使用b细胞耗尽/免疫调节抗体组合治疗自身免疫病的联合疗法的制作方法

文档序号:985674阅读:1077来源:国知局
专利名称:使用b细胞耗尽/免疫调节抗体组合治疗自身免疫病的联合疗法的制作方法
技术领域
本发明提供了一种新的用于治疗自身免疫病的联合疗法。具体地说,本发明涉及联合使用免疫调节抗体(优选调节T和/或B细胞分化、增殖和/或功能的抗体)和B细胞耗尽抗体(B cell depleting antibody)进行自身免疫病治疗。这些抗体可以单独或联合并以任一顺序施用。
背景技术
近来,已广泛接受使用抗体治疗疾病,包括癌症,特别是非霍奇金淋巴瘤、白血病、病毒介导的疾病和自身免疫病。特别是已报道用具有细胞耗尽活性的抗-CD20或抗-CD22抗体治疗癌症,例如非霍奇金淋巴瘤和相关的B细胞淋巴瘤。还特别报道了使用对CD19和CD37特异性的B细胞耗尽抗体。
此外,已报道了使用多种免疫调节抗体,即通过调节(即增强或抑制)特定的免疫途径而产生治疗裨益的抗体。例如,这种抗体调节T或B细胞或其它参与免疫调节的细胞的分化、增殖、活化和/或功能。这种免疫调节抗体结合免疫细胞上的配体或受体,通常是参与调节体液或细胞免疫的B或T细胞抗原。这种配体的实例是免疫信号分子如B7.1、B7.2;T细胞调节分子如CD40-L、CD40和CD4。对这些抗原中一部分的功能和先前将其特异性抗体用于治疗的讨论如以下简述。
CD40L是在活化的辅助细胞表面上表达的一种受体,并且是CD40的反受体,CD40是在B淋巴细胞以及其它抗原呈递细胞表面上表达的一种配体。在活化的T细胞上的CD40L与在B和其它抗原呈递细胞上表达的CD40之间的接触依赖性相互作用,称为“T细胞辅助功能”,导致B淋巴细胞的活化和分化,并且有助于体液免疫反应的调节。该调节包括对抗体分子的特异性、分泌和同种型编码的功能的调节。T细胞辅助B细胞进行分化的过程已被分成两个不同的阶段诱导期和效应期(Vitetta等,Adv.Immunol.451(1989);Noelle等,Immunol.Today 11361(1990))。
现在已清楚地了解了通过CD40与其配体gp39(也称为CD40L和CD154)的相互作用T细胞在体液免疫中辅助的分子基础。基本上,已知活化的T辅助细胞表达淋巴因子基因和CD40L,这是一种膜蛋白,它对交互活化关连的抗原呈递B细胞是必需的,CD40L与在B细胞上的其受体CD40的相互作用驱使进入B细胞并诱导B细胞对淋巴因子的生长和分化效应的反应性。
此外,已知CD40L在T细胞免疫过程中起着更大的更为普遍的作用,即除了其在T细胞辅助和体液免疫的调节中的作用之外。CD40L的这一作用还不十分清楚。例如,理论上T细胞介导的自身免疫病包括例如多发性硬化、1型糖尿病、炎性肠病、卵巢炎和甲状腺炎的病理学包括存在特定的表达CD40配体的T抑制细胞群,它在疾病病理学中起作用,可能是通过使T效应细胞的作用无效。还报道了CD40和CD40L在外周和中枢对耐受的作用及其对自身免疫病所起的作用(Durie等,Res.Immunol.Vol 145(3)200-205(1994))。
已报道了使用CD40L的拮抗剂治疗B细胞介导的和T细胞介导的自身免疫病。例如,EP 555,880、美国专利5,474,771和WO93/09212公开了使用CD40L拮抗剂治疗体液自身免疫病。使用CD40L拮抗剂治疗T细胞介导的自身免疫病公开在美国专利5833987及其相应的PCT申请PCT/US96/09B7中。
正如所讨论的,使用特异性结合B淋巴细胞上的靶抗原和耗尽B细胞的分子作为治疗剂也已有报道。可能最被接受的用于治疗的B细胞靶是CD20抗原,鉴于FDA批准了Rituxan,这是一种针对CD20抗原的嵌合单克隆抗体,用于治疗非霍奇金淋巴瘤。
CD20抗原(也称为人B淋巴细胞限制性分化抗原,-p-33)是一种疏水性跨膜蛋白,其分子量约35kD,位于前B细胞和成熟的B淋巴细胞上(Valentine等,J.Biol.Chem.264(19)11282-11287(1989);和Einfeld等,EMBO J.7(3)711-717(1988))。该抗原还在大于90%的B细胞非霍奇金淋巴瘤上表达(HL Anderson等,Blood 63(6)1424-1433(1984)),但未发现存在于造血干细胞、原B细胞、正常浆细胞或其它正常组织上(Tedder等,J.Immunol.135(2)973-979(1985))。CD20调节对细胞周期启动和分化的活化过程中的早期步骤(Tedder等,上文)并可能作为钙离子通道发挥作用(Tedder等,J.Cell.Biochem.14D195(1990))。
鉴于CD20在B细胞淋巴瘤中表达,该抗原可作为“瞄准”这种淋巴瘤的候选物。基本上,这种瞄准可概括如下将特异性针对B细胞CD20表面抗原的抗体施用于患者;这些抗CD20抗体特异性结合(表面上)正常和恶性B细胞的CD20抗原;结合CD20表面抗原的抗体导致对肿瘤B细胞的破坏和耗尽。此外,可以将具有破坏肿瘤潜能的化学药剂或放射性标记缀合至抗CD20抗体,使得所述药剂被特异性“送递”至肿瘤B细胞。不考虑方法,首要的目标是破坏肿瘤;具体的方法可由所采用的特定抗CD20抗体来确定,因而可利用的瞄准CD20抗原的方法可以有相当大的差异。
CD19是另一种在B系细胞的表面上表达的抗原。类似于CD20,CD19被发现存在于该系整个分化过程中的细胞上,从干细胞阶段直至就在最终分化成为浆细胞之前的那一点(Nadler,L.LymphocyteTyping II23-37 and Appendix,Renling等,eds.(1986)by SpringerVerlag)。与CD20不同,抗体与CD19结合引起CD19抗原的内化。CD19抗原特别由HD237-CD19抗体(也称为“B4”抗体)识别(Kiesel等,Leukemia Research II,121119(1987))。CD19抗原存在于4-8%的外周血单核的细胞上和大于90%的从外周血、脾、淋巴结或扁桃体分离的B细胞上。在外周血T细胞、单核细胞或粒细胞上没有检测到CD19。几乎所有的非T细胞急性淋巴细胞白血病(ALL)、B细胞慢性淋巴细胞白血病(CLL)和B细胞淋巴瘤均表达可用抗体B4检测的CD19(Nadler等,J.Immunol.131244(1983);和Nadler等,Progress in Hematology Vol.XII pp.187-206.Brown,E.ed.(1981)byGrune & Stratton,Inc.)。
CD22是另一种在B系细胞表面上表达的抗原。该抗原也称为“BL-CAM”和“LyB8”。该抗原是一种膜免疫球蛋白相关蛋白,分子量为约140,000,当膜Ig连接到其上时发生酪氨酸磷酸化(Engel等,J.R & Pmed 181(4)1521-1526(1995);Campbell and Eur.J.Immunol.251573)。据报道该抗原是B细胞受体信号作用的负调节物(Nitschke等,Curr.Biol.7133(1997));并促进单核细胞红细胞athism(Stemenkoul等,Nature 34574(1990))。一种特异性针对CD22的裸露抗体,称为LymphocideTM,现正处于临床试验之中,用于治疗惰性非霍奇金淋巴瘤,它是Immunomedics,Inc的产品。另外使用钇90标记形式的该相同抗体治疗惰性和侵袭性非霍奇金淋巴瘤也处于临床试验之中。
CD23是另一种在B细胞上表达的抗原,并且是IgE的低亲和性受体,也称为FcERII。使用结合CD23的抗体治疗炎性、自身免疫性和过敏性疾病已在专利和非专利文献中提出。
B7.1和B7.2是B细胞抗原的其它实例,其特异性结合并作为免疫调节剂的配体已被报道具有治疗用途。尤其是已报道抗B7抗体,特别是与在B细胞表面表达的B7.1(CD80)、B7.2(CD86)或B7.3跨膜糖蛋白结合的抗体具有作为免疫抑制剂和治疗多种疾病的应用潜能。例如,于1999年2月9日授予DeBoer等并转让给ChironCorporation的美国专利5,869,040公开了抗B7.1抗体与另一种免疫抑制剂联合用于治疗移植排斥、移植物抗宿主疾病和类风湿性关节炎的用途。另外,于1999年3月23日授予Linsley等的美国专利5,885,579公开了通过施用特异性针对B7抗原例如B7.1(CD80)或B7.2(CD86)的配体而治疗涉及T细胞与B7阳性细胞相互作用的免疫疾病。
此外,授予Anderson等的美国专利6,113,198公开了特异性针对B7-1抗原的抗体的用途,其与先前的抗B7抗体相比,不抑制B7.1/CTLA-4相互作用并可用于治疗包括自身免疫病在内的疾病。但是,没有公开联合使用这些抗体与特异性针对CD40L的抗体,也未报道该抗体与B细胞耗尽抗体连同的用途。
具体地说,Rituximab(RITUXAN)抗体是一种针对CD20抗原的基因工程嵌合小鼠/人单克隆抗体。RITUXAN适于治疗复发的或难治的低分级或滤泡性CD20阳性B细胞非霍奇金淋巴瘤(美国专利No.5,736,137,于1998年4月7日授予Anderson等)。对作用机制的体外研究已证实RITUXAN结合人补体并通过补体依赖性细胞毒作用(CDC)而溶解淋巴样B细胞系(Reff等,Blood 83(2)435-445(1994))。另外,它在对抗体依赖性细胞介导的细胞毒作用(ADCC)的测定中具有显著的活性。近来显示RITUXAN在含氚胸苷掺入试验中具有抗增殖效应,并直接诱导细胞凋亡,而其它抗-CD19和CD20抗体无这种作用(Maloney等,Blood 88(10)637a(1996))。还已在试验中观察到RITUXAN与化疗和毒素之间的协同作用。具体地说,RITUXAN使耐药的人B细胞淋巴瘤细胞系对阿霉素、CDDP、VP-16、白喉毒素和蓖麻毒蛋白的细胞毒性效应敏感(Demidem等,Cancer Chemotherapy & Radiopharmaceuticals 12(3)177-186(1997))。在体外RITUXAN非常有效地从猕猴的外周血、淋巴结和骨髓耗尽B细胞,据推测是通过补体和细胞介导的过程(Reff等,Blood83(2)435-445(1994))。
Perrotta和Abuel Blood92,ASH 40th年会(1998年11月)摘要#3360提供了一名患有特发性血小板减少性紫癜(ITP)的50岁女性对RITUXAN有反应的轶事报道。
发明概述本发明涉及使用至少一种免疫调节抗体与至少一种B细胞耗尽抗体(如以CD20、CD19、CD22、CD23或CD37为目标的抗体)的组合治疗自身免疫病,优选B细胞介导的自身免疫病。当用于治疗自身免疫病时单独或联合施用这些类型的抗体产生协同效益。该结果是因为B细胞耗尽抗体作用于耗尽B细胞数目并因此减少循环IgE的量和其它涉及自身免疫病理学的抗体。然而,B细胞耗尽抗体,例如RITUXAN,倾向于优先耗尽活化的B细胞。与此相比,免疫调节抗体,如抗-B7和抗-CD40L抗体对未活化的B细胞即未活化的抗原呈递B细胞发挥其免疫调节效应即免疫抑制。因此,假设使用这两种类型功能不同的抗体产生协同效益,在于其有助于从循环中同时去除活化的和未活化的B细胞。由此,循环自身免疫抗体水平将显著降低,因为产生抗体的B细胞水平将大大减少。这将提供显著的治疗效益,尤其是在其中B细胞更特别是自身抗体积极参与疾病病理学的自身免疫病中。
如以下讨论的,优选的免疫调节抗体包括抗-B7.1或抗-B7.2,抗-CD40,抗-CD40L和抗-CD4抗体。优选的B细胞耗尽抗体的实例包括那些特异性针对CD20、CD19、CD21、CD37和CD22的抗体。
在其最宽的方面,本发明提供了用于治疗自身免疫病如类风湿性关节炎、SLE、ITP的联合疗法,通过联合使用(i)免疫调节抗体,优选抑制未活化B细胞的抗体;和(ii)B细胞耗尽抗体;其中这些抗体可以单独或联合并以任一次序施用。
在更具体的方面,本发明包括通过联合使用(i)针对B7.1或B7.2的抗体和/或抗CD40L抗体,以及(ii)选自抗CD20、抗CD19、抗CD22和抗CD37的B细胞耗尽抗体来治疗自身免疫病。
本发明进一步涉及用于治疗自身免疫病的制品,其包括一个容器和其中所含的一种或多种组合物,所述组合物包含有效量的免疫调节抗体,例如抗CD40L或抗-B7.1或抗-B7.2抗体(免疫调节抗体),和B细胞耗尽抗体或其片段,如抗CD20、抗CD19、抗CD22或抗CD37抗体(B细胞耗尽抗体)。
优选实施方案的详述I.定义在此“B细胞耗尽抗体”是经施用与B细胞标记结合的抗体或片段,导致可证明的B细胞耗尽。优选这种抗体在施用后(通常在约数天之内或更短)会导致B细胞数目减少约50%或更多。在优选的实施方案中,B细胞耗尽抗体是RITUXAN(一种抗CD20嵌合抗体)或具有基本上相同或更高的细胞耗尽活性的抗体。已证实有效量的该抗体在给药24小时之内提供实质上90%的B细胞耗尽作用。
