球形核酸纳米颗粒缀合物的序列特异性细胞摄取的制作方法

文档序号:11440309阅读:634来源:国知局
球形核酸纳米颗粒缀合物的序列特异性细胞摄取的制造方法与工艺

相关申请的交叉引用

本专利申请根据35u.s.c.§119(e)要求于2014年11月21日提交的美国临时申请号62/083,092的优先权利益,所述美国临时申请的公开内容以引用的方式全文并入本文。

政府利益声明

本发明在由空军科学研究办公室(airforceofficeofscientificresearch)授予的授权号fa9550-11-1-0275;以及由美国国家卫生研究院(nationalinstitutesofhealth)授予的授权号u54ca151880和u54ca159341下由政府支持作出。政府在本发明中拥有一定的权利。

电子提交材料以引用的方式并入

本专利申请包含以计算机可读形式的序列表作为本公开内容的分开部分,所述序列表以引用的方式全文并入,并且标识如下:文件名:2014-183_seqlisting.txt;10,070字节,于2015年11月20日创建。

本公开内容涉及用影响球形核酸(sna)纳米颗粒通过细胞摄取的多核苷酸和核苷酸序列表面功能化的sna纳米颗粒。



背景技术:

球形核酸纳米颗粒缀合物(sna)是显示出与线型核酸相比根本不同性质的一类生物纳米材料。sna由高度取向的寡核苷酸链组成,其密集地填充到纳米颗粒核的表面上[cutler等人,jamchemsoc134:1376-1391(2012)]。与单链dna不同,sna可自然地进入哺乳动物细胞内而无需阳离子或亲脂转染试剂的帮助,尽管它们具有高负电荷[rosi等人,science312:1027-1030(2006)]。sna的强大的细胞摄取性质提供了关于开发细胞内诊断[seferos等人,jamchemsoc129:15477-15479(2007)]和基因调节[giljohann等人,jamchemsoc131:2072-2073(2009)]工具的潜力,而没有传统上与阳离子或亲脂试剂相关的毒性或免疫应答[massich等人,molpharm6:1934-1940(2009)]。实际上,sna在体外和体内调节目的基因的能力已得到证明[zheng等人,procnatlacadsciu.s.a.109:11975-11980(2012);jensen等人,scitranslmed5,209ra152(2013)]。

机制研究已经将a类清道夫受体(sr-a)鉴定为负责识别这种结构的主要细胞受体,并且sna与sr-a的结合导致质膜微囊介导的胞吞作用[choi等人,procnatlacadsciu.s.a.110:7625-7630(2013)]。富含鸟苷酸(g)的线型核酸天然被sr-a识别,这已被提出是由于它们折叠成称为g-四链体(g-quadruplex)的二级结构的能力[pearson等人,jbiolchem268:3546-3554(1993)]。相比之下,腺苷酸(a)、胸苷酸(t)和胞苷酸(c)的线型聚合物不折叠成被sr-a识别的二级结构,并且像这样,它们不是天然配体[pearson等人,jbiolchem268:3546-3554(1993)]。



技术实现要素:

由于它们的多价体系结构,sna的细胞相互作用不仅取决于纳米结构的尺寸,还取决于配体呈递[giljohann等人,nanolett7:3818-3821(2007)]。不受理论的束缚,考虑sna能够进入细胞而无需辅助转染试剂,因为sna体系结构模拟了该二级结构形成。另外,本公开内容提供了在sna与sr-a的相互作用和随后的细胞摄取中起重要作用的寡核苷酸序列。

相应地,本文提供的是用多核苷酸和结构域功能化的纳米颗粒,结构域(i)位于对于纳米颗粒远侧的多核苷酸的末端处,和(ii)包含为至少50%但小于100%鸟苷酸的核苷酸序列。在一些实施例中,结构域位于多核苷酸的5′末端处。在进一步的实施例中,结构域位于多核苷酸的3′末端处。在再进一步的实施例中,结构域位于多核苷酸内的内部区域处。在各种实施例中,结构域长度为约2至约50个核苷酸。在一些实施例中,多核苷酸是dna。在进一步的实施例中,多核苷酸是rna。在再进一步的实施例中,结构域包含至少三个(ggx)基序。在一些实施例中,x是脱氧核糖核苷酸或核糖核苷酸。在一些实施例中,x是腺苷酸、胸苷酸、尿苷酸或胞苷酸。在某些实施例中,x是鸟苷酸。在一些实施例中,x不是鸟苷酸。在进一步的实施例中,x是经修饰的核苷酸。

