ0113033
公开日2002年5月15日 申请日期2001年10月15日 优先权日2000年10月16日
发明者熊仓博之 申请人:索尼化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1