“免疫调节抗体”指通过与耗尽活化B细胞不同的机制而产生对免疫系统的效应的抗体。其实例包括抑制T细胞免疫、B细胞免疫的抗体,例如通过诱导耐受(抗CD40L,抗CD40),或其它免疫抑制抗体(抗-B7.1,抗-B7.2或抗CD4)。在某些情况下,免疫细胞的免疫调节抗体还可能具有促进细胞发生凋亡的能力。
在此“B细胞表面标记”是在B细胞表面上表达的抗原,与其结合的拮抗剂可以以其为目标。示例性的B细胞表面标记包括CD10、CD19、CD20、CD21、CD22、CD23、CD24、CD37、CD53、CD72、CD73、CD74、CDw75、CDw76、CD77、CDw78、CD79a、CD79b、CD80(B7.1)、CD81、CD82、CD83、CDw84、CD85和CD86(B7.2)白细胞表面标记。特别感兴趣的B细胞表面标记较哺乳动物的其它非B细胞组织优先在B细胞上表达,并且可能在前体B细胞和成熟的B细胞上均有表达。在一个实施方案中,所述标记类似于CD20或CD19是在该细胞系的整个分化过程中(从干细胞阶段直至就在最终分化为浆细胞之前的那一点)的B细胞上发现的一种标记。在此优选的B细胞表面标记是CD19、CD20、CD23、CD80和CD86。
“CD20”抗原是一种在大于90%来自外周血或淋巴样器官的B细胞表面上发现的35kDa非糖基化磷蛋白。CD20在早期前B细胞发育过程中表达并保持到直至分化为浆细胞。CD20存在于正常B细胞以及恶性B细胞上。在文献中CD20的其它名称包括“B淋巴细胞限制性抗原”和“Bp35”。Clark等,PNAS(USA)821766(1985)描述了CD20抗原。
“CD19”抗原指例如由HD237-CD19或B4抗体识别的一种90kDa抗原(Kiesel等,Leukemia Research II,121119(1987))。象CD20一样,发现CD20存在于细胞系整个分化过程中(从干细胞阶段直至就在最终分化为浆细胞之前的那一点)的细胞上。拮抗剂与CD19的结合可引起CD19抗原的内化。
“CD22”抗原指一种在B细胞上表达的抗原,也称为“BL-CAM”和“LybB”,其参与B细胞信号作用和粘附(参见Nitschke等,Curr.Biol.7133(1997);Stamenkovic等,Nature 34574(1990))。该抗原是一种膜免疫球蛋白相关抗原,当膜Ig结合时发生酪氨酸磷酸化(Engel等,J.Etyp.Med.181(4)1521,1586(1995))。已克隆了编码该抗原的基因,并表征了其Ig结构域。
B7抗原包括B7.1(CD80)、B7.2(CD86)和B7.3抗原,它们是在B细胞上表达的跨膜抗原。特异性结合B7抗原包括人B7.1和B7.2抗原的抗体在本领域中是已知的。优选的B7抗体包括由Anderson等在美国专利No.6,113,198(转让给IDEC PharmaceuticalsCorporation)中公开的灵长类动物源化B7抗体,以及人和人源化B7抗体。
CD23指由B和其它细胞表达的IgE的低亲和性受体。在本发明中,CD23优选是人CD23抗原。CD23抗体在本领域中也是已知的。在本发明中最优选CD23抗体是人抗人CD23抗体或包含人IgGI或IgG3恒定区的嵌合的抗人CD23抗体,并且最优选在美国专利No.6,011,138中公开的耗尽性抗-CD23抗体。
“自身免疫病”是产生于并针对个体自身组织的非恶性疾病或障碍。在此非恶性自身免疫病特别除外恶性或癌性疾病或病症,尤其是除外B细胞淋巴瘤、急性淋巴细胞白血病(ALL)、慢性淋巴细胞白血病(CLL)、毛细胞白血病和慢性原始粒细胞白血病。这种疾病或障碍的实例包括炎症反应如炎症性皮肤疾病包括牛皮癣和皮炎(例如特应性皮炎);全身性硬皮病和硬化症;与炎性肠病(如局限性回肠炎和溃疡性结肠炎)相关的反应;呼吸窘迫综合征(包括成人呼吸窘迫综合征;ARDS);皮炎;脑膜炎;脑炎;葡萄膜炎;结肠炎;肾小球肾炎;过敏性病症如湿疹和哮喘以及其它涉及T细胞浸润和慢性炎症反应的病症;动脉粥样硬化;白细胞粘附缺陷;类风湿性关节炎;系统性红斑狼疮(SLE);糖尿病(例如I型糖尿病或胰岛素依赖型糖尿病);多发性硬化;雷诺综合征;自身免疫性甲状腺炎;过敏性脑脊髓炎;斯耶格伦综合征;青少年起病型糖尿病;以及与细胞因子和T淋巴细胞介导的急性和迟发型超敏反应相关的免疫应答,其通常在结核病、结节病、多肌炎、肉芽肿病和血管炎中发现;恶性贫血(艾迪生病);涉及白细胞渗出的疾病;中枢神经系统(CNS)炎性疾病;多器官损伤综合征;溶血性贫血(包括冷球蛋白血症);重症肌无力;抗原-抗体复合物介导的疾病;抗肾小球基底膜疾病;抗磷脂综合征;过敏性神经炎;格雷夫斯病;兰-伊肌无力综合征;大疱性类天疱疮;天疱疮;自身免疫性多内分泌腺病;赖特病;僵人综合征;贝赫切特病;巨细胞动脉炎;免疫复合物肾炎;IgA肾病;IgM多神经病;免疫性血小板减少性紫癜(ITP),自身免疫性血小板减少和卵巢炎。
B细胞“拮抗剂”是这样一种分子,其经与B细胞表面标记结合而破坏或耗尽哺乳动物的B细胞和/或干扰一种或多种B细胞功能,例如通过减少或阻止由B细胞引发的体液应答。与此相比,B细胞耗尽抗体耗尽用其治疗的哺乳动物的B细胞(即降低循环B细胞水平)。这种耗尽可通过多种机制实现,如抗体依赖性细胞介导的细胞毒作用(ADCC)和/或补体依赖性细胞毒作用(CDC),抑制B细胞增殖和/或诱导B细胞死亡(例如通过凋亡)。在本发明范围之内的拮抗剂包括抗体、合成的或天然序列肽以及结合B细胞标记的小分子拮抗剂,所述拮抗剂可选择性地与细胞毒性剂结合或融合。
CD40L拮抗剂是特异性结合CD40L并优选拮抗CD40L与CD40相互作用的一种分子。其实例包括特异性结合CD40L的抗体和抗体片段、可溶性CD40、可溶性CD40融合蛋白和结合CD40L的小分子。根据本发明优选的拮抗剂包括特异性针对CD40的抗体或抗体片段。
“抗体依赖性细胞介导的细胞毒作用”和“ADCC”指一种细胞介导的反应,其中表达Fc受体(FcRs)的非特异性细胞毒性细胞(例如天然杀伤(NK)细胞、中性粒细胞和巨噬细胞)识别在靶细胞上结合的抗体,随后引起靶细胞溶解。介导ADCC的主要细胞—NK细胞仅表达FcγRIII,而单核细胞表达FcγRI、FcγRII和FcγRIII。在造血细胞上的FcR表达总结于Ravetch和Kinet,Annu.Rev.Immunol.9457-92(1991)第464页的表3。为了评价感兴趣分子的ADCC活性,可以进行体外ADCC测定,如在美国专利No.5,500,362或5,821,337中描述的测定。对这种测定有用的效应细胞包括外周血单核的细胞(PBMC)和天然杀伤(NK)细胞。可供选择地,或额外地,可以在体内评价感兴趣分子的ADCC活性,例如在动物模型中,如在Clynes等,PNAS(USA)95652-656(1998)中公开的动物模型。
“人效应细胞”是表达一种或多种FcR并执行效应子功能的白细胞。优选所述细胞至少表达FcγRIII并执行ADCC效应子功能。介导ADCC的人白细胞的实例包括外周血单核的细胞(PBMC)、天然杀伤(NK)细胞、单核细胞、细胞毒性T细胞和中性粒细胞;优选PBMC和NK细胞。效应细胞可以从其天然来源分离,例如在此所述从血液或PBMC。
术语“Fc受体”或“FcR”用于描述与抗体的Fc区结合的受体。优选的FcR是一种天然序列人FcR。此外,优选的FcR与IgG抗体结合(γ受体)并包括FcγRI、FcγRII和FcγRIII亚类的受体,包括等位基因变异体和这些受体可供选择的剪接形式。FcγRII受体包括FcγRIIA(一种“活化受体”)和FcγRIIB(一种“抑制受体”),其具有相似的氨基酸序列,主要区别在于其胞质结构域。活化受体FcγRIIA在其胞质结构域中含有免疫受体基于酪氨酸的活化基序(ITAM)。抑制受体FcγRIIB在其胞质结构域中含有免疫受体基于酪氨酸的抑制基序(ITIM)(参见综述M.Daeon,Annu.Rev.Immunol.15203-234(1997))。关于FcR的综述见Ravetch和Kinet,Annu.Rev.Immunol.9457-92(1991);Capel等,Immunomethods 425-34(1994);和deHaas等,J.Lab.Clin.Med.126330-41(1995)。其它FcR,包括那些有待在将来鉴定的,在此都被术语“FcR”所包括。该术语还包括新生儿受体FcRn,其负责将母体IgG转移至胎儿(Guyer等,J.Immunol.117587(1976)和Kim等,J.Immunol.24249(1994))。
“补体依赖性细胞毒作用”或“CDC”指分子在补体的存在下溶解目标靶的能力。补体活化途径由补体系统的第一组分(Clq)结合与相关抗原复合的分子(例如抗体)而启动。为了评价补体活化,可以进行CDC测定,例如在Gazzano-Santoro等,J.Immunol.Methods202163(1996)中所述。
“生长抑制性”拮抗剂阻止或减少表达拮抗剂所结合的抗原的细胞的增殖。例如,该拮抗剂可在体外和/或体内阻止或减少B细胞的增殖。
“诱导凋亡”的拮抗剂诱导例如B细胞的编程性细胞死亡,如由结合膜联蛋白V、DNA断裂、细胞皱缩、内质网扩张、细胞破碎和/或形成膜囊泡(称为凋亡小体)所确定。
在此术语“抗体”使用其最广义并具体涵盖完整的单克隆抗体、多克隆抗体、从至少两种完整的抗体形成的多特异性抗体(例如双特异性抗体)和抗体片段,只要它们表现出所需要的生物学活性即可。
“抗体片段”包括完整抗体的一部分,优选包括其抗原结合区或可变区。抗体片段的实例包括Fab、Fab’、F(ab’)2和Fv片段;diabodies;线状抗体;单链抗体分子;和从抗体片段形成的多特异性抗体。
“天然抗体”通常是约150,000道尔顿的异四聚体糖蛋白,由两条相同的轻(L)链和两条相同的重(H)链组成。每条轻链通过一个共价二硫键连接到重链,而二硫键的数目在不同免疫球蛋白同种型的重链之中各异。每条重链和轻链还具有规则间隔的链内二硫键。每条重链在一端具有一个可变区(VH)然后是数个恒定区。每条轻链在一端具有一个可变区(VL),在其另一端具有一个恒定区;轻链的恒定区与重链的第一恒定区并列,而轻链可变区与重链的可变区并列。据信特定的氨基酸残基在轻链和重链可变区之间形成界面。
术语“可变”指这样一个事实,即可变区的某些部分的序列在抗体之中有广泛的差异并用于各特定抗体与其特定抗原的结合和特异性。但是,变异性在整个抗体可变区中并不是平均分布的。它集中在称为高变区的3个节段(在轻链可变区和重链可变区中均有)。可变区中更为高度保守的部分称为构架区(FR)。天然重链和轻链的可变区各包含4个FR,大部分采取β折叠构型,由3个高变区连接,其形成连接β折叠结构的袢,在某些情况下形成部分β-折叠结构。在每条链中的高变区由FR紧紧拉到一起,并且与来自另一条链的高变区一起使得形成抗体的抗原结合部位(参见Kabat等,Sequences of Proteins ofImmunological Interest,5thEd.Public Health Service,NationalInstitutes of Health,Bethesda,MD.(1991))。恒定区不直接涉及抗体与抗原的结合,但表现出多种效应子功能,如抗体参与抗体依赖性细胞介导的细胞毒作用(ADCC)。
用木瓜蛋白酶消化抗体产生两个相同的抗原结合片段,称为“Fab”片段,各有单一的抗原结合部位,和残余的“Fc”片段,其名称反映了其容易结晶的能力。用胃蛋白酶处理产生一个F(ab’)2片段,其具有两个抗原结合部位并仍能交联抗原。
“Fv”是最小的抗体片段,其含有完整的抗原识别和抗原结合部位。该区域由紧密非共价结合的一个重链和一个轻链可变区的二聚体组成。它取这种构型,使得各可变区的3个高变区相互作用,以在VH-VL二聚体表面上形成一个抗原结合部位。6个高变区集中起来赋予抗体以抗原结合特异性。然而,甚至是单一一个可变区(或Fv的一半,仅包含对抗原特异性的3个高变区)也具有识别和结合抗原的能力,尽管其亲和力比整个结合部位要低。
Fab片段还含有轻链的恒定区和重链的第一恒定区(CHI)。Fab’片段与Fab片段的差异在于在重链CHI区的羧基末端添加了几个残基,包括一个或多个来自抗体铰链区的半胱氨酸。Fab’-SH是此处对其中恒定区的半胱氨酸残基携带至少一个游离硫醇基团的Fab’的命名。F(ab’)Z抗体片段最初是作为成对Fab’片段产生的,其间具有铰链半胱氨酸。抗体片段的其它化学偶联也是已知的。
来自任何脊椎动物种类的抗体(免疫球蛋白)的“轻链”基于其恒定区的氨基酸序列,可以归于两个明显不同的类型(称为κ和λ)之一。
