一种结构高阻尼碳纤维复合材料及其制备方法与流程

文档序号:14453020阅读:621来源:国知局

本发明涉及复合材料及其制备领域,具体涉及一种结构高阻尼碳纤维复合材料及其制备方法。



背景技术:

随着科学技术的飞速发展,机械设备趋于高速和自动化,随之引起的振动和噪声问题也越来越突出。一般来说,振动对系统本身及环境都是有害的,它直接影响到机器或结构的工作性能、精度、效率、寿命、安全性和稳定性,有时甚至会造成系统失效。特别是在航天领域,以运载火箭为例,在其发射和运行阶段均会产生强烈的振动,这些振动传递给卫星部件,对卫星的性能产生不良影响。目前,阻尼材料在航空航天、工程机械、建筑、运输交通等领域得到十分广泛的应用。阻尼材料根据材料类型分为:粘弹性阻尼材料、高阻尼合金和阻尼复合材料。目前,阻尼材料具有共同的特点:阻尼性高的材料力学性能较低,其不能作为结构材料用;反之,力学性能优异的材料其阻尼性能较差。

碳纤维复合材料具有比强度高、比刚度高的突出优势,其在航空航天等领域已大规模应用。为了提高其阻尼性能,目前通常采用改性树脂和外贴粘弹性橡胶等方式提高其阻尼性能。目前发现,改性树脂对于碳纤维复合材料改善阻尼性能的效果不明显;而外粘弹性橡胶的引入不仅会增加额外重量,而且会使整体体系的耐温性大幅度降低。此外,一些专利采用热塑性树脂膜置于碳纤维复合材料层间以提高其阻尼性能,此方法通常会降低碳纤维复合材料的耐温性。还有一些专利采用陶瓷纤维、玻璃纤维、有机纤维做成的无纺布置于碳纤维复合材料层间从而制备结构-阻尼一体化复合材料,由于纤维尺寸为微米级且无纺布的厚度较大,引入无纺布后复合材料力学性能会降低。近年来,碳纳米管宏观体的发展为结构高阻尼材料开辟了新的方向。碳纳米管泡沫是由碳纳米管相互交织形成的宏观体,在应力下碳纳米管间相互作用从而消耗大量的能量,从而可以达到0.3以上的阻尼系数,同时其耐温性极好。通过碳纤维复合材料和碳纳米管泡沫的结合有望实现碳纤维复合材料的高力学性能和高阻尼一体化。但是,碳纳米管泡沫的中纳米孔使其厚度方向的树脂渗透率较低,很难将二者直接复合制备高性能的复合材料,因此在实际应用过程中受到限制。因此,迫切需要一种制备结构高阻尼碳纤维复合材料的技术。



技术实现要素:

本发明的目的是提供一种结构高阻尼碳纤维复合材料及其制备方法,所得碳纤维复合材料同时具有高力学性能和高阻尼的特点。

本发明通过以下技术方案实现:

一种结构高阻尼碳纤维复合材料,包括多个碳纤维增强树脂层/碳纳米管泡沫层单元结构;每个碳纤维增强树脂层/碳纳米管泡沫层单元结构均由两碳纤维增强树脂层及其夹持在两碳纤维增强树脂层中间的碳纳米管泡沫层构成。

优选地,所述碳纤维增强树脂层中的碳纤维包括碳纤维长丝和碳纤维短切纤维。

优选地,所述碳纳米管膜泡沫层为含有纳米孔和微米孔的碳纳米管网络结构。

优选地,所述碳纳米管膜泡沫的密度为:0.01g/cm3~0.2g/cm3

优选地,所述碳纳米管膜泡沫的厚度为:1μm~20μm。

本发明还提供了上述一种结构高阻尼碳纤维复合材料的制备方法,包括如下步骤:

s1、制备碳纤维增强树脂层;

s2、制备含有微孔的碳纳米管泡沫层;

s3、将所得的碳纤维增强树脂层和碳纳米管泡沫层间隔进行铺层;

s4、加热加压固化成型。

优选地,具体包括如下步骤:

s1、将ag80树脂、dds固化剂和bf3·mea以100:30:1的质量比混合均匀形成树脂体系,然后所得树脂体系与丙酮以1:1的质量比混合均匀形成树脂溶液;

采用湿法排布机实现树脂对t700碳纤维的均匀浸润,并在室温放置12h将丙酮挥发,形成单向的t700碳纤维增强ag80树脂层;

s2、选用密度为0.02g/cm3、厚度为10μm的碳纳米管泡沫,将其放置于脉冲激光加工平台,在激光功率120w,停留时间0.1ms的条件下,在碳纳米管泡沫的厚度方向制备孔径微100μm,孔间距为100μm的贯穿孔,得含有微孔的碳纳米管泡沫层;

s3、裁取300mm*300mm的t700/ag80碳纤维增强树脂层共12片,并将其平铺在400mm*400mm*5mm的涂有两遍液体脱模剂的钢板上,然后将加工后的300mm*300mm碳纳米管泡沫铺敷于碳纤维增强树脂层上,再将另外一片300mm*300mm的t700/ag80碳纤维增强树脂层铺敷于碳纳米管泡沫上,通过橡胶辊在室温下来回碾轧碳纤维增强树脂层,重复上述操作,直至将12片t700/ag80碳纤维增强树脂层和11层碳纳米管泡沫铺敷完;

s4、将上述铺层采用热压罐工艺进行固化成型,具体固化制度为:90℃保持30分钟,115℃保持30分钟,180℃保持3小时。当温度升至115℃时开始加压,加压速率为0.04mpa/min,压力升至0.7mpa时停止加压。