在一些实施例中,纳米颗粒用另外的多核苷酸功能化。在进一步的实施例中,另外的多核苷酸包含结构域。在一些实施例中,另外的多核苷酸是dna。在进一步的实施例中,另外的多核苷酸是rna。

在各种实施例中,结构域包含聚鸟苷酸(聚g)核苷酸序列,其包含多于一个鸟苷酸。在进一步的实施例中,结构域包含聚鸟苷酸(聚g)序列,其包含二、三、四、五、六、七、八、九、十、十一、十二、十三、十四、十五、十六、十七、十八、十九或二十个鸟苷酸核苷酸。

在一些方面,本公开内容还提供了增加多核苷酸功能化的纳米颗粒的细胞摄取的方法,其包括修饰纳米颗粒以进一步包含结构域的步骤,与缺乏结构域的多核苷酸功能化的纳米颗粒相比,所述结构域增加所述寡核苷酸功能化的纳米颗粒的细胞摄取。在一些实施例中,结构域包含聚鸟苷酸(聚g)核苷酸序列,其包含多于一个鸟苷酸。在进一步的实施例中,结构域包含聚g序列,其包含二、三、四、五、六、七、八、九、十、十一、十二、十三、十四、十五、十六、十七、十八、十九或二十个鸟苷酸核苷酸。在一些实施例中,结构域位于多核苷酸的5′末端处。在一些实施例中,结构域位于多核苷酸的3′末端处。在再进一步的实施例中,结构域位于多核苷酸内的内部区域处。在一些实施例中,结构域与多核苷酸共线(colinear)。在各种实施例中,多核苷酸是dna。在一些实施例中,多核苷酸是rna。

考虑本公开内容的方法中的任一种均用如本文公开的多核苷酸功能化的纳米颗粒进行。

在本公开内容的进一步方面,提供了用多核苷酸功能化的纳米颗粒,其中多核苷酸的远端以包含至少三个(ggx)基序的序列终止。在一些实施例中,至少三个(ggx)基序位于多核苷酸的5′末端上。在进一步的实施例中,至少三个(ggx)基序位于多核苷酸的3′末端上。在一些实施例中,x是脱氧核糖核苷酸,并且在进一步的实施例中,x是核糖核苷酸。在再进一步的实施例中,x是腺苷酸、胸苷酸、尿苷酸或胞苷酸。本公开内容还考虑在一些实施例中,x是经修饰的核苷酸。

在各种实施例中,纳米颗粒用另外的多核苷酸功能化。在一些实施例中,多核苷酸和/或另外的多核苷酸是dna。在进一步的实施例中,多核苷酸和/或另外的多核苷酸是rna。在再进一步的实施例中,多核苷酸和/或另外的多核苷酸是sirna。

在本公开内容的方面或实施例的任一个中,sna具有净负电荷。

在一些方面,本公开内容提供了增加多核苷酸功能化的纳米颗粒的细胞摄取的方法,其包括修饰多核苷酸使得多核苷酸的远端(即,与使纳米颗粒功能化的末端相反的末端)以包含至少三个(ggx)基序的序列终止的步骤,其中与缺乏修饰的多核苷酸功能化的纳米颗粒相比,包含修饰的多核苷酸功能化的纳米颗粒的摄取增加。在一些实施例中,至少三个(ggx)基序位于多核苷酸的5′末端上。在进一步的实施例中,至少三个(ggx)基序位于多核苷酸的3′末端上。在另外的实施例中,纳米颗粒用另外的多核苷酸功能化。在相关实施例中,多核苷酸和/或另外的多核苷酸是dna。在一些实施例中,多核苷酸和/或另外的多核苷酸是rna。在进一步的实施例中,多核苷酸和/或另外的多核苷酸是sirna。在一些实施例中,细胞是原核细胞。在进一步的实施例中,细胞是真核细胞。在相关实施例中,真核细胞是人细胞。