取决于其重链的恒定区的氨基酸序列,抗体可以归于不同的种类。完整抗体有5个主要类别IgA、IgD、IgE、IgG和IgM,这些中几种可进一步分为亚类(同种型),例如IgGI、IgG2、IgG3、IgG4、IgA和IgA2。对应于不同抗体类别的重链恒定区分别称为α、δ、ε、γ和μ。优选重链恒定区将完善γ1、γ2、γ3和γ4恒定区。优选这些恒定区还包含修饰以增强抗体稳定性,如在美国专利No.6,011,138(在此全部引入作为参考)中公开的P和E修饰。不同类别免疫球蛋白的亚基结构和三维构型也是熟知的。
“单链Fv”或“scFv”抗体片段包括抗体的VH和VL区,其中这些区以单一多肽链存在。优选Fv多肽进一步包含在VH和VL区之间的多肽接头,其使scFv能形成结合抗原所需的结构。关于scFv的综述,参见Pluckthun,The Pharmacology of Monoclonal Antibodies,vol.113,Rosenburg和Moore编著,Springer-Verlag,New York,269-315页(1994)。
术语“diabodies”指具有两个抗原结合部位的小抗体片段,该片段在相同多肽链(VH-VL)中包含重链可变区(VH)连接到轻链可变区(VL)。通过使用一个接头(其长度不足以使得在相同链上的两个区之间发生配对),强制所述区与另一条链的互补区配对并创建两个抗原结合部位。关于diabodies更完全的记载,参见例如EP 404,097;WO 93/11161;和Hollinger等,Proc.Natl.Acad.Sci.USA,906444-6448(1993)。
在此术语“单克隆抗体”用于指从一群实质上同源的抗体中获得的抗体,即构成该群体的各抗体除了可能的天然发生的突变(其可能以较小量存在)外是完全相同的。单克隆抗体是高度特异性的,针对单一抗原位点。此外,与通常包括针对不同决定簇(表位)的不同抗体的传统(多克隆)抗体制剂相比,每个单克隆抗体针对抗原上的单一决定簇。除了其特异性之外,单克隆抗体的优势在于它们是通过杂交瘤培养而合成的,未被其它免疫球蛋白污染。修饰语“单克隆”表明该抗体从一群实质上同源的抗体获得的特征,而不应理解为需要通过特定的方法产生该抗体。例如,用于本发明的单克隆抗体可以通过首先由Kohler等,Nature,256495(1975)描述的杂交瘤方法制备,或可以通过重组DNA方法(参见例如美国专利No.4,816,567)制备。“单克隆抗体”还可以使用例如Clackson等,Nature,352624-628(1991)和Marks等,J.Mol.Biol.,222581-597(1991)描述的技术从噬菌体抗体文库分离。
在此单克隆抗体特别包括“嵌合”抗体(免疫球蛋白),其中重链和/或轻链的一部分与来源于特定物种或属于特定抗体类别或亚类的抗体中的相对应序列相同或同源,而链的其余部分与来源于另一物种或属于另一抗体类别或亚类的抗体中的相对应序列相同或同源,以及这种抗体的片段,只要它们表现出所需要的生物学活性即可(美国专利No.4,816,567;Morrison等,Proc.Natl.Acad.Sci.USA,816851-6855(1984))。在此感兴趣的嵌合抗体包括“灵长类动物源化”抗体,其包含来源于非人灵长类动物(例如Old World Monkey、猿等)的可变区抗原结合序列和人恒定区序列。
“人源化”形式的非人(例如小鼠)抗体是含有来源于非人免疫球蛋白的最低序列的嵌合抗体。对于大部分情况,人源化抗体是人免疫球蛋白(受者抗体),其中来自受者的高变区的残基被来自非人物种(供体抗体)的高变区的残基替代,所述非人物种如小鼠、大鼠、兔或具有所需要的特异性、亲和性和能力的非人灵长类动物。在某些情况下,人免疫球蛋白的构架区(FR)残基被相应的非人残基替代。此外,人源化抗体可包含在受者抗体或供体抗体中未发现的残基。作这些修饰是为了进一步精化抗体性能。总的来说,人源化抗体将包含基本上所有的可变区(至少一个通常两个),其中所有或基本上所有的高变袢对应于非人免疫球蛋白的那些,而所有或基本上所有的FR具有人免疫球蛋白序列。人源化抗体还可选择性地包含至少一部分免疫球蛋白恒定区(Fc),通常是人免疫球蛋白的恒定区的一部分。关于更详细的描述,参见Jones等,Nature 321522-525(1986);Riechmann等,Nature 332323-329(1988);和Presta,Curr.Op.Struct.Biol.2593-596(1992)。
术语“高变区”当用于本文时指抗体中负责抗原结合的氨基酸残基。高变区包含来自“互补决定区”或“CDR”的氨基酸残基(例如在轻链可变区中的残基24-34(L1)、50-56(L2)和89-97(L3),以及在重链可变区中的残基31-35(H1)、50-65(H2)和95-102(H3);Kabat等,Sequences of Proteins of Immunological Interest,5thEd.Public Health Service,National Institutes of Health,Bethesda,MD(1991)),和/或那些来自“高变袢”的残基(例如在轻链可变区中的残基26-32(L1)、50-52(L2)和91-96(L3),以及在重链可变区中的残基26-32(H1)、53-55(H2)和96-101(H3);Chothia和Lesk,J.Mol.Biol.196901-917(1987))。“构架”或“FR”残基是那些除了如在此定义的高变区残基之外的可变区残基。
“结合”感兴趣抗原如B细胞表面标记的拮抗剂能以足够的亲和力结合该抗原,从而该拮抗剂可用作以表达该抗原的细胞如B细胞为目标的治疗剂。
在此“抗CD20抗体”是特异性结合CD20抗原优选人CD20的抗体,其具有可测量的B细胞耗尽活性,当以与RITUXAN(参见美国专利No.5,736,137,全部引入本文作为参考)相同的量和条件施用时,优选具有至少约10%的RITUXAN的B细胞耗尽活性。
在此“抗CD22抗体”是特异性结合CD22抗原优选人CD22的抗体,其具有可测量的B细胞耗尽活性,当以与RITUXAN(参见美国专利No.5,736,137,全部引入本文作为参考)相同的量和条件施用时,优选具有至少约10%的RITUXAN的B细胞耗尽活性。
在此“抗CD19抗体”是特异性结合CD19抗原优选人CD19的抗体,其具有可测量的B细胞耗尽活性,当以与RITUXAN(参见美国专利No.5,736,137,全部引入本文作为参考)相同的量和条件施用时,优选具有至少约10%的RITUXAN的B细胞耗尽活性。
在此“抗CD23抗体”是特异性结合CD23抗原优选人CD23的抗体,其具有可测量的B细胞耗尽活性,当以与RITUXAN(参见美国专利No.5,736,137,全部引入本文作为参考)相同的量和条件施用时,优选具有至少约10%的RITUXAN的B细胞耗尽活性。
在此“抗CD37抗体”是特异性结合CD37抗原优选人CD37的抗体,其具有可测量的B细胞耗尽活性,当以与RITUXAN(参见美国专利No.5,736,137,全部引入本文作为参考)相同的量和条件施用时,优选具有至少约10%的RITUXAN的B细胞耗尽活性。
在此“抗-B7抗体”是特异性结合B7.1、B7.2或B7.3最优选人B7.1的抗体。优选该抗体将特异性抑制B7/CD28相互作用,更优选抑制B7.1/CD28相互作用,并且实质上不抑制B7/CTLA-4相互作用。甚至更优选抗B7.1抗体是在美国专利6,113,898(在此全部引入作为参考)中描述的特异性抗体之一。
“抗CD40L抗体”是特异性结合CD40L(也称为CD154,gp39,TBAM)的抗体,优选具有对抗活性。优选的抗CD40L抗体具有在美国专利No.6,011,358(转让给IDEC Pharmaceuticals Corporation,在此全部引入作为参考)中公开的人源化抗体的特异性。
“抗CD4抗体”是特异性结合CD4优选人CD4的抗体,更优选是灵长类动物源化或人源化抗CD4抗体,优选人γ4抗人CD4抗体。
“抗CD40抗体”是特异性结合CD40优选人CD40的抗体,如在美国专利5,874,085、5,874,082、5,801,227、5,674,442和5,667,165(在此全部引作参考)中公开的那些。
优选B细胞耗尽抗体和免疫调节抗体均含有人恒定区。合适的抗体可包括IgG1、IgG2、IgG3和IgG4同种型。
结合CD20抗原的抗体的具体实例包括“rituximab”(“RITUXAN”)(美国专利No.5,736,137,特别在此引作参考);钇-[90]-标记的2B8小鼠抗体“Y2B8”(美国专利No.5,736,137,特别在此引作参考);选择性地用131I标记的小鼠IgG2a“B1”抗体(BEXXARTM)(美国专利No.5,595,721,特别在此引作参考);小鼠单克隆抗体“1F5”(Press等,Blood 69(2)584-591(1987));和“嵌合2H7”抗体(美国专利No.5,677,180,特别在此引作参考)。
结合CD22的抗体的具体实例包括由Immunomedics报道的LymphocideTM,现在处于对非霍奇金淋巴瘤的临床试验之中。结合B7抗原的抗体的实例包括颁给Linsley等的美国专利No.5,885,577中报道的B7抗体,颁给DeBoer等并转让给Chiron Corporation的美国专利No.5,869,050中报道的抗B7抗体,和在Anderson等的美国专利No.6,113,198中公开的灵长类动物源化抗B7.1(CD80)抗体,以上所有文献均全部引作参考。
结合CD23的抗体的优选实例包括由Reff等在1999年7月4日颁发的美国专利No.6,011,138(共同转让给IDEC PharmaceuticalsCorp.和Seikakagu Corporation of Japan)中报道的特异性针对人CD23的灵长类动物源化抗体。其它抗CD23抗体和抗体片段包括由Bonnefoy等,No.96 12741;Rector等,J.Immunol.55481-488(1985);Flores-Rumeo等,Science 2411038-1046(1993);Sherr等,J.Immunol.,142481-489(1989);和Pene等,PNAS,USA 856820-6824(1988)报道的那些。据报道这些抗体可用于治疗过敏、自身免疫病和炎性疾病。
在此术语“rituximab”或“RITUXAN”指针对CD20抗原的基因工程嵌合小鼠/人单克隆抗体,在美国专利No.5,736,137(在此特别引作参考)中命名为“C2B8”。该抗体是一种IgG1κ免疫球蛋白,含有小鼠轻链和重链可变区序列以及人恒定区序列。Rituximab对CD20抗原的结合亲和力大约为8.0nM。
“分离的”拮抗剂指已被鉴定并分离和/或从其天然环境的组分中回收。其天然环境的污染组分是会干扰拮抗剂的诊断或治疗应用的物质,并可包括酶、激素和其它蛋白性或非蛋白性溶质。在优选的实施方案中,拮抗剂将被纯化(1)至大于95wt%的拮抗剂,如Lowry法所确定,并最优选超过99wt%,(2)其纯化程度足以通过使用转杯式测序仪获得N末端或内部氨基酸序列的至少15个残基,或(3)纯化至使用考马斯蓝或优选银染在还原或非还原条件下SDS-PAGE中表现为均一。分离的拮抗剂包括在重组细胞内原位的拮抗剂,因为拮抗剂的天然环境的至少一种组分将不存在。但是通常分离的拮抗剂将通过至少一个纯化步骤来制备。
用于治疗目的的“哺乳动物”指任何分类为哺乳动物的动物,包括人、家畜和农场动物以及动物园、运动或宠物动物,如狗、马、猫、牛等。优选所述哺乳动物是人。
“治疗”指治疗性治疗和预防性措施。那些需要治疗的包括已患有疾病或障碍的以及有待预防疾病或障碍的那些。因此,所述哺乳动物可能已经被诊断为患有疾病或障碍或可能倾向于或易患该疾病。
措辞“治疗有效量”指有效预防、改善或治疗所关注的自身免疫病的拮抗剂量。
此处所用的术语“免疫抑制剂”(用于辅助治疗)指作用于抑制或掩蔽在此接受治疗的哺乳动物的免疫系统的物质。这会包括抑制细胞因子产生、下调或抑制自身抗原表达或掩蔽MHC抗原的物质。这种药剂的实例包括2-氨基-6-芳基-5-取代的嘧啶类(参见美国专利No.4,665,077,其内容在此引作参考)、硫唑嘌呤;环磷酰胺;溴隐亭;达那唑;氨苯砜;戊二醛(其掩蔽MHC抗原,如美国专利No.4,120,649中所述);针对MHC抗原和MHC片段的抗独特型抗体;环孢菌素A;类固醇如糖皮质激素,例如强的松、甲基强的松龙和地塞米松;细胞因子或细胞因子受体拮抗剂包括抗-干扰素-α、β-或δ-抗体,抗-肿瘤坏死因子-α抗体,抗-肿瘤坏死因子-β抗体,抗-白介素-2抗体和抗-IL-2受体抗体;抗-LFA-1抗体,包括抗-CD11a和抗-CD18抗体;抗-L3T4抗体;异种抗-淋巴细胞球蛋白;泛-T抗体,优选抗CD3或抗CD4/CD4a抗体;含有LFA-3结合域的可溶性肽(公开于7/26/90的WO90/08187),streptolanase;TGF-β;链道酶;来自宿主的RNA或DNA;FK506;RS-61443;脱氧精胍菌素;雷怕霉素;T细胞受体(Cohen等,美国专利No.5,114,721);T细胞受体片段(Offner等,Science,251430-432(1991);WO 90/11294;laneway,Nature,341482(1989);和WO 91/01133);和T细胞受体抗体(EP 340,109)如T10B9。
