轻质柔性高导热纳米碳复合膜及其制备方法与流程

文档序号:17568558发布日期:2019-05-03 19:05阅读:336来源:国知局
轻质柔性高导热纳米碳复合膜及其制备方法与流程

本发明涉及一种纳米碳复合膜的制备方法,尤其涉及一种轻质柔性高导热纳米碳复合膜及其制备方法。



背景技术:

随着电子系统向高集成、高速化、高功率方向发展,热能管理问题愈发突出,发展轻质高导热材料成为解决这一问题的技术关键,国防和国民经济领域需求迫切。以空间科学技术为例,自上世纪60年代中期以来,卫星通信技术、空间探索、地球观测等技术飞速发展,对于卫星的分辨率、精度的要求与日俱增。对于高分辨率、高精度卫星,再微小的热形变也会对整个卫星的性能产生巨大影响。然而,随着新一代卫星的发展,星载单机和电子原件的功率大幅提升,传输电能过程中产生较大热量,同时卫星空间环境处于高低温反复交变的恶劣热环境中,这对热控材料提出了更加苛刻的要求,需要有更加快速、稳定、轻质、柔性的导热材料来保证热分散均匀,并且不产生额外应力能够保持卫星载荷的尺寸稳定性,从而实现卫星的姿态稳定性和搭载设备的高精度指向。

近年来,新型碳材料的发展为轻质、柔性高导热材料开辟了新的方向。单层无缺陷的石墨沿(002)晶面的热导率理论值可达4180W/m·K,实测值达2000W/m·K,加之良好的力学性能、低膨胀系数、低密度、耐高低温、耐腐蚀和良好的导电性能,引起广泛关注。由其构成的宏观石墨烯膜材料显示出优异的导热性,成为导热材料研究与应用的新热点。然而,石墨烯膜的柔性较差、使用过程中存在易于剥落的问题,且当石墨烯膜的厚度较大时很难弯曲,因此在实际应用过程中受到限制。近年来,一些技术通过在石墨烯片层间引入聚合物来提高其柔性,但是很难解决石墨片层易于剥落的问题。此外,还有一些技术通过树脂在石墨烯膜表面进行包覆来解决剥落的问题,然而树脂与石墨烯膜的粘结性能较差。因此,迫切需要一种制备轻质柔性高导热膜的技术。



技术实现要素:

针对现有技术中的缺陷,本发明提供了一种轻质柔性高导热纳米碳复合膜及其制备方法。

本发明的目的是通过以下技术方案实现的:

本发明提供了一种轻质柔性高导热纳米碳复合膜,包括若干复合单元,所述复合单元依次铺层;所述复合单元包括柔性粘结层和石墨烯膜层,所述柔性粘结层设置在石墨烯膜层的两侧。

优选地,所述石墨烯膜层由1~5层石墨烯组成,所述石墨烯膜层厚度为1~100μm。

优选地,所述柔性粘结层的厚度为0.5~4μm。

优选地,所述柔性粘结层包括碳纳米管膜/树脂预浸体、碳纳米管/树脂浆料中的至少一种。

优选地,所述树脂包括环氧树脂、双马树脂、酚醛树脂、聚酰亚胺、聚乙烯、聚乙烯醇、聚酯、聚丙烯、聚苯乙烯和聚氨酯中的一种或多种的混合。

优选地,所述的碳纳米管膜/树脂预浸体中树脂含量为20wt%~40wt%。

优选地,所述的碳纳米管/树脂浆料中碳纳米管的含量为0.02wt%~5wt%。

优选地,所述碳纳米管膜包括几十到几百层100nm的碳纳米管薄膜单元,所述的碳纳米管薄膜单元中的碳纳米管相互交叉形成网络结构。

优选地,所述纳米碳复合膜上设置有固定段和柔性段;所述固定段的复合单元之间紧密贴覆,柔性段的复合单元之间设置有空隙。

本发明还提供了一种轻质柔性高导热纳米碳复合膜的制备方法,包括以下步骤:

制备柔性粘结层,将柔性粘结层铺敷或涂覆在石墨烯膜层的两侧,形成复合单元;

将复合单元依次铺层,在柔性段处,每层复合单元之间插入一层聚四氟乙烯薄膜进行隔离;

将铺层好的复合单元用真空袋进行加热、加压成型,成型结束后将聚四氟乙烯薄膜取出,即得所述纳米碳复合膜。

优选地,所述聚四氟乙烯薄膜的厚度为10~30μm。

优选地,所述柔性粘结层为碳纳米管膜/树脂预浸体时,其制备方法包括以下步骤:

将树脂溶于溶剂中制备成一定浓度的树脂溶液,将碳纳米管膜放入树脂溶液中浸渍30~60min,取出后烘干得到。

更优选地,所述碳纳米管膜采用化学气相沉积浮动方法进行制备。

更优选地,溶剂为乙醇、丙酮、苯、甲苯、四氢呋喃、二甲基甲酰胺、甲基吡咯烷酮和二甲基亚砜中的一种或者两种以上的混合。

更优选地,所述烘干温度要低于树脂的凝胶温度(热固性树脂)或者热分解温度(热塑性树脂)。为了提高树脂溶液中树脂的挥发速率可将浸渍后的碳纳米管膜放于真空烘箱中。

优选地,所述柔性粘结层为碳纳米管/树脂浆料时,其制备方法包括以下步骤:

将碳纳米管与树脂混合,搅拌形成混合液后进行分散处理得到碳纳米管分散液,用溶剂对碳纳米管分散液进行稀释,即得。

更优选地,所述分散处理的方法包括超声震荡、超声破碎、三辊研磨中的一种或者多种。

更优选地,溶剂为乙醇、丙酮、苯、甲苯、四氢呋喃、二甲基甲酰胺、甲基吡咯烷酮和二甲基亚砜中的一种或者两种以上的混合。

本发明制备的的纳米碳复合膜,具有高导热、轻质、柔性的特点,其面内热导率达500W/m·K以上,密度低于2.0g/cm3,并且该纳米碳复合膜经过180o反复弯折50次后热导率仍高于500W/m·K,且表面无石墨烯剥落现象。

本发明制备的纳米碳复合膜具有高导热、轻质与柔性的特性,在卫星导热部件、民用电子器件等领域具有非常广阔的应用前景。

与现有技术相比,本发明具有如下的有益效果:

本发明采用商业化石墨烯膜作为高导热体,通过简单易行的技术实现柔性并克服石墨烯膜易于剥落的问题,因而本发明易于大范围推广。

本发明采用碳纳米管膜/树脂预浸体或者碳纳米管/树脂浆料作为粘结层,其中的碳纳米管能够进一步改善树脂与石墨烯膜的粘结性能。

本发明涉及的纳米碳膜同时具有高导热、轻质、柔性的特点。

本发明涉及的纳米碳膜厚度不受限制,可以根据散热通量的要求进行厚度调控,其厚度可以达到2mm以上。

本发明涉及的纳米碳膜包括固定段和柔性段两部分,固定段方便与热源、冷端部件连接,柔性段使连接后热源与冷端部件不具有应力。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为本发明的轻质柔性高导热纳米碳复合膜结构图;

其中,1-柔性粘结层;2-石墨烯膜层;3-柔性段;4-固定段。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

下述实施例提供了一种轻质柔性高导热纳米碳复合膜,如图1所示,包括若干复合单元,所述复合单元依次铺层;所述复合单元包括柔性粘结层1和石墨烯膜层2,所述柔性粘结层1设置在石墨烯膜层2的两侧。

所述石墨烯膜层2由1~5层石墨烯组成,厚度为1~100μm。

所述柔性粘结层1的厚度为0.5~4μm。

所述柔性粘结层1包括碳纳米管膜/树脂预浸体、碳纳米管/树脂浆料中的至少一种。

所述树脂包括环氧树脂、双马树脂、酚醛树脂、聚酰亚胺、聚乙烯、聚乙烯醇、聚酯、聚丙烯、聚苯乙烯和聚氨酯中的一种或多种的混合。

所述的碳纳米管膜/树脂预浸体中树脂含量为20wt%~40wt%。

所述的碳纳米管/树脂浆料中碳纳米管的含量为0.02wt%~5wt%。

所述碳纳米管膜包括几十到几百层100nm的碳纳米管薄膜单元,所述的碳纳米管薄膜单元中的碳纳米管相互交叉形成网络结构。

所述纳米碳复合膜上设置有柔性段3和固定段4;所述柔性段3的复合单元之间设置有空隙,固定段4的复合单元之间紧密贴覆。

下述实施例还提供了一种轻质柔性高导热纳米碳复合膜的制备方法,包括以下步骤:

第一步,制备柔性粘结层,为了对纳米碳复合膜的导热与柔性进行控制,柔性粘结层可以选择碳纳米管膜/树脂预浸体或碳纳米管/树脂浆料浆料。对于导热和柔性较高的纳米碳复合膜,选择碳纳米管膜/树脂预浸体;否则可选择碳纳米管/树脂浆料作为柔性粘结层。

碳纳米管膜/树脂预浸体的制备包括以下步骤:

(a)将树脂溶于溶剂中制备成一定浓度的树脂溶液,溶液中树脂的质量含量控制在10%至30%,所述的树脂为:环氧树脂、双马树脂、酚醛树脂、聚酰亚胺、聚乙烯、聚乙烯醇、聚酯、聚丙烯、聚苯乙烯和聚氨酯中的任意一种,溶剂为乙醇、丙酮、苯、甲苯、四氢呋喃、二甲基甲酰胺、甲基吡咯烷酮和二甲基亚砜中的一种或者两种以上的混合;

(b)将碳纳米管膜浸渍于树脂溶液并保持30分钟,对于粘度较高的树脂溶液浓度浸渍时间延长至1小时,对于易挥发溶剂浸渍过程在密闭容器中进行;

(c)取出碳纳米管膜并进行烘干得到碳纳米管预浸膜,烘干温度要低于树脂的凝胶温度(热固性树脂)或者热分解温度(热塑性树脂)。为了提高树脂溶液中溶剂的挥发速率可将浸渍后的碳纳米管膜放于真空烘箱中,通过调控树脂溶液种树脂的质量含量将预浸膜的树脂含量控制在20wt%~40wt%的范围内。

碳纳米管/树脂浆料的制备包括以下步骤:

(a)将碳纳米管倒入树脂并进行搅拌混合液,对于热塑性树脂或者室温下为固体的热固性树脂,在搅拌前引入溶剂降低树脂粘度。所述的树脂为:环氧树脂、双马树脂、酚醛树脂、聚酰亚胺、聚乙烯、聚乙烯醇、聚酯、聚丙烯、聚苯乙烯和聚氨酯中的一种或多种混合液,溶剂为乙醇、丙酮、苯、甲苯、四氢呋喃、二甲基甲酰胺、甲基吡咯烷酮和二甲基亚砜中的一种或者两种以上的混合。

(b)将碳纳米管/树脂混合液进行分散处理,得到均匀稳定的碳纳米管分散液。所述的碳纳米管为单壁碳纳米管、少壁碳纳米管、多壁碳纳米管种的一种或多种。所述的分散方法为超声震荡、超声破碎、三辊研磨中的一种或者多种。

(c)采用溶剂对碳纳米管膜分散液进行稀释,制备碳纳米管/树脂浆料。所述碳纳米管/树脂浆料中的溶剂含量为30wt%~80wt%。所述碳纳米管/树脂浆料中碳纳米管含量为0.02wt%~5wt%。

第二步,制备柔性粘结层/石墨烯膜层/柔性粘结层单元,在石墨烯膜层的两侧通过铺敷(碳纳米管膜/树脂预浸体)或涂覆(碳纳米管/树脂浆料)的方法引入柔性粘结层,从而形成紧密结合的单元。对于碳纳米管膜/树脂预浸体这种柔性粘结层,通过改变碳纳米管膜的厚度调控单元的柔性,通过改变树脂含量调控单元的粘结特性和导热性能。对于碳纳米管/树脂浆料这种柔性粘结层,通过溶剂含量和涂覆量的变化调控粘结层的厚度、柔性,通过改变碳纳米管含量调控单元的粘结特性和导热性能。

第三步,柔性粘结层/石墨烯膜层/柔性粘结层单元铺层,将多个单元依次铺层,不同层中间段之间利用聚四氟乙烯薄膜进行隔离,不同层两侧段之间紧密贴覆并用压力辊反复碾压形成一体。

第四步,纳米碳复合膜一体化成型,将铺层好的柔性粘结层与石墨烯膜层利用真空袋进行加热、加压成型。为了保证最终产品的平整,在中间段和两侧段上方分别放置三块平整的刚性均压板。成型结束后,将中间段不同铺层间的聚四氟乙烯薄膜取出形成柔性段,而两侧段成型后形成固定段。

实施例1

本实施例提供了一种轻质柔性高导热纳米碳复合膜及其制备方法,所述纳米复合膜为包括碳纳米管膜/树脂预浸体和石墨烯膜层的多层结构,其具有固定端和柔性段两部分的典型结构。所述的制备方法,具体步骤如下:

第一步,制备柔性粘结层,利用手术刀裁取长1000mm、宽200mm、厚10μm的碳纳米管膜,此碳纳米管膜采用化学气相沉积浮动催化方法制备。采用树脂溶液浸渍法制备碳纳米管/树脂预浸体,将AG80树脂、DDS固化剂和BF3·MEA以100:30:1的质量比混合均匀形成树脂体系,然后将此树脂体系与丙酮以30:70的质量比混合均匀形成树脂溶液。碳纳米管膜浸入树脂溶液中30分钟,取出室温下放置2小时,得到碳纳米管膜/树脂预浸体,其树脂质量分数为40%。