与现有技术相比,本发明具有如下的有益效果:

采用商业化碳纳米管泡沫作为阻尼层,通过简单易行的技术实现复合材料性能的提高;所采用的碳纳米管泡沫具有比表面积大、韧性优、与树脂浸润性好的优点,碳纤维树脂层进入碳纳米管泡沫后可显著提高层间剪切强度20%以上。本发明的碳纤维复合材料具有高力学性能与高阻尼的特点,其拉伸强度可达1800mpa以上,层间剪切强度在90mpa以上,阻尼系数为0.1以上,同时碳纳米管泡沫的引入不会对碳纤维复合材料的耐温性产生影响,该材料在运载火箭、卫星结构以及车辆运输等领域具有非常广阔的应用前景。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1是本发明实施例中碳纤维增强树脂层/碳纳米管泡沫层单元结构的结构示意图;

图中:1-碳纤维增强树脂层;2-碳纳米管泡沫层。

图2为本发明实施例中碳纳米管泡沫层的结构示意图。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

如图1-图2所示,本发明实施例提供了一种结构高阻尼碳纤维复合材料,包括多个碳纤维增强树脂层/碳纳米管泡沫层单元结构;每个碳纤维增强树脂层/碳纳米管泡沫层单元结构均由两碳纤维增强树脂层1及其夹持在两碳纤维增强树脂层中间的碳纳米管泡沫层2构成。所述碳纳米管膜泡沫层为含有纳米孔和微米孔的碳纳米管网络结构。所述碳纳米管膜泡沫的密度为:0.01g/cm3~0.2g/cm3。所述碳纳米管膜泡沫的厚度为:1μm~20μm。

本发明实施例还提供了上述一种结构高阻尼碳纤维复合材料的制备方法,包括如下步骤:

s1、制备碳纤维增强树脂层;

碳纤维增强树脂层采用热熔法树脂膜或者树脂溶液浸渍制备。碳纤维为聚丙烯腈基碳纤维、沥青基碳纤维、黏胶级碳纤维中的一种,碳纤维为长丝、短切纤维中的一种。树脂包括环氧树脂、双马树脂、酚醛树脂、聚酰亚胺、聚乙烯、聚乙烯醇、聚酯、聚丙烯、聚苯乙烯和聚氨酯中的一种或多种的混合;

s2、制备含有微孔的碳纳米管泡沫层;

将碳纳米管泡沫置于脉冲激光下进行加工,激光功率110w~150w,停留时间0.1ms~0.13ms。加工后碳纳米管泡沫中的孔径20μm~500μm,孔间距为:50~200μm。

s3、将所得的碳纤维增强树脂层和碳纳米管泡沫层间隔进行铺层;

将碳纤维增强树脂层1铺敷于平整模具表面,为防止成型后二者间的粘结模具表面涂脱模剂。将含有微米孔的碳纳米管泡沫2铺敷于碳纤维增强树脂层1的表面,再将碳纤维增强树脂层2铺敷于碳纳米管泡沫2表面。反复碾轧碳纤维增强树脂层2使其形成整体,对于粘性较高的树脂可适当将碳纤维增强树脂层1/碳纳米管泡沫层2/碳纤维增强树脂层1单元进行加热后再碾轧,热处理温度高于树脂软化点。在第三步骤的基础上,进一步在碳纤维增强树脂层1上铺敷碳纳米管泡沫层2/碳纤维增强树脂层1单元,每铺1层碳纤维增强树脂层进行碾轧,直至达到需要的厚度。

s4、加热加压固化成型。

将上述铺层进行加热、加压成型得到高力学性能高阻尼的碳纤维复合材料。成型工艺选择模压工艺、热压罐工艺、真空袋工艺中一种。

实施例1

一种结构高阻尼碳纤维复合材料的制备方法,包括如下步骤:

s1、将ag80树脂、dds固化剂和bf3·mea以100:30:1的质量比混合均匀形成树脂体系,然后所得树脂体系与丙酮以1:1的质量比混合均匀形成树脂溶液;

采用湿法排布机实现树脂对t700碳纤维的均匀浸润,并在室温放置12h将丙酮挥发,形成单向的t700碳纤维增强ag80树脂层;

s2、选用密度为0.02g/cm3、厚度为10μm的碳纳米管泡沫,将其放置于脉冲激光加工平台,在激光功率120w,停留时间0.1ms的条件下,在碳纳米管泡沫的厚度方向制备孔径微100μm,孔间距为100μm的贯穿孔,得含有微孔的碳纳米管泡沫层;

s3、裁取300mm*300mm的t700/ag80碳纤维增强树脂层共12片,并将其平铺在400mm*400mm*5mm的涂有两遍液体脱模剂的钢板上,然后将加工后的300mm*300mm碳纳米管泡沫铺敷于碳纤维增强树脂层上,再将另外一片300mm*300mm的t700/ag80碳纤维增强树脂层铺敷于碳纳米管泡沫上,通过橡胶辊在室温下来回碾轧碳纤维增强树脂层,重复上述操作,直至将12片t700/ag80碳纤维增强树脂层和11层碳纳米管泡沫铺敷完;

s4、将上述铺层采用热压罐工艺进行固化成型,具体固化制度为:90℃保持30分钟,115℃保持30分钟,180℃保持3小时。当温度升至115℃时开始加压,加压速率为0.04mpa/min,压力升至0.7mpa时停止加压。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1