在此所用的术语“细胞毒性剂”指抑制或阻止细胞的功能和/或引起细胞破坏的物质。该术语旨在包括放射性同位素(例如At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、p32和Lu的放射性同位素)、化疗剂和毒素,如细菌、真菌、植物或动物来源的小分子毒素或酶活性毒素,或其片段。
“化疗剂”是用于治疗癌症的化合物。化疗剂的实例包括烷化剂如噻替哌和环磷酰胺(CYTOXANTM);烷基磺酸盐(酯)类如白消安、英丙舒凡和哌泊舒凡;吖啶类如苯并多巴、卡波醌、美妥替哌和乌瑞替派;氮丙啶类和甲基蜜胺类包括六甲基蜜胺、曲他胺、三乙撑磷酰胺、三乙撑硫代磷酰胺和三羟甲蜜胺;氮芥类如苯丁酸氮芥、萘氮芥、cholophosphamide、雌莫司汀、异环磷酰胺、氮芥、盐酸氧氮芥、美法仑、新氮芥、苯芥胆固醇、泼尼莫司汀、曲磷胺、尿嘧啶氮芥;亚硝基脲类如卡莫司汀、氯脲菌素、福莫司汀、洛莫司汀、尼莫司汀、雷莫司汀;抗生素如阿克拉霉素、放线菌素、安曲霉素、重氮乙酰丝氨酸、博来霉素、放线菌素C、加利车霉素、卡柔比星、洋红霉素、嗜癌素、色霉素、放线菌素D、柔红霉素、地托比星、6-重氮基-5-氧代-L-正亮氨酸、阿霉素、表柔比星、依索比星、伊达比星、麻西罗霉素、丝裂霉素、霉酚酸、诺拉霉素、橄榄霉素、培洛霉素、泊非霉素、嘌罗霉素、三铁阿霉素、罗多比星、链黑菌素、链佐星、杀结核菌素、乌苯美司、净司他丁、佐柔比星;抗代谢药如氨甲蝶呤和5-氟尿嘧啶(5-FU);叶酸类似物如二甲叶酸、氨甲蝶呤、蝶酰蝶呤、三甲曲沙;嘌呤类似物如氟达拉滨、6-巯基嘌呤、硫咪嘌呤、硫鸟嘌呤;嘧啶类似物如安西他滨、阿扎胞苷、6-氮尿苷、卡莫氟、阿糖胞苷、二脱氧尿苷、去氧氟尿苷、依诺他滨、氟尿苷、5-FU;雄激素类如卡鲁睾酮、丙酸屈他雄酮、环硫雄醇、美雄氨、睾内酯;抗肾上腺药如氨鲁米特、米托坦、曲洛司坦;叶酸补充剂如frolinic acid;醋葡醛内酯;aldophosphamide glycoside;氨基乙酰丙酸;安吖啶;bestrabucil;比生群;依达曲沙;defofamine;地美可辛;地吖醌;依氟鸟氨酸;依利醋铵;依托格鲁;硝酸镓;羟基脲;香菇多糖;氯尼达明;米托胍腙;米托蒽醌;莫哌达醇;二胺硝吖啶;喷司他丁;蛋氨氮芥;吡柔比星;鬼臼酸;2-乙基酰肼;丙卡巴肼;PSK;雷佐生;西佐喃;锗螺胺;细格孢氮杂酸;三亚胺醌;2,2’,2”-三氯三乙胺;乌拉坦;长春地辛;达卡巴嗪;甘露莫司汀;二溴甘露醇;二溴卫矛醇;哌泊溴烷;gacytosine;阿拉伯糖苷(“Ara-C”);环磷酰胺;噻替哌;紫杉烷类,例如紫杉醇(TAXOL,Bristol-Myers Squibb Oncology,Princeton,NJ)和多西他奇(泰索帝,Rhone-Poulenc Rorer,Antony,France);苯丁酸氮芥;吉西他滨;6-硫鸟嘌呤;巯基嘌呤;氨甲蝶呤;铂类似物如顺铂和卡铂;长春碱;铂;依托泊甙(VP-16);异环磷酰胺;丝裂霉素C;米托蒽醌;长春新碱;长春瑞宾;navelbine;二羟基蒽酮;替尼泊甙;柔红霉素;氨基蝶呤;xeloda;伊拜膦酸盐;CPT11;拓扑异构酶抑制剂RFS 2000;二氟甲基鸟氨酸(DMFO);视黄酸;esperamicin;capecitabine;和以上任何物质的可药用盐、酸或衍生物。还包括在此定义之内的是抗激素剂,其作用于调节或抑制激素对肿瘤的作用,如抗雌激素类,包括例如他莫昔芬、雷洛昔芬,抑制芳香酶的4(5)-咪唑类、4-羟基他莫昔芬、曲沃昔芬、keoxifene、LY117018、奥那司酮,和托瑞米芬(Fareston);和抗雄激素类如氟他胺、尼鲁米特、比卡鲁胺、亮丙瑞林和戈舍瑞林;和任何上述物质的可药用盐、酸或衍生物。
术语“细胞因子”是由一个细胞群释放的作为细胞间介质作用于另一个细胞的蛋白质的总称。这种细胞因子的实例是淋巴因子、单核因子和传统的多肽激素。细胞因子中包括有生长激素如人生长激素、N-甲硫氨酰人生长激素,和牛生长激素;甲状旁腺激素;甲状腺素;胰岛素;胰岛素原;松弛素;松弛素原;糖蛋白激素如卵泡刺激激素(FSH)、甲状腺刺激激素(TSH)和促黄体生成激素(LH);肝生长因子;成纤维细胞生长因子;催乳素;胎盘催乳激素;肿瘤坏死因子-α和-β;米勒管-抑制物质;小鼠促性腺激素-相关肽;抑制素;激活素;血管内皮生长因子;整联蛋白;血小板生成素(TPO);神经生长因子如NGF-13;血小板生长因子;转化生长因子(TGF)如TGF-α和TGF-β;胰岛素样生长因子-I和-II;红细胞生成素(EPO);骨诱导因子;干扰素如干扰素-α、-β和-γ;集落刺激因子(CSF)如巨噬细胞-CSF(M-CSF);粒-巨噬细胞-CSF(GM-CSF);和粒细胞-CSF(G-CSF);白介素(IL)如IL-1、IL-1a、IL-2、IL-g、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-11、IL-12、IL-15;肿瘤坏死因子如TNF-α或TNF-β;和其它多肽因子包括LIF和试剂盒配体(KL)。在此所用的术语细胞因子包括来自天然来源或重组细胞培养物的蛋白质以及天然序列细胞因子的生物学活性等同物。
本申请中所用的术语“前药”指药学活性物质的前体或衍生物形式,与亲本药物相比其对肿瘤细胞的细胞毒性较低,并能被酶促活化或转变为活性更高的亲本形式。参见例如Wilman,“Prodrugs inCancer Chemotherapy,”Biochemical Society Transactions,14,pp.375-382,615thMeeting Belfast(1986)和Stella等,“ProdrugsAChemical Approach to Targeted Drug Delivery,”Directed DrugDelievery,Borchardt等,(ed.),pp.247-267,Humana Press(1985)。本发明的前药包括但不限于含磷酸的前药、含硫代磷酸的前药、含硫酸的前药、含肽的前药、D-氨基酸-修饰的前药、糖基化的前药、含β-内酰胺的前药、含选择性取代的苯氧乙酰胺的前药或含选择性取代的苯基乙酰胺的前药、5-氟胞嘧啶和其它5-氟尿苷前药,其可转换为更具活性的细胞毒性游离药物。用于本发明的可衍生为前药形式的细胞毒性药物的实例包括但不限于以上所述的那些化疗剂。
“脂质体”是一种由多种类型脂质、磷脂和/或表面活性剂组成的小囊泡,其可用于将药物(如在此所公开的拮抗剂以及选择性的化疗剂)递送至哺乳动物。脂质体的成分通常排列成双层结构,类似于生物膜的脂质排列方式。
术语“包装插入物”用来指通常包括在治疗产品的商业包装中的说明书,其包含关于使用这种治疗产品的适应症、用法、剂量、给药、禁忌症和/或警告方面的信息。
II.抗体的产生本发明的方法和制品使用或引入具有免疫调节活性的抗体,例如抗-B7、抗-CD40L或抗-CD40,和结合B细胞表面标记具有B细胞耗尽活性的抗体。相应地,生成这种抗体的方法将在此进行描述。
用于产生或筛选抗原的分子可以是例如可溶形式的抗原或其一部分,含有所需要的表位。或者,或额外地,在其细胞表面表达所述抗原的细胞可用于产生或筛选拮抗剂。用于产生拮抗剂的其它形式的B细胞表面标记对本领域的技术人员而言是显而易见的。用于产生本发明的抗体的CD40L、CD40、CD19、CD20、CD22、CD23、CD37和B7(B7.1或B7.2)抗原的合适抗原来源是广为人知的。
优选CD40L抗体或抗-CD40L抗体是在美国专利6,001,358(颁布于1999年6月14日,并转让给IDEC Pharmaceuticals Corporation)中公开的人源化抗-CD40L抗体。
尽管优选的CD40L拮抗剂是抗体,在此也可以想到除抗体以外的拮抗剂。例如,所述拮抗剂可以包括可溶性CD40、CD40融合蛋白或选择性与细胞毒性剂(如在此所述的那些)融合或结合的小分子拮抗剂。可以用感兴趣的B细胞表面标记筛选小分子文库,以鉴定与该抗原结合的小分子。可进一步筛选小分子的拮抗特性和/或将其与细胞毒性剂结合。
所述拮抗剂也可以是例如通过合理设计或通过噬菌体展示产生的肽(WO98/35036,公开于1998年8月13日)。在一个实施方案中,所选择的分子可以是例如基于抗体的CDR设计的“CDR模拟物”或抗体类似物。尽管所述肽可以自身即具有拮抗活性,可以选择性地将该肽与细胞毒性剂或免疫球蛋白Fc区融合(例如,从而赋予该肽以ADCC和/或CDC活性)。
关于产生用于本发明的抗体拮抗剂的示例性技术如下所述。
(i)多克隆抗体优选在动物中产生多克隆抗体,通过多次皮下(sc)或腹膜内(ip)注射相关抗原和佐剂。使用双功能或衍生剂例如马来酰亚氨基苯甲酰基磺基琥珀酰亚胺酯(通过半胱氨酸残基结合)、N-羟基琥珀酰亚胺(通过赖氨酸残基结合)、戊二醛、琥珀酐、SOCl2或R1N=C=NR(其中R和R1是不同的烷基),将相关抗原结合至在待免疫物种中具有免疫原性的蛋白例如匙孔血蓝蛋白、血清白蛋白、牛甲状球蛋白或大豆胰蛋白酶抑制剂可能是有用的。
通过联合例如100μg或5μg的蛋白或结合物(分别对于兔或小鼠)与3体积的弗氏完全佐剂并将所述溶液在多个部位进行皮内注射,而使动物针对所述抗原、免疫原性结合物或衍生物免疫。一个月之后,通过在多个部位皮下注射处于弗氏完全佐剂中的1/5或1/10最初量的肽或结合物而对动物进行强化免疫。7-14天之后,对动物取血并测定血清的抗体滴度。对动物进行强化免疫直到滴度达到平台。优选用相同抗原但结合至不同蛋白和/或通过不同的交联试剂得到的结合物对动物进行强化。结合物也可以在重组细胞培养物中制备,为蛋白融合物。此外,适当采用聚集剂如明矾以增强免疫应答。
(ii)单克隆抗体单克隆抗体是从一群本质上均一的抗体获得的,即构成该群体的各抗体除了可能的天然发生的突变之外是完全相同的,所述突变可能以较小量存在。因此,修饰词“单克隆”表示抗体不是离散抗体的混合物的特征。
例如,单克隆抗体可以使用由Kohler等,Nature,256495(1975)首先描述的杂交瘤方法制备,或可以通过重组DNA方法(美国专利No.4,816,567)制备。
在杂交瘤方法中,对小鼠或其它适宜的宿主动物如仓鼠,如以上所述进行免疫,以得到产生或能产生将特异性结合用于免疫的蛋白的抗体的淋巴细胞。或者,淋巴细胞可以在体外进行免疫。然后使用合适的融合剂如聚乙二醇将淋巴细胞与骨髓瘤细胞融合,以形成杂交瘤细胞(Goding,Monoclonal AntibodiesPrinciples and Practice,pp.59-103(Academic Press,1986))。
将如此制备的杂交瘤细胞接种并生长于合适的培养基中,所述培养基优选含有一种或多种抑制未融合的亲本骨髓瘤细胞生长或存活的物质。例如,如果亲本骨髓瘤细胞缺乏次黄嘌呤鸟嘌呤磷酸核糖基转移酶(HGPRT或HPRT),则用于杂交瘤的培养基通常会包括次黄嘌呤、氨基蝶呤和胸苷(HAT培养基),所述物质阻止HGPRT缺乏细胞的生长。
优选的骨髓瘤细胞是那些有效融合、支持所选择的抗体产生细胞稳定高水平产生抗体的骨髓瘤细胞,并对诸如HAT培养基敏感。其中,优选的骨髓瘤细胞系是小鼠骨髓瘤系,如来源于可以从Salk InstituteCell Distribution Center,San Diego,California USA得到的MOPC-21和MPC-11小鼠肿瘤,和可以从American Type Culture Collection,Manassas,Virginia,USA得到的SP-2或X63-Ag8-653细胞。还描述过人骨髓瘤和小鼠-人杂骨髓瘤细胞系用于产生人单克隆抗体(Kozbor,J.Immunol.,133300 1(1984);Brodeur等,MonoclonalAntibody Production Techniques and Applications,pp.51-63(MarcelDekker,Inc.,New York,1987))。
测定杂交瘤细胞生长于其中的培养基针对所述抗原的单克隆抗体的产生情况。优选由杂交瘤细胞产生的单克隆抗体的结合特异性通过免疫沉淀印迹或通过体外结合测定如放射免疫测定(RIA)或酶联免疫吸附测定(ELISA)来确定。
单克隆抗体的结合亲和力可以例如通过Munson等,Anal.Biochem.,107220(1980)的30 Scatchard分析来确定。