第二步,制备柔性粘结层1/石墨烯膜层2/柔性粘结层1单元,将碳纳米管膜/树脂预浸体铺覆于表面包覆有聚四氟乙烯薄膜的刚性平板上。利用手术刀裁取裁取长1000mm、宽200mm、厚60μm的石墨烯膜,然后将石墨烯膜铺放于碳纳米管膜/树脂预浸体上方。再将另外一张碳纳米管膜/树脂预浸体铺放与石墨烯膜上方,并用压力辊反复碾压,从而形成紧密粘结的柔性粘结层1/石墨烯膜层2/柔性粘结层1单元。

第三步,柔性粘结层1/石墨烯膜层2/柔性粘结层1单元铺层,将20个单元依次铺层,不同层中间段之间利用长600mm、宽300mm、厚10μm的聚四氟乙烯薄膜进行隔离,两侧段之间紧密贴覆并用压力辊反复碾压形成一体,两侧段的长度均为200mm。

第四步,纳米碳复合膜一体化成型,将上述铺层采用真空袋工艺进行固化成型,具体固化制度为:90℃保持30分钟,115℃保持30分钟,180℃保持3小时,固化全程真空袋中保持-0.1MPa的真空度。为了保证最终产品的平整,在中间段和两侧段上方分别放置三块厚度度为0.5mm的平整铝板。成型结束后,将中间段不同铺层间的聚四氟乙烯薄膜取出得到轻质柔性高导热纳米碳复合膜。纳米碳复合膜的中间段为柔性段,两侧段为1.6mm厚的固定段。

本实施例制备的纳米碳复合膜的面内导热系数为650W/m·K,固定段的密度为1.8g/cm3,柔性段中单元的密度为1.9g/cm3,该纳米碳复合膜经过180o反复弯折50次后热导率为600W/m·K,且表面无石墨烯剥落现象。

实施例2

本实施例提供了一种轻质柔性高导热纳米碳复合膜及其制备方法,所述纳米复合膜为包括碳纳米管/树脂浆料和石墨烯膜层的多层结构,其具有固定段和柔性段两部分的典型结构。所述的制备方法,具体步骤如下:

第一步,制备柔性粘结层,将E51树脂、2-乙基-4甲基咪唑以100:7的质量比混合均匀形成树脂体系。选取直径为20μm的多壁碳纳米管,将1g碳纳米管倒入99g树脂体系中并进行搅拌30min。然后用三辊研磨机进行分散,将碳纳米管/树脂混合液分散两遍得到均匀的碳纳米管分散液。再将100g丙酮溶液倒入碳纳米管分散液并进行搅拌30min,得到碳纳米管/树脂浆料。

第二步,制备柔性粘结层1/石墨烯膜层2/柔性粘结层1单元,利用手术刀裁取长200mm,宽20mm,厚20μm的石墨烯膜。采用毛刷将碳纳米管/树脂浆料均匀涂覆在石墨烯膜两侧,并置于真空烘箱于-0.1MPa的真空度下在60℃下保持2小时,从而得到柔性粘结层1/石墨烯膜层2/柔性粘结层1单元。其中柔性粘结层的厚度为0.8μm。

第三步,柔性粘结层1/石墨烯膜层2/柔性粘结层1单元铺层,将200个单元依次铺层,不同层中间段之间利用长120mm、宽30mm、厚10μm的聚四氟乙烯薄膜进行隔离,两侧段之间紧密贴覆并用压力辊反复碾压形成一体,两侧段的长度均为40mm。

第四步,纳米碳复合膜一体化成型,将上述铺层采用真空袋工艺进行固化成型,具体固化制度为:60℃保持30分钟,80℃保持1小时,120℃保持3小时,固化全程真空袋中保持-0.1MPa的真空度。为了保证最终产品的平整,在中间段和两侧段上方分别放置三块厚度度为1.0mm的平整铝板。成型结束后,将中间段不同铺层间的聚四氟乙烯薄膜取出得到轻质柔性高导热纳米碳复合膜。纳米碳复合膜的中间段为柔性段,两侧段为4.5mm厚的固定段。

本实施例制备的纳米碳复合膜的面内导热系数为790W/m·K,固定段的密度为2.1g/cm3,柔性段中单元的密度为2.1g/cm3,该纳米碳复合膜经过180o反复弯折50次后热导率为580W/m·K,且表面无石墨烯剥落现象。

本发明具体应用途径很多,以上所述仅是本发明的优选实施方式。应当指出,以上实施例仅用于说明本发明,而并不用于限制本发明的保护范围。对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1