在一些实施例中,本公开内容还提供了方法,其中所述多核苷酸包含与靶多核苷酸序列充分互补的序列,以在合适的条件下与靶多核苷酸序列杂交。在进一步的实施例中,另外的多核苷酸包含与靶多核苷酸序列充分互补的序列,以在合适的条件下与靶多核苷酸序列杂交。在相关实施例中,杂交导致靶多核苷酸的检测。在再进一步的实施例中,杂交导致靶基因表达的抑制。

附图说明

图1a-1b显示了sna的表征。1a)该表列出了使用基于荧光的测定在10nm金纳米颗粒上负载寡核苷酸。聚tsna在所有核碱基类型中含有最高负载,而聚asna具有最低负载。1b)通过乙酸双氧铀染色sna清楚地描绘了通过tem成像在金纳米颗粒核(黑色)周围的dna寡核苷酸壳(白色)。壳的厚度与从基于荧光的测定获得的寡核苷酸负载数据相关联。比例尺=50nm。

图2描绘了动态光散射分析。由不同核碱基类型组成的寡核苷酸链共价附着到10nmaunp的表面上使流体动力学直径增加了10-15nm,指示寡核苷酸壳的厚度为5-8nm。

图3显示了sna的uv-vis吸收光谱。dna寡核苷酸壳与aunp核的共价附着导致表面等离子体峰中的红移,从对于未经修饰的柠檬酸盐封端的aunp的519nm到524nm,与壳包含的核碱基类型无关。

图4a-4b描绘了寡核苷酸负载的测量。4a)cy5标记的sna用于定量聚a、聚t、聚c和聚gsna的负载。通过添加1m二硫苏糖醇(dtt)还原au-硫醇键从aunp的表面释放cy5标记的单链dna(cy5-ssdna),并且允许通过cy5荧光的定量。4b)cy5部分附着到组成成分寡核苷酸的5′末端。

图5a-5c描绘了sna的细胞摄取。5a)聚gsna显示与c166细胞的最高结合,是由其他核碱基类型组成的sna的4-10倍。5b)通过tem成像,聚gsna显示出在c166细胞内的最高累积,如其作为大簇(>100/簇)在细胞溶质各处广泛分布所证明的。相比之下,由其他核碱基类型组成的sna或者在细胞溶质的较为局限的区域中累积,或者出现在包含较少颗粒的簇(<20个颗粒/簇)中。底行显示顶行的加框区域的放大图像。5c)聚gsna还证明除c166之外的其他三种细胞系的最高结合,以sr-a的表达水平的递减次序包括hacat(永生化人角质形成细胞)、3t3(小鼠成纤维细胞)和a549(人肺上皮腺癌)。对于所有细胞类型,与其他核碱基类型的sna相比,聚gsna显示出3-5倍高的与细胞结合。聚gsna与细胞的结合对于相同细胞类型与sr-a表达水平正相关。误差条指示来自一式三份测量的标准差。

图6a-6b显示了摄取对聚g壳的依赖性。6a)通过共聚焦显微镜检查,与富含t的qd-sna相比,聚gqd-sna(红色)显示c166细胞中的更高累积。比例尺=10μm。6b)用富含t的aunp-sna和聚gqd-sna以及富含t的qd-sna和聚gaunp-sna处理的c166细胞中的金和镉含量的icp-ms分析显示,聚gaunp-sna与富含t的qd-sna相比优先进入细胞,并且聚gqd-sna与富含t的aunp-sna相比优先进入细胞。误差条指示来自三次独立实验的标准差。

图7a-7d描述了寡核苷酸链的长度影响sna的细胞摄取。7a)在组成成分寡核苷酸的5′末端处增加的鸟苷酸(g)含量增加sna与c166细胞的细胞结合。当与聚t(t30)sna相比时,需要最少四个ggt重复单元来增强sna的细胞结合。7b)在组成成分寡核苷酸的中间中的ggt重复单元的包埋取消了细胞结合的增强。由空心正方形所示的序列是seqidno:27。由空心三角形所示的序列是seqidno:28。所有其他序列在本文中描述。7c)在组成成分dna寡核苷酸的5′末端处增加dspacer单元(其不具有核碱基)使sna的细胞结合降低高达75%。7d)在组成成分dna寡核苷酸的5′末端处增加c3spacer单元(其既没有核碱基也没有核糖)使sna的细胞结合降低高达75%。误差条指示来自一式三份测量的标准差。