在鉴定了产生具有所需特异性、亲和力和/或活性的抗体的杂交瘤细胞之后,所述克隆可以通过有限稀释方法进行亚克隆并通过标准方法培养(Goding,Monoclonal AntibodiesPrinciples and Practice,pp.59-103(Academic Press,1986))。用于此目的的合适培养基包括例如D-MEM或RPML-1640培养基。此外,杂交瘤细胞可以在动物体内作为腹水肿瘤生长。
通过常规的免疫球蛋白纯化操作例如A蛋白-Sepharose、羟磷灰石层析、凝胶电泳、透析或亲和层析,从培养基、腹水或血清中适当地分离由亚克隆所分泌的单克隆抗体。
使用常规的方法易于分离编码单克隆抗体的DNA并对其进行测序(例如,通过使用能特异性结合编码小鼠抗体的重链和轻链的基因的寡核苷酸探针)。杂交瘤细胞作为这种DNA的优选来源。一旦被分离之后,可以将DNA置入表达载体中,然后将其转染入宿主细胞如大肠杆菌细胞、猿猴COS细胞、中国仓鼠卵巢(CHO)细胞或原本不产生免疫球蛋白的骨髓瘤细胞,从而在重组宿主细胞中合成单克隆抗体。关于在细菌中重组表达编码抗体的DNA的综述文章包括Skerra等,Curr.Opinion in Immunol.,5256-262(1993)和Pluckthun,Immunol.Revs.,130151-188(1992)。
在另一个实施方案中,可以从使用在McCafferty等,Nature,348552-554(1990)中描述的技术生成的抗体噬菌体文库分离抗体或抗体片段。Clackson等,Nature,352624-628(1991)和Marks等,J.Mol.Biol.,222581-597(1991)描述了使用噬菌体文库分别分离小鼠和人抗体。随后的出版物描述了高亲和力(nM范围)人抗体的产生,通过链改组(Marks等,Bio/Technology,10779-783(1992)),以及组合感染和体内重组作为策略构建非常大的噬菌体文库(Waterhouse等,Nuc.Acids.Res.,212265-2266(1993))。由此,这些技术是用于分离单克隆抗体的传统单克隆抗体杂交瘤技术的可行备选方案。
所述DNA也可以是经修饰的,例如,通过用人重链和轻链恒定区的编码序列来代替同源的小鼠序列(美国专利No.4,816,567;Morrison等,Proc.Natl.Acad.Sci.USA,816851(1984)),或通过将非免疫球蛋白多肽的全部或部分编码序列共价连接至免疫球蛋白编码序列。
通常,这种非免疫球蛋白多肽被用来代替抗体的恒定区,或者它们被用来代替抗体的一个抗原结合部位的可变区,以创建包含一个对一种抗原具有特异性的抗原结合部位和另一个对不同抗原具有特异性的抗原结合部位的嵌合二价抗体。
(iii)人源化抗体将非人抗体人源化的方法已在现有技术中有所记载。优选人源化抗体具有一个或多个从非人来源引入其中的氨基酸残基。这些非人氨基酸残基通常被称为“输入”残基,其通常取自于“输入”可变区。可以基本上遵循以下方法进行人源化Winter和同事的方法(Jones等,Nature,321522-525(1986);Riechmann等,Nature,332323-327(1988);Verhoeyen等,Science,2391534-1536(1988)),通过用高变区序列代替人抗体的相应序列。因此,这种“人源化”抗体是嵌合抗体(美国专利No.4,816,567),其中实质上小于完整的人可变区被来自非人物种的相应序列代替。在实践中,人源化抗体通常是人抗体,其中部分高变区残基及可能部分FR残基被来自啮齿类动物抗体中类似位点的残基所代替。
选择用于制备人源化抗体的人可变区(轻链和重链)对降低抗原性是非常重要的。根据所谓的“最适”方法,用啮齿类动物抗体可变区的序列筛选已知的人可变区序列的整个文库。然后接受最接近啮齿类动物的人序列作为人构架区(FR)用于人源化抗体(Suns等,J.Immunol.,1512296(1993);Chothia等,J.Mol.Biol.,196901(1987))。另一种方法使用来源于具有特定亚型轻链或重链的所有人抗体的共有序列的特定构架区。该相同的构架可用于几种不同的人源化抗体(Carter等,Proc.Natl.Acad.Sci.USA,894285(1992);Presta等,J.Immunol.,1512623(1993))。
另外重要的是,抗体被人源化时保留对抗原的高亲和力和其它有利的生物学特性。为了实现这一目标,根据优选的方法,通过使用亲本和人源化序列的三维模型分析亲本序列和多种构思的人源化产物的方法来制备人源化抗体。三维免疫球蛋白模型通常是可以得到的并且是本领域的技术人员所熟悉的。说明并展示所选择的候选免疫球蛋白序列可能的三维构象结构的计算机程序是可以得到的。观察这些展示可分析残基在候选免疫球蛋白序列发挥功能中可能起的作用,特别是分析影响候选免疫球蛋白结合其抗原的能力的残基。以此方式,可以从受者和输入序列选择并组合FR残基,从而获得所需要的抗体特征,如对靶抗原的亲和力增加。一般来说,高变区残基直接并最为实质性地参与对抗原结合的影响。
(iv)人抗体作为人源化的备选方案,可以产生人抗体。例如,现在已可能产生转基因动物(例如小鼠),其经免疫能产生人抗体的所有组成成分而不产生内源性免疫球蛋白。例如,已描述了在嵌合和种系突变小鼠中纯合缺失抗体重链连接区PH)基因导致完全抑制内源性抗体产生。在这种种系突变小鼠中转入人种系免疫球蛋白基因阵列会导致在抗原攻击时产生人抗体。参见例如Jakobovits等,Proc.Mad.Acad.Sci.USA,90255 1(1993);Jakobovits等,Nature,362255-258(1993);Bruggermann等,Year in immuno.,733(1993);和美国专利No.5,591,669、5,589,369和5,545,807。
或者,可以使用噬菌体展示技术(McCafferty等,Nature348552-553(1990)),从来自非免疫供体的免疫球蛋白可变(V)区基因所有组成成分,在体外产生人抗体和抗体片段。根据该技术,将抗体V区基因符合读框地克隆入丝状噬菌体如M13或fd的主要或次要外壳蛋白基因,并在噬菌体颗粒的表面上展示为功能性抗体片段。由于丝状颗粒含有单链DNA拷贝的噬菌体基因组,基于抗体功能特性的选择还导致选择编码表现出那些特性的抗体的基因。因此,该噬菌体模拟B细胞的某些特性。噬菌体展示可以以多种形式进行;关于其综述参见例如Johnson,Kevin S.和Chiswell,David J.,Current Opinionin Structural Biology 3564-571(1993)。可以使用几种来源的V基因片段用于噬菌体展示。Clackson等,Nature,352624-628(1991)从来源于免疫小鼠的脾的V基因小随机组合文库分离了一大批不同的抗噁唑酮抗体。可以构建来自未免疫人供体的V基因的所有组成成分,并且可以基本上遵循以下技术分离针对一大批不同的抗原(包括自身抗原)的抗体Marks等,J.Mol.Biol.,222581-597(1991),或Griffith等,EMBO J.12725-734(1993)。还参见美国专利No.5,565,332和5,573,905。
还可以由体外活化的B细胞产生人抗体(参见美国专利No.5,567,610和5,229,275)。
(v)抗体片段已发展了多种技术用于产生抗体片段。传统的做法是通过蛋白水解消化完整的抗体而产生这些片段(参见例如Morimoto等,Journal ofBiochemical and Biophysical Methods 24107-117(1992)和Brennan等,Science,22981(1985))。然而,这些片段现在可以由重组宿主细胞直接产生。例如,可以从上述抗体噬菌体文库分离抗体片段。或者,可以从大肠杆菌直接回收Fab’-SH片段并化学偶联以形成F(ab’)2片段(Carter等,Bio/Technology 10163-167(1992))。根据另一种方法,可以直接从重组宿主细胞培养物分离F(ab’)2片段。用于产生抗体片段的其它技术对技术人员而言是显而易见的。在其它的实施方案中,所选的抗体是单链Fv片段(scFv)。参见WO 93/16185;美国专利No.5,571,894;和美国专利No.5,587,458。抗体片段还可以是“线状抗体”,例如在美国专利No.5,641,870中所述。这种线状抗体片段可以是单特异性的或双特异性的。
(vi)双特异性抗体双特异性抗体是对至少两种不同表位具有结合特异性的抗体。示例性的双特异性抗体可结合B细胞表面标记的两种不同表位。其它的这种抗体可结合第一B细胞标记并进一步结合第二B细胞表面标记。或者抗B细胞标记结合臂可与结合白细胞上的触发分子的臂联合,所述触发分子如T细胞受体分子(例如CD2或CD3)或IgG的Fc受体(FcR)如FcRI(CD64)、FcRII(CD32)和FcRIII(CD16),以将细胞防御机制集中到B细胞。双特异性抗体还可以用于使细胞毒性剂定位于B细胞。这些抗体具有B细胞标记结合臂和结合细胞毒性剂(例如皂草素、抗干扰素α、长春花生物碱、蓖麻毒蛋白A链、氨甲蝶呤或放射性同位素半抗原)的臂。双特异性抗体可以制备为全长抗体或抗体片段(例如F(ab)2双特异性抗体)。
制备双特异性抗体的方法是本领域已知的。传统上产生全长双特异性抗体是基于两对免疫球蛋白重链-轻链的共表达,其中两条链具有不同的特异性(Millstein等,Nature,305537-539(1983))。由于免疫球蛋白重链和轻链的随机分配组合,这些杂交瘤(quadroma)产生10种不同抗体分子的潜在混合物,其中仅一种具有正确的双特异性结构。对正确分子的纯化(通常是通过亲和层析步骤完成)相当麻烦,并且产物的产率低。类似的操作公开于WO 93/08829和Traunecker等,EMBO J.,103655-3659(1991)。
根据一种不同的方法,将具有所需要的结合特异性(抗体-抗原结合部位)的抗体可变区融合至免疫球蛋白恒定区序列。所述融合优选是与免疫球蛋白重链恒定区,包括至少部分铰链区、CH2和CH3区。优选在至少一种融和中存在包含轻链结合所必需的位点的第一重链恒定区(CH1)。将编码免疫球蛋白重链融合,和如果需要,免疫球蛋白轻链的DNA插入单独的表达载体,并共转染至适合的宿主生物体中。当构建中所用的3种多肽链的不等比例提供最理想的产率时,这为调节3种多肽片段的相互比例提供了极大的灵活性。但是,当至少两种多肽链以相等比例表达导致高产率时或当比例无关紧要时,可将两种或全部3种多肽链的编码序列插入一个表达载体中。
在该方法的优选实施方案中,双特异性抗体由在其一条臂具有第一结合特异性的杂种免疫球蛋白重链,和在其另一条臂的杂种免疫球蛋白重链-轻链对(提供第二结合特异性)组成。发现该不对称结构有助于所需要的双特异性化合物从不需要的免疫球蛋白链组合分离,因为仅在双特异性分子的一半存在免疫球蛋白轻链为分离提供了便利的途径。该方法公开于WO 94/04690。关于产生双特异性抗体的更多细节,参见例如Suresh等,Methods in Enzymology,121210(1986)。
根据在美国专利No.5,731,168中描述的另一种方法,可以将一对抗体分子之间的界面改造成使从重组细胞培养物回收的异二聚体的百分比达到最大。优选的界面包括抗体恒定区CH3域的至少一部分。在该方法中,将来自第一抗体分子界面的一个或多个小氨基酸侧链置换为较大的侧链(例如酪氨酸或色氨酸)。通过用较小的氨基酸侧链(例如丙氨酸或苏氨酸)置换大氨基酸侧链而在第二抗体分子的界面上创建与大侧链相同或相似大小的互补“空穴”。这提供了一种机制来增加异二聚体相对于其它不想要的终产物如同二聚体的产率。
双特异性抗体包括交联的或“杂结合的”抗体。例如杂结合物中的抗体之一可以偶联至抗生物素蛋白,而另一抗体偶联至生物素。已提出例如用这种抗体使免疫系统细胞瞄准不想要的细胞(美国专利No.4,676,980),并用于治疗HIV感染(WO 91/00360、WO 92/200373和EP03089)。可以使用任何便利的交联方法来制备杂结合抗体。合适的交联剂以及多种交联技术是本领域广为人知的,并公开于美国专利No.4,676,980中。
用于从抗体片段生成双特异性抗体的技术在文献中也已有记载。例如,可以使用化学键合制备双特异性抗体。Brennan等,Science,22981(1985)描述了一种方法,其中将完整的抗体进行蛋白水解切割,以生成F(ab’)2片段。将这些片段在二硫醇配位剂亚砷酸钠的存在下还原以稳定邻近的二硫醇并防止分子间二硫化键形成。然后将生成的Fab’片段转换为硫代硝基苯甲酸(TNB)衍生物。然后将Fab’-TNB衍生物之一通过用巯基乙胺进行还原而重新转换为Fab’-硫醇,并与等摩尔量的另一Fab’-TNB衍生物混合以形成双特异性抗体。所产生的双特异性抗体可用作选择性固定酶的物质。
近来的研究进展有助于从大肠杆菌直接回收Fab’-SH片段,其可化学偶联以形成双特异性抗体。Shalaby等,J.Exp.Med.,175217-225(1992)描述了完全人源化双特异性抗体F(ab’)2分子的产生。各Fab’片段分别从大肠杆菌中分泌出来,并在体外进行定向的化学偶联以形成双特异性抗体。如此形成的双特异性抗体能结合过量表达ErbB2受体的细胞和正常人T细胞,以及引发人细胞毒性淋巴细胞针对人乳腺肿瘤靶的溶解活性。
用于直接从重组细胞培养物制备和分离双特异性抗体片段的多种技术也已有记载。例如,已使用亮氨酸拉链制备了双特异性抗体。Kostelny等,J.Immunol.148(5)1547-1553(1992)。将来自Fos和Jun蛋白的亮氨酸拉链肽通过基因融合连接到两种不同抗体的Fab’部分。将该抗体同二聚体在铰链区还原以形成单体,然后再氧化以形成抗体异二聚体。此方法还可用于产生抗体同二聚体。由Hollinger等,Proc.Natl.Acad.Sci.USA,906444-6448(1993)描述的“diabody”技术为制备双特异性抗体片段提供了备选机制。所述片段包含重链可变区(VH),通过接头连接至轻链可变区(VL),所述接头的长度不足以使得相同链上的两个区之间发生配对。因此,一个片段的VH和VL区被迫与另一个片段的互补VL和VH区配对,从而形成两个抗原结合部位。通过使用单链Fv(sFv)二聚体而制备双特异性抗体片段的另一种策略也已有报道,参见Gruber等,J.Immunol.,1525368(1994)。
可以想到具有超过二价的抗体。例如,可以制备三特异性抗体。Tutt等,J.Immunol.14760(1991)。
III.拮抗剂的结合物和其它修饰在此用于所述方法中或包括在制品中的拮抗剂可选择性地结合至细胞毒性剂。
上文已描述了用于生成这种拮抗剂-细胞毒性剂结合物的化疗剂。
在此也可以想到拮抗剂与一种或多种小分子毒素(如加利车霉素、美登素(美国专利No.5,208,020)、单端孢菌毒素和CC 1065)的结合物。在本发明一个优选的实施方案中,拮抗剂结合至一个或多个美登素分子(例如每个拮抗剂分子约1至约10个美登素分子)。美登素可以例如被转换为May SS-Me,其可以被还原成May-SH3,并与经修饰的拮抗剂反应(Charm等,Cancer Research 52127-131(1992))以生成类美登素-拮抗剂结合物。
或者,拮抗剂可结合至一个或多个加利车霉素分子。加利车霉素家族的抗生素在皮摩尔以下浓度能产生双链DNA断裂。可以使用的加利车霉素的结构类似物包括但不限于γ1I、α2I、α3I、N-乙酰基-γ1I、PSAG和OI1(Hinman等,Cancer Research 533336-3342(1993)和Lode等,Cancer Research 582925-2928(1998))。
可以使用的酶活性毒素及其片段包括白喉A链、白喉毒素的非结合活性片段、外毒素A链(来自铜绿假单孢菌)、蓖麻毒蛋白A链、相思豆毒蛋白A链、modeccin A链、α八叠球菌素、油桐(Aleuritesfordii)蛋白、dianthin蛋白、垂序商陆(Phytolaca americana)蛋白(PAPI、PAPII和PAP-S)、苦瓜(momordica charantia)抑制剂、麻风树毒蛋白、巴豆毒蛋白、肥皂草(sapaonaria officinalis)抑制剂、gelonin、丝裂吉菌素、局限曲菌素、酚霉素、伊诺霉素和单端孢菌毒素。参见例如WO 93/21232(公开于1993年10月28日)。
本发明进一步包括与具有溶核活性的化合物(例如核糖核酸酶或DNA内切核酸酶如脱氧核糖核酸酶;DNA酶)结合的拮抗剂。
可以得到多种放射性同位素用于产生放射性结合的拮抗剂。实例包括At211,I131,I125,Y90,Re186,Re188,Sm153,Bi212,P32和Lu的放射性同位素。
拮抗剂与细胞毒性剂的结合物可以使用多种双功能蛋白偶联剂制备,如N-琥珀酰亚胺基-3-(2-吡啶基二硫醇)丙酸(SPDP)、琥珀酰亚胺基-4-(N-马来酰亚氨基甲基)环己烷-1-甲酸、亚氨基硫烷(IT)、亚氨酸酯的双功能衍生物(如二甲基己二酰亚氨酸酯HCL)、活性酯(如二琥珀酰亚胺基辛二酸酯)、醛(如戊二醛)、双叠氮基化合物(如双-(对叠氮基苯甲酰)己二胺)、双重氮衍生物(如双-(对重氮苯甲酰)-乙二胺)、二异氰酸酯(如甲苯2,6-二异氰酸酯)和双活性氯化合物(如1,5-二氟-2,4-二硝基苯)。例如可以如Vitetta等,Science 2381098(1987)所述制备蓖麻毒蛋白免疫毒素。碳14标记的1-异硫氰酸根合苄基-3-甲基二亚乙基三胺五乙酸(MX-DTPA)是一种用于将放射性核素结合到拮抗剂的示例性螯合剂。参见WO 94/11026。接头可以是有助于在细胞内释放细胞毒性药物的“可切割接头”。例如,可以使用酸不稳定接头、肽酶敏感性接头、二甲基接头和含二硫键的接头(Charm等,Cancer Research 52127-131(1992))。
或者,可以制备包含拮抗剂和细胞毒性剂的融合蛋白,例如通过重组技术或肽合成。
在另一个实施方案中,拮抗剂可以结合至“受体”(如链霉抗生物素蛋白)用于对肿瘤进行预瞄准,其中给患者施用拮抗剂-受体结合物,随后使用清除剂从循环中去除未结合的结合物,然后施用“配体”(例如抗生物素蛋白),所述配体与细胞毒性剂(例如放射性核素)结合。
本发明的拮抗剂还可以与前药活化酶结合,所述酶将前药(例如肽基化疗剂,参见WO 81/01145)转换为有活性的抗癌药。参见例如WO 88/07378和美国专利No.4,975,278。
这种结合物的酶组分包括能作用于前药从而将其转换成其更具活性的细胞毒性形式的任何酶。
可用于本发明方法的酶包括但不限于,用于将含磷酸的前药转换为游离药物的碱性磷酸酶;用于将含硫酸的前药转换为游离药物的芳基硫酸酶;用于将无毒性的5-氟胞嘧啶转换为抗癌药氟尿嘧啶的胞嘧啶脱氨酶;蛋白酶,如沙雷氏菌蛋白酶、嗜热菌蛋白酶、枯草杆菌蛋白酶、羧肽酶和组织蛋白酶(如组织蛋白酶B和L),其可用于将含肽的前药转换为游离药物;D-丙氨酰羧肽酶,用于转换含有D-氨基酸取代基的前药;糖类切割酶如β-半乳糖苷酶和神经氨酸酶,用于将糖基化的前药转换为游离药物;用于将β-内酰胺衍生的药物转换为游离药物的β-内酰胺酶;和青霉素酰胺酶,如青霉素V酰胺酶或青霉素G酰胺酶,用于将在其胺氮衍生有苯氧乙酰基或苯基乙酰基的药物分别转换为游离药物。或者,具有酶活性的抗体,在本领域中也称为“抗体酶”,可用于将本发明的前药转换为游离活性药物(参见例如Massey,Nature 328457-458(1987))。可以如本文所述制备拮抗剂-抗体酶结合物用于将抗体酶递送至肿瘤细胞群。
可以通过本领域熟知的技术将酶共价结合到拮抗剂,如使用以上所述的异双功能交联试剂。或者可以使用本领域熟知的重组DNA技术构建融合蛋白,其包含本发明拮抗剂的至少抗原结合区,连接至本发明酶的至少功能活性部分(参见例如Neuberger等,Nature,312604-608(1984))。
在此可以预见对所述拮抗剂的其它修饰。例如,拮抗剂可以连接到多种非蛋白质聚合物中的一种,例如聚乙二醇、聚丙二醇、聚氧化烯或聚乙二醇与聚丙二醇的共聚物。
在此公开的抗体还可以制成脂质体。含有拮抗剂的脂质体通过本领域已知的方法制备,如Epstein等,Proc.Natl.Acad.Sci.USA,823688(1985);Hwang等,Proc.Natl.Acad.Sci.USA,774030(1980);美国专利No.4,485,045和4,544,545;和WO97/38731(公开于1997年10月23日)。循环时间增加的脂质体公开于美国专利No.5,013,556。
特别有用的脂质体可以如下产生通过反相蒸发方法,使用包含磷脂酰胆碱、胆固醇和PEG衍生的磷脂酰乙醇胺(PEG-PE)的脂质组合物。通过确定孔径的滤器挤出脂质体以产生具有所需直径的脂质体。本发明抗体的Fab’片段可以如Martin等,J.Biol.Chem.257286-288(1982)所述通过二硫化物互换反应而结合至脂质体。在脂质体中可选择性地含有化疗剂。参见Gabizon等,J.National CancerInst.81(19)1484(1989)。
可以预见在此描述的蛋白或肽拮抗剂的氨基酸序列修饰。例如,可能想要改善拮抗剂的结合亲和力和/或其它生物学特性。拮抗剂的氨基酸序列变异体通过如下方法制备将适宜的核苷酸改变引入拮抗剂核酸,或通过肽合成。这种修饰包括,例如缺失,和/或插入,和/或置换拮抗剂氨基酸序列中的残基。对缺失、插入和置换作任何组合以得到最终的构建体,条件是最终的构建体具有所需要的特征。氨基酸改变还可能改变拮抗剂的翻译后过程,如改变糖基化位点的数目或位置。
一种用于鉴定拮抗剂中作为诱变优选位置的特定残基或区域的有用方法被称为“丙氨酸扫描诱变”,如Cunningham和Wells,Science,2441081-1085(1989)所述。在此,靶残基中的一个残基或基团得到鉴定(例如带电荷的残基,如arg,asp,his,lys和glu),并被中性或带负性电荷的氨基酸(最优选丙氨酸或聚丙氨酸)置换以影响氨基酸与抗原的相互作用。然后通过在或对置换位点引入进一步的或其它的变异体来精修那些证实对置换在功能上敏感的氨基酸位置。这样,尽管预先确定引入氨基酸序列变异的位点,但突变本身的性质并不需要预先确定。例如,为了分析在给定位点突变所表现出的作用,在靶密码子或区域进行丙氨酸扫描或随机诱变,并对所表达的拮抗剂变异体进行所需活性的筛选。
氨基酸序列插入包括氨基-和/或羧基-末端融合,长度从1个残基至含有100个或更多个残基的多肽,以及序列内插入单个或多个氨基酸残基。末端插入的实例包括具有N-末端甲硫氨酰残基的拮抗剂或融合至细胞毒性多肽的拮抗剂。拮抗剂分子的其它插入变异体包括酶或延长拮抗剂血清半衰期的多肽融合至拮抗剂的N-或C-末端。
另一类型的变异体是氨基酸置换变异体。对于这些变异体,拮抗剂分子中的至少一个氨基酸残基被不同的残基置换。对抗体拮抗剂进行置换诱变的最有用位点包括高变区,但也可以预见FR改变。保守置换如表1所示,标题为“优选的置换”。如果这种置换导致生物学活性改变,则可以引入表1中的更为实质性的改变(称为“示例性置换”)或如以下参照氨基酸类别进一步描述,并对产物进行筛选。
表1
对拮抗剂的生物学特性的实质性修饰是通过如下方法实现的通过选择其对维持(a)在置换区域的多肽主链的结构,例如作为折叠或螺旋构象,(b)分子在靶位点的电荷或疏水性,或(c)侧链的大小的效应显著不同的置换。天然存在的残基基于共同的侧链特性分为以下几组(1)疏水性正亮氨酸,met,ala,val,leu,ile;(2)中性亲水性cys,ser,thr;(3)酸性asp,glu;(4)碱性asn,gln,his,lys,arg;(5)影响链取向的残基gly,pro;和(6)芳香族trp,tyr,phe。
非保守置换将伴有这些类别之一的成员换成另一类别。
任何不参与维持拮抗剂适当构象的半胱氨酸残基也可以被置换,通常置换为丝氨酸,以提高分子的氧化稳定性并防止异常的交联。反过来,可以将半胱氨酸(键)添加入拮抗剂以改善其稳定性(特别是当拮抗剂是抗体片段如Fv片段的情况)。
特别优选类型的置换变异体包括置换亲本抗体(如人源化或人抗体)的一个或多个高变区残基。通常,选择用于进一步开发的所得变异体相对于产生其的亲本抗体具有改善的生物学特性。产生这种置换变异体的便利方法是使用噬菌体展示的亲和力成熟。简而言之,对几个高变区位点(例如6-7个位点)进行突变以产生在每个位点所有可能的氨基酸置换。如此产生的抗体变异体以单价的方式由丝状噬菌体颗粒展示,作为在每个颗粒中包装的与M13的基因III产物的融合体。然后如在此所公开的,对由噬菌体展示的变异体筛选其生物学活性(例如结合亲和力)。为了鉴定进行修饰的候选高变区位点,可以对已鉴定的对抗原结合起显著作用的高变区残基进行丙氨酸扫描诱变。或者,或另外,分析抗原-抗体复合物的晶体结构以鉴定抗体与抗原之间的接触点可能是有益的。这种接触残基和邻近的残基可作为根据在此详述的技术进行置换的候选对象。一旦产生了这种变异体,对这些变异体如在此所述进行筛选,可选择在一种或多种相关测定中显示出优异特性的抗体作进一步开发。
拮抗剂的另一类型氨基酸变异体改变了拮抗剂原本的糖基化模式。改变意味着去除拮抗剂中存在的一个或多个糖部分,和/或添加一个或多个拮抗剂中不存在的糖基化位点。
多肽的糖基化通常是N-连接的或O-连接的。N-连接指糖部分附着于天冬酰胺残基的侧链。三肽序列天冬酰胺-X-丝氨酸和天冬酰胺-X-苏氨酸(其中X是除脯氨酸以外的任何氨基酸)是糖部分酶促附着于天冬酰胺侧链的识别序列。因此,在多肽中这些三肽序列中任一个的存在创建潜在的糖基化位点。O-连接的糖基化指糖N-乙酰半乳糖胺、半乳糖或木糖之一与羟基氨基酸的附着,所述羟基氨基酸最常见为丝氨酸或苏氨酸,尽管也可以使用5-羟基脯氨酸或5-羟基赖氨酸。