图8a-8f描绘了使用cpt-sna的喜树碱分子的递送。8a)通过文献先例,喜树碱分子(cpt)的-oh基团通过短双功能接头修饰,以形成喜树碱叠氮化物(cpt-n3)[parrish等人,bioconjugatechem.18:263-267(2006)]。然后通过无铜点击化学(clickchemistry)将cpt-n3偶联到二苯并环辛基-dna-硫醇(dbco-dna-sh),以形成喜树碱-dna-硫醇(cpt-dna-sh)。dcc=n′n′-二环己基碳二亚胺,dmap=4-二甲基氨基吡啶,=二氯甲烷,dmso=二甲基亚砜。8b)基于cpt在440nm的荧光发射的测量揭示,所有四种核碱基类型的cpt-sna均含有55±15个cpt分子/颗粒。8c)通过用cpt-sna处理的a549细胞的金含量的icp-ms分析,cpt-聚gsna可在所有测试的核碱基类型中以最高数量进入细胞。cpt-sna(至少aunp核)在处理后看起来不离开细胞。误差条指示来自一式三份测量的标准差。8d)通过共焦成像,cpt-聚gsna可在所有测试的核碱基类型的cpt-sna中以最高数量将cpt分子(绿色)递送到a549细胞内。蓝色=细胞核。比例尺=20μm。通过mtt测定(8e)和由碘化丙啶染色支持的流式细胞术分析(8f),cpt-聚gsna在所有测试的核碱基类型的cpt-sna中也是最细胞毒性的。误差条指示来自四次测量的标准差。

图9a-9d描绘了cpt-dna-sh的合成。9a)喜树碱-叠氮化物(cpt-n3)的1hnmr。9b)通过maldi-tof分析,在用二苯并环辛基四甘醇接头(dbco-teg;f.w.:570.6;glenresearch)修饰后,dna链的分子量增加预期的量。在通过无铜点击偶联与cpt-n3(f.w.:487.5)反应以形成cpt-dna-sh后,dbco-dna-sh的分子量进一步增加预期的量。此处显示的是a30dna与dbco和cpt的缀合的代表性光谱。9c)通过maldi-tofms测量的分子量与预期分子量一致。9d)四种类型的cpt-dna-sh链的序列信息(也显示于表4中)。

图10显示了通过mtt测定的细胞活力。在没有cpt分子的情况下,通过对用20nmsna处理的a549细胞的mtt测定,4-7天后聚asna、聚tsna、聚csna和聚gsna未显示明显的细胞毒性。这种阴性对照显示通过cpt-sna引起的任何可观察到的细胞毒性源于cpt分子,而不是sna体系结构。报告的值表示来自三次独立实验的平均值的平均值±se。

图11显示了用于检测活化的半胱天冬酶3的elisa结果。在用各种类型的cpt-sna处理a549细胞时,cpt-(ggt)10sna比cpt-a30sna、cpt-t30sna和cpt-(cct)10sna诱导显著更高的半胱天冬酶3的活化,半胱天冬酶3是凋亡信号传导蛋白。报告的值表示来自三次独立实验的平均值的平均值±se。

图12显示了与聚a、聚t和聚csna相比,聚gsna显示更高的与c166细胞的细胞结合。

图13显示了sna的细胞摄取。

具体实施方式

由附着至纳米颗粒表面的密集填充的高度取向的寡核苷酸链组成的球形核酸(sna)能够克服核酸递送的典型挑战。sna已显示有效地进入50种不同的细胞类型,而无需使用辅助转染试剂并显示出最低限度的细胞毒性。最近,这些结构的胞吞机制显示依赖于a类清道夫受体(sr-a)。本公开内容涉及通过构建其组成成分寡核苷酸链富含鸟苷酸(g)的sna,利用sr-a与聚(鸟苷酸)寡核苷酸链的相互作用使sna进入细胞内的摄取达到最大。