通过改变氨基酸序列使得其含有一个或多个上述三肽序列而便利地实现向拮抗剂添加糖基化位点(对于N-连接的糖基化位点)。还可以通过向最初的拮抗剂序列添加或置换一个或多个丝氨酸或苏氨酸残基来进行改变(对于O-连接的糖基化位点)。
编码拮抗剂的氨基酸序列变异体的核酸分子可通过多种本领域已知的方法制备。这些方法包括但不限于从天然来源分离(对于天然存在的氨基酸序列变异体的情况),或通过对拮抗剂的较早制备的变异体或非变异形式进行寡核苷酸介导(或定点)诱变、PCR诱变和盒式诱变来制备。
可能需要修饰本发明中所使用的抗体,以改善效应功能。例如,增强拮抗剂的抗原依赖性细胞介导的细胞毒性作用(ADCC)和/或补体依赖性细胞毒性作用(CDC)。这可以通过将一个或多个氨基酸置换引入抗体拮抗剂的Fc区来实现。或者或额外地,可以将半胱氨酸残基引入Fc区,从而在该区域中形成链间二硫键。如此生成的同二聚体抗体可能内化能力提高和/或补体介导的细胞杀伤作用及抗体依赖性细胞介导的细胞毒性作用(ADCC)增强。参见Caron等,J.Exp Med.1761191-1195(1992)和Shopes,B.J.Immunol.1482918-2922(1992)。也可以使用如Wolff等,Cancer Research 532560-2565(1993)中描述的异双功能交联剂制备抗肿瘤活性增强的同二聚体抗体。或者可以改造具有双重Fc区的抗体,从而可具有增强的补体溶解和ADCC能力。参见Stevenson等,Anti-Cancer Drug Design 3219-230(1989)。
为了延长拮抗剂的血清半衰期,可以将补救受体结合表位引入拮抗剂(特别是抗体片段),例如如美国专利5,739,277中所述。在此所用的术语“补救受体结合表位”指IgG分子(例如IgG1,IgG2,IgG3或IgG4)的Fc区的表位,它使得IgG分子在体内的血清半衰期延长。
IV.药物制剂包含本发明所使用的拮抗剂的治疗制剂是这样制备用于贮存的将具有所需纯度的拮抗剂与选择性的可药用载体、赋形剂或稳定剂相混合(Remington’s Pharmaceutical Sciences 16thedition,Osol,A.Ed.(1980)),制成冻干制剂或水溶液的形式。可接受的载体、赋形剂或稳定剂以所采用的剂量和浓度对接受者是无毒性的,包括缓冲剂如磷酸、柠檬酸和其它有机酸;抗氧化剂包括抗坏血酸和甲硫氨酸;防腐剂(如十八烷基二甲基苄基氯化铵;氯己双铵;苯扎氯铵,氯化苄乙氧铵;苯酚,丁醇或苄醇;对羟基苯甲酸烷基酯如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白质如血清白蛋白,明胶或免疫球蛋白;亲水性聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、双糖和其它糖类包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖类如蔗糖、甘露醇、海藻糖或山梨醇;成盐平衡离子如钠;金属络合物(例如Zn-蛋白络合物);和/或非离子型表面活性剂如TWEENTM,PLURONICSTM或聚乙二醇(PEG)。
免疫调节抗体或抗体片段和B细胞耗尽抗体拮抗剂可以存在于同一制剂中或在不同制剂中。给药可以是同时的或序贯的,并且可以以任一次序实现。这种给药可以通过重复施用两种抗体持续一段长时间而实现。
示例性的抗CD20抗体制剂如WO98/56418所述(在此特别引入作为参考)。该公开文献描述了一种液体多剂量制剂,包含40mg/mLrituximab,25mM乙酸,150mM海藻糖,0.9%苄醇,0.02%聚山梨酯20,pH为5.0,最低架期为贮存于2-8℃两年。另一种有用的抗CD20制剂包含10mg/mL rituximab,处于9.0mg/mL氯化钠、7.35mg/mL柠檬酸钠二水合物、0.7mg/mL聚山梨酯80及无菌注射用水中,pH6.5。
适于皮下给药的冻干制剂如WO97/04801中所述。这种冻干制剂可以用合适的稀释剂重新配制至高蛋白浓度,并可将重新配制的制剂对在此待治疗的哺乳动物进行皮下给药。
在此所述制剂还可以包含超过一种对所治疗的特定适应症所必需的活性化合物,优选具有互补活性彼此不产生不利影响的那些。例如,可能想要进一步提供一种化疗剂、细胞因子或免疫抑制剂(例如作用于T细胞的物质,如环孢菌素,或结合T细胞的抗体,例如结合LFA-1的抗体)。这种其它物质的有效量取决于制剂中存在的拮抗剂的量、疾病或障碍或治疗的类型,以及以上讨论的其它因素。这些物质通常以相同的剂量使用,以上文所采用的给药途径,或迄今所采用剂量的约1-99%。
活性成分还可以包入微胶囊中,所述微胶囊是例如通过30凝聚技术或通过界面聚合制备的,例如分别为羟甲基纤维素或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊,在胶态药物递送体系中(例如脂质体、白蛋白微球体、微乳状液、纳米颗粒和纳米胶囊)或处于粗滴乳状液中。这种技术公开于Remington’s Pharmaceutical Sciences 16thedition,Osol,A.Ed.(1980)。
可以制备缓释制剂。缓释制剂的合适例子包括含有拮抗剂的固体疏水性聚合物的半透基质,所述基质为成形产品的形式,例如薄膜或微胶囊。缓释基质的实例包括聚酯、水凝胶(例如聚(2-羟乙基-甲基丙烯酸酯)或聚(乙烯醇))、聚交酯(美国专利No.3,773,919)、L-谷氨酸与γ乙基-L-谷氨酸、不可降解的乙烯乙酸乙烯酯、可降解的乳酸-乙醇酸共聚物如LUPRON DEPOTTM(由乳酸-乙醇酸共聚物与leuprolide acetate组成的可注射微球体),和聚-D-(-)-3-羟基丁酸。用于体内给药的制剂必须是无菌的。通过经无菌过滤膜滤过可以容易地实现这一要求。
V.用B细胞耗尽抗体和免疫调节抗体进行治疗将配制、调剂量并以符合正规医学实践的方式施用包含B细胞耗尽抗体和/或免疫调节抗体的一种或多种组合物。在这种情况下要考虑的因素包括所治疗的特定自身免疫病或障碍、所治疗的特定哺乳动物、个体患者的临床情况、疾病或障碍的病因、药剂递送部位、给药方法、给药方案和医学从业者所知道的其它因素。待施用的拮抗剂的治疗有效量将通过这些考虑因素来控制和决定。
如先前所提到的,B细胞耗尽抗体和免疫调节抗体可以存在于相同或不同的制剂中。这些抗体制剂可以分开单独施用或同时施用,以任一次序。优选对B细胞抗原靶例如CD20,CD19,CD22,CD23或CD37特异性的B细胞耗尽抗体将与免疫调节抗体例如抗CD40L抗体或抗CD40,抗B7.1,抗B7.2抗体分开施用。优选CD40L抗体是在美国专利No.6,001,358中公开的人源化抗CD40L抗体。已表明该抗体在治疗T和B细胞自身免疫病中均具有效力,例如多发性硬化和ITP。另外,与由Biogen报道的另一种人源化抗CD40L抗体(5c8)不同,已知该抗体不会引起不良的血液学事件。
作为一般的建议,胃肠外给药的抗体的每剂有效量通常为大约0.1-500毫克/公斤患者体重/天,通常所用拮抗剂的初始范围为大约2-100毫克/公斤。
优选的B细胞耗尽抗体是RITUXAN。这种抗体的合适剂量是例如从大约20mg/m2至大约1000mg/m2。该抗体的剂量可以与现在推荐RITUXAN用于治疗非霍奇金淋巴瘤的剂量相同或不同。例如,可以给予患者一剂或多剂实质上小于375mg/m2的抗体,例如剂量从大约20mg/m2至大约250mg/m2,例如从大约50mg/m2至大约200mg/m2。
此外,可以施用一个或多个初始剂量的抗体,然后施用一个或多个后续剂量,其中在后续剂量中的mg/m2抗体剂量超过在初始剂量中的mg/m2抗体剂量。例如,初始剂量可以从大约20mg/m2至大约250mg/m2(例如从大约50mg/m2至大约200mg/m2),而后续剂量可以从大约250mg/m2至大约1000mg/m2。
然而,如以上提到的,两种免疫调节抗体的这些建议量要经受大量的治疗判断。在选择适宜剂量和时序安排中的关键因素是获得的结果,如以上所指出的。例如,对于治疗正在发生的和急性的疾病,最初可能需要相对较高的剂量。为了获得最有效的结果,取决于该自身免疫病或障碍,拮抗剂的给予要尽可能接近所述疾病或障碍最初的征象、诊断、表现或发生或在所述疾病或障碍的消退期间。
可通过任何合适的方式给予抗体,包括胃肠外、皮下、腹膜内、肺内和鼻内,如果需要进行局部免疫抑制治疗,可通过病损内给药。胃肠外输注包括肌内、静脉内、动脉内、腹膜内或皮下给药。另外,抗体可以适当地通过脉冲输注给予,例如用下降剂量的抗体。优选通过注射给药,最优选静脉内或皮下注射,部分地取决于给药是短暂的还是长期的。
可以与本文的抗体一起另外施用其它化合物,如化疗剂、免疫抑制剂和/或细胞因子。联合给药包括使用单独分开的制剂或单一的药物制剂共同给药,以及以任一次序的序贯给药,其中优选存在一个时间段,而使两种(或全部)活性剂同时发挥其生物学活性。
除了将抗体给予患者之外,本发明还预见通过基因疗法施用抗体。这种编码所述抗体的核酸的给药包括在“施用治疗有效量的拮抗剂”表述之中。参见例如WO96/07321(公开于1996年3月14日),其涉及使用基因疗法产生胞内抗体。
有两种主要的方法将核酸(选择性地包含在载体之中)置入患者细胞中体内和离体。对于体内递送,将核酸直接注射入患者,通常在需要拮抗剂的部位进行注射。对于离体治疗,取出患者细胞,将核酸引入这些分离的细胞中,并将经修饰的细胞直接给予患者或例如包封入多孔膜中植入患者体内(参见例如美国专利No.4,892,538和5,283,187)。有多种可利用的技术将核酸引入活细胞中。这些技术各异,取决于核酸是在体外转移入培养的细胞,还是在体内转移入指定宿主的细胞中。适于在体外将核酸转移入哺乳动物细胞的技术包括使用脂质体、电穿孔、微注射、细胞融合、DEAF-葡聚糖、磷酸钙沉淀方法等。用于离体递送基因的常用载体是逆转录病毒。
当前优选的体内核酸转移技术包括用病毒载体(如腺病毒、单纯疱疹I病毒或腺伴随病毒)转染和基于脂质的体系(脂质介导的基因转移中有用的脂质是例如DOTMA,DOPE和DC-Chol)。在某些情况下,需要给核酸来源提供以靶细胞为目标的物质,如对细胞表面膜蛋白或靶细胞特异性的抗体,靶细胞上受体的配体等。当采用脂质体时,可以使用结合与胞吞作用相关的细胞表面膜蛋白的蛋白以定向和/或促进摄取,例如亲特定细胞类型的衣壳蛋白或其片段、针对在循环中经历内化作用的蛋白的抗体,和引导胞内定位并延长胞内半衰期的蛋白。受体介导的胞吞技术有所记载,例如Wu等,J.Biol.Chem.2624429-4432(1987);和Wagner等,Proc.Natl.Acad.Sci.USA873410-3414(1990)。关于目前已知的基因标记和基因疗法方案的综述,参见Anderson等,Science 256808-813(1992)。还可参见WO93/25673及其中引用的参考文献。
VI.制品在本发明的另一个实施方案中,提供了包含用于治疗以上所述疾病或障碍的物质的制品。
所述制品包括一个容器和容器上或容器中附带的标记或包装插入物。合适的容器包括例如瓶、小瓶、注射器等。容器可以从多种材料形成,如玻璃或塑料。容器中装有或含有有效治疗所选疾病或障碍的组合物,并可以具有无菌的取药口(例如容器可以是静脉内溶液袋或小瓶,其具有可用皮下注射针头刺破的塞子)。总体上可以有一种或几种组合物。那些组合物之一中的至少一种活性剂是具有B细胞耗尽活性的抗体,而至少一种抗体是免疫调节抗体,如抗CD40L、抗CD40、抗CD4或抗B7抗体。标记或包装插入物指示所述组合物是用于治疗患有或倾向于患自身免疫病的患者,如在上文所列的那些。所述制品可进一步包括第二个容器,其包含可药用缓冲剂,如制菌注射用水(BWFI)、磷酸缓冲盐水、林格液和葡萄糖溶液。其还可包括从商业和用者角度所需要的其它物质,包括其它缓冲剂、稀释剂、滤器、针头和注射器。
本发明的其它细节通过以下非限定性实施例进行说明。在本说明书中所有引用文献的内容在此特别引入作为参考。
实施例1对临床诊断为类风湿性关节炎(RA)的患者首先用rituximab(RITUXAN)抗体治疗。该患者可能还有或可能没有B细胞耗尽抗体,即恶性病变。此外,选择性地用任何一种或多种治疗RA所采用的药剂进一步治疗该患者,所述药剂如水杨酸盐;非甾体类抗炎药如吲哚美辛、保泰松、苯基乙酸衍生物(例如布洛芬和非诺洛芬)、萘乙酸类(萘普生)、吡咯链烷酸(tometin)、吲哚乙酸类(舒林酸)、卤代邻氨基苯甲酸(甲氯芬那酸钠)、吡罗昔康、佐美酸和二氟尼柳;抗疟药如氯喹;金盐;青霉胺;或免疫抑制剂如氨甲蝶呤或皮质类固醇,其剂量为这些药物的已知剂量或减少的剂量。但是优选对患者仅用RITUXAN进行治疗。
根据以下任何给药方案对RA患者静脉内(IV)施用RITUXAN(A)50mg/m2IV第1天150mg/m2IV第8,15和22天(B)150mg/m2IV第1天375mg/m2IV第8,15和22天(C)375mg/m2IV第1,8,15和22天此后用美国专利No.6,001,358中公开的人源化抗CD40L抗体治疗患者,根据相同的给药方案静脉内给药。
通过Paulus指数(Paulus等,Athritis Rheum.33477-484(1990))确定主反应,即晨僵的改善、疼痛和发炎的关节数目、血沉(ESR),以及由患者和医师对疾病严重程度的5分制评价中至少提高2分。在如以上所述治疗的患者中施用RITUXAN和抗CD40L抗体会减轻一种或多种RA症状。
实施例2用RITUXAN抗体治疗被诊断为自身免疫性溶血性贫血(AIHA)例如冷球蛋白血症或Coombs试验阳性贫血的患者。AIHA是一种获得性溶血性贫血,由与患者的红细胞反应的自身抗体引起。所治疗的患者选择性地还可能患有B细胞恶性病变。首先用含有人源化抗人CD40L抗体的组合物治疗患者,给药剂量为500mg/m2IV,该剂量每周给药2次,共4周。
此后根据以下任何给药方案对患者静脉内(IV)施用RITUXAN(A)50mg/m2IV第1天150mg/m2IV第8,15和22天(B)150mg/m2IV第1天375mg/m2IV第8,15和22天(C)375mg/m2IV第1,8,15和22天其它辅助治疗(如糖皮质激素、强的松、硫唑嘌呤、环磷酰胺、负载长春花的(vinca-laden)血小板或达那唑)可以与抗CD40L抗体和RITUXAN治疗联合。优选用RITUXAN和与以上实施例中相同的抗CD40L抗体作为整个疗程中唯一的其它药剂治疗患者。
总体反应率是基于以下因素确定的血细胞计数的改善、对输血的需要减少、血红蛋白水平提高和/或通过标准化学参数确定的溶血证据的减少。
在如以上所述治疗的患者中施用抗CD40L抗体和RITUXAN会改善溶血性贫血的任何一种或多种症状。
实施例3成人免疫性血小板减少性紫癜(ITP)是一种相对罕见的血液系统疾病,它构成最常见的免疫介导的血细胞减少症。该疾病典型表现为严重的血小板减少,可能伴随急性出血,而骨髓中存在正常或增加的巨核细胞。大多数ITP患者具有针对血小板膜外表面上的靶抗原的IgG抗体,导致脾中血小板隔离以及网状内皮系统加速破坏血小板(Bussell,J.B.Hematol.Oncol.Clin.North Am.(4)179(1990))。已显示多种治疗干预在治疗ITP中有效。类固醇通常被认为是一线治疗,其后大多数患者可考虑接受静脉内免疫球蛋白(IVIG)、脾切除或其它药物治疗包括长春新碱或免疫抑制/细胞毒性剂。多至80%的ITP患者最初对一个疗程的类固醇有反应,但少得多的患者能得到完全并持久的缓解。对于类固醇治疗失败的情况脾切除被推荐作为标准的二线治疗,并且在接近60%的病例中实现长时间的缓解,但可能导致对感染的免疫力降低。脾切除是主要的外科方法,可能伴随可观的发病率(15%)和死亡率(2%)。IVIG也被用作二线药物治疗,尽管仅一小部分的成人ITP患者获得缓解。
干预活化B细胞产生自身抗体而不伴有在用皮质类固醇和/或脾切除治疗时发生的相关死亡率,这种治疗选择对于一定比例的ITP患者将提供重要的治疗方法。
对临床诊断为ITP的患者(例如血小板计数<75,000/uL)用rituximab(RITUXAN)抗体治疗,可选择性地联合类固醇治疗。接受治疗的患者无B细胞恶性病变。
再次根据以下任何给药方案对ITP患者静脉内(IV)施用RITUXAN(A)50mg/m2IV第1天150mg/m2IV第8,15和22天(B)150mg/m2IV第1天375mg/m2IV第8,15和22天(C)375mg/m2IV第1,8,15和22天与施用RITUXAN同时,用在美国专利No.6,113,898(在此全部引作参考)中公开的灵长类动物源化抗B7.1抗体中的一种治疗患者。该抗B7.1抗体以单独的制剂静脉内给药,剂量为500mg/m2,每周2次,持续3周。
在输注RITUXAN与抗B7.1抗体组合之前,预先给予患者各一剂的苯海拉明25-50mg(静脉内)和对乙酰氨基酚650mg(口服)。使用无菌的注射器和21口径或更大的针头,将必需量的RITUXAN和抗B7.1抗体从小瓶中转移入含有无菌无致热原的0.9%氯化钠,USP(盐水溶液)的IV袋中。RITUXAN和B7.1抗体的终浓度大约为1mg/mL。首剂输注速度始于最初半小时的25毫克/小时,然后以30分钟间隔50毫克/小时的增量增加至200毫克/小时的最大速度。如果第一疗程的RITUXAN和B7.1抗体得到很好耐受,则随后疗程的输注速度从50毫克/小时开始,并以30分钟间隔100毫克/小时的增量逐渐增加至最大速度不超过300毫克/小时。监测生命体征(血压、脉搏、呼吸、体温),每15分钟×4或直到稳定,然后每小时监测一次直到输注完成。
在四次每周一次的RITUXAN治疗和施用三周B7抗体组合之后,分隔2周连续2次测定血小板计数,以此为基础确定总体反应率。用抗B7.1抗体和RITUXAN治疗的患者与用安慰剂治疗的患者相比将表现出血小板计数增加。
尽管本发明通过实施例和优选实施方案进行了描述,除了由前述所显示的以外,对本发明的多种改动包括在本发明的范围之内。这种改动预期会落入以下权利要求书的范围之内。
权利要求
1.一种治疗哺乳动物自身免疫病的方法,包括给哺乳动物施用治疗有效量的免疫调节抗体和治疗有效量的具有B细胞耗尽活性的抗体的组合,所述免疫调节抗体选自抗CD40L、抗B7.1(CD80)、抗B7.2(CD86)、CD40抗体和抗CD4抗体,其中所述免疫调节抗体和所述B细胞耗尽抗体可以单独或联合并以任一顺序给药。
2.权利要求1的方法,其中所述B细胞耗尽抗体选自结合选自以下组的抗原的抗体CD10,CD19,CD20,CD21,CD22,CD23,CD24,CD37,CD53,CD72,CD73,CD74,CDw75,CDw76,CD77,CDw78,CD79a,CD79b,CD80(B7.1),CD81,CD82,CD83,CDw84,CD85和CD86(B7.2)。
3.权利要求1的方法,其中所述免疫调节抗体是抗CD40L抗体或抗B7抗体。
4.权利要求3的方法,其中所述组合包括结合CD40L的抗体和结合CD20,CD22,CD19,CD23或CD37的抗体。
5.权利要求3的方法,其中所述组合包括结合B7.1或B7.2的抗体和结合CD19,CD20,CD22,CD23或CD37的抗体。
6.权利要求1的方法,其中免疫调节抗体在B细胞耗尽抗体之前施用。
7.权利要求1的方法,其中B细胞耗尽抗体在免疫调节抗体之前施用。
8.权利要求1的方法,其中B细胞耗尽抗体和免疫调节抗体联合施用。
9.权利要求1的方法,其中所述自身免疫病选自牛皮癣;皮炎;全身性硬皮病和硬化症;与炎性肠病相关的反应;局限性回肠炎;溃疡性结肠炎;呼吸窘迫综合征;成人呼吸窘迫综合征(ARDS);皮炎;脑膜炎;脑炎;葡萄膜炎;结肠炎;肾小球肾炎;过敏性病症;湿疹;哮喘;涉及T细胞浸润和慢性炎症反应的病症;动脉粥样硬化;白细胞粘附缺陷;类风湿性关节炎;系统性红斑狼疮(SLE);糖尿病;多发性硬化;雷诺综合征;自身免疫性甲状腺炎;过敏性脑脊髓炎;斯耶格伦综合征;青少年起病型糖尿病;与细胞因子和T淋巴细胞介导的急性和迟发型超敏反应相关的免疫应答;结核病;结节病;多肌炎;肉芽肿病;血管炎;恶性贫血(艾迪生病);涉及白细胞渗出的疾病;中枢神经系统(CNS)炎性疾病;多器官损伤综合征;溶血性贫血;重症肌无力;抗原-抗体复合物介导的疾病;抗肾小球基底膜疾病;抗磷脂综合征;过敏性神经炎;格雷夫斯病;兰-伊肌无力综合征;大疱性类天疱疮;天疱疮;自身免疫性多内分泌腺病;赖特病;僵人综合征;贝赫切特病;巨细胞动脉炎;免疫复合物肾炎;IgA肾病;IgM多神经病;特发性血小板减少性紫癜(ITP)和自身免疫性血小板减少和卵巢炎。
10.权利要求1的方法,其中所述哺乳动物是人。
11.权利要求3的方法,其中抗体均不与细胞毒性剂结合。
12.权利要求4的方法,其中所述抗体组合包括人源化或人抗人CD40L或B7.1抗体和嵌合的人源化或人抗CD20抗体。
13.权利要求1的方法,其中B细胞耗尽抗体与细胞毒性剂结合。
14.权利要求12的方法,其中所述细胞毒性剂是放射性核素。
15.权利要求14的方法,其中所述抗体包括Y2B8或131I-B1(BEXXARTM)。
16.权利要求1的方法,其中所述抗体经静脉内施用。
17.权利要求1的方法,其中所述抗体通过输注施用。
18.权利要求3的方法,包括将实质上小于375mg/m2剂量的抗体给予哺乳动物。
19.权利要求18的方法,其中所述剂量范围从大约20mg/m2至大约250mg/m2。
20.权利要求19的方法,其中所述剂量范围从大约50mg/m2至大约200mg/m2。
21.权利要求1的方法,包括施用首剂抗体然后施用后续剂量,其中后续剂量中的mg/m2抗体剂量超过在首剂中的mg/m2抗体剂量。
22.权利要求6的方法,其中所述自身免疫病是免疫性血小板减少性紫癜(ITP)。
23.权利要求6的方法,其中所述自身免疫病是类风湿性关节炎。
24.权利要求6的方法,其中所述自身免疫病是溶血性贫血。
25.权利要求21的方法,其中所述溶血性贫血是冷球蛋白血症或Coombs阳性贫血。
26.权利要求6的方法,其中所述自身免疫病是血管炎。
27.权利要求1的方法,其基本上包括施用抗B7.1抗体和B细胞耗尽性抗CD20抗体。
28.一种制品,其包括一个容器和其中所含的一种或几种组合物,其中至少一种组合物包含B细胞耗尽抗体,至少另一种组合物包含抗CD40L或抗B7.1或抗B7.2抗体,并且还包括包装插入物指导使用者用所述组合物治疗患有或倾向于患自身免疫病的患者。
29.权利要求25的制品,其中所述自身免疫病选自牛皮癣;皮炎;全身性硬皮病和硬化症;与炎性肠病相关的反应;局限性回肠炎;溃疡性结肠炎;呼吸窘迫综合征;成人呼吸窘迫综合征(ARDS);皮炎;脑膜炎;脑炎;葡萄膜炎;结肠炎;肾小球肾炎;过敏性病症;湿疹;哮喘;涉及T细胞浸润和慢性炎症反应的病症;动脉粥样硬化;白细胞粘附缺陷;类风湿性关节炎;系统性红斑狼疮(SLE);糖尿病;多发性硬化;雷诺综合征;自身免疫性甲状腺炎;过敏性脑脊髓炎;斯耶格伦综合征;青少年起病型糖尿病;与细胞因子和T淋巴细胞介导的急性和迟发型超敏反应相关的免疫应答;结核病;结节病;多肌炎;肉芽肿病;血管炎;恶性贫血(艾迪生病);涉及白细胞渗出的疾病;中枢神经系统(CNS)炎性疾病;多器官损伤综合征;溶血性贫血;重症肌无力;抗原-抗体复合物介导的疾病;抗肾小球基底膜疾病;抗磷脂综合征;过敏性神经炎;格雷夫斯病;兰-伊肌无力综合征;大疱性类天疱疮;天疱疮;自身免疫性多内分泌腺病;赖特病;僵人综合征;贝赫切特病;巨细胞动脉炎;免疫复合物肾炎;IgA肾病;IgM多神经病;特发性血小板减少性紫癜(ITP),自身免疫性血小板减少和卵巢炎。
30.治疗多发性硬化的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
31.治疗ITP的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
32.治疗狼疮的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
33.治疗糖尿病的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
34.治疗类风湿性关节炎的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
35.治疗牛皮癣的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
36.治疗甲状腺炎的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
37.治疗皮炎的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
38.治疗IBD的方法,包括施用针对B7.1,B7.2或CD40L的抗体和具有实质性B细胞耗尽活性的抗CD20抗体的组合,其中所述抗体单独或联合并以任一顺序施用。
39.权利要求1的方法,其进一步包括施用合成的免疫抑制药物。
40.权利要求39的方法,其中所述免疫抑制剂是环孢菌素或FK506。
41.权利要求39的方法,其进一步包括施用针对自身抗体的抗体。
全文摘要
本发明涉及用免疫调节抗体(例如抗B7.1或抗B7.2或抗CD40L抗体)和至少一种B细胞抗体(如CD19,CD20,CD22,CD23或CD37)的组合治疗自身免疫病,其中这些抗体可以单独或联合并以任一顺序长时间施用。
文档编号A61P21/00GK1592645SQ01817320
公开日2005年3月9日 申请日期2001年9月18日 优先权日2000年9月18日
发明者N·翰纳 申请人:拜奥根Idec公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1