相应地,本公开内容证明了寡核苷酸功能化的纳米颗粒的效用,其中寡核苷酸还包含调节细胞摄取的结构域。如本文使用的,“结构域”被理解为核碱基序列。如本文定义的经修饰的核碱基也预期构成如本文提供的结构域。在一个方面,结构域与在纳米颗粒上功能化的寡核苷酸共线。在另一个方面,结构域与纳米颗粒直接结合,而不与在纳米颗粒上功能化的寡核苷酸结合。在另外一个方面,结构域通过间隔物与纳米颗粒结合,而不与在纳米颗粒上功能化的寡核苷酸结合。换言之,在一些实施例中,结构域通过间隔物与纳米颗粒结合,与和寡核苷酸的任何结合相分离(因此在此类实施例中,间隔物不包含核碱基)。

如本文使用的,术语“核苷酸”采取其在本领域中的普通含义。因此,例如“a”=腺苷酸,“t”=胸苷酸,“c”=胞苷酸,“g”=鸟苷酸,并且“u”=尿苷酸。

此处注意到,如本说明书和所附权利要求中使用的,单数形式“一个”、“一种”和“该/所述”包括复数指示物,除非上下文另有明确规定。

如本文使用的,术语“多核苷酸”(在sna上功能化或作为靶分子)可与术语寡核苷酸互换使用,并且该术语具有本领域公认的含义。

还应注意术语“附着的”、“缀合的”和“功能化的”在本文中也可互换使用,并且指寡核苷酸或结构域与纳米颗粒的结合。

“杂交”意指按照沃森-克里克dna互补性、hoogstein结合或本领域已知的其他序列特异性结合的规则,通过氢键在两条或三条核酸链之间的相互作用。杂交可在本领域已知的不同严格条件下进行。

如本文使用的,“聚x”结构域(其中“x”是核苷酸,例如鸟苷酸)是在其长度上包含大于50%但小于100%的“x”的序列。例如,长度为30个核苷酸的聚鸟苷酸(聚g)结构域由至少15个(但小于30个)鸟苷酸核苷酸组成。因此,如本文使用的,“聚x”结构域不是均聚物序列。

纳米颗粒

本发明提供了纳米颗粒,其被功能化以具有与其附着的多核苷酸。一般而言,考虑的纳米颗粒包括对如本文所述的多核苷酸具有高负载能力的任何化合物或物质,包括例如且不限于金属、半导体、脂质体颗粒、绝缘体颗粒组合物和树枝状聚合物(有机相对于无机)。

因此,本发明考虑了纳米颗粒,其包含各种无机材料,包括但不限于金属、半导体材料或陶瓷,如美国专利申请号20030147966中所述。例如,基于金属的纳米颗粒包括本文所述的那些。陶瓷纳米颗粒材料包括但不限于:透钙磷石、磷酸三钙、氧化铝、二氧化硅和氧化锆。纳米颗粒由其生产的有机材料包括碳。纳米颗粒聚合物包括聚苯乙烯、硅酮橡胶、聚碳酸酯、聚氨基甲酸酯、聚丙烯、聚甲基丙烯酸甲酯、聚氯乙烯、聚酯、聚醚和聚乙烯。生物可降解的生物聚合物(例如多肽,如bsa、多糖等)、其他生物材料(例如碳水化合物)和/或聚合物化合物也考虑用于生产纳米颗粒。还考虑了例如如pct/us2014/068429(其以引用的方式全文并入本文)中公开的脂质体颗粒。本文还考虑了例如如美国专利公开号2012/0282186(其以引用的方式全文并入本文)中描述的空心颗粒。

在一个实施例中,纳米颗粒是金属的,并且在各个方面,纳米颗粒是胶体金属。因此,在各种实施例中,可用于实践该方法的纳米颗粒包括金属(包括例如且不限于金、银、铂、铝、钯、铜、钴、铟、镍或顺应纳米颗粒形成的任何其他金属)、半导体(包括例如且但不限于cdse、cds和由zns涂布的cds或cdse)和磁性(例如铁磁体)胶体材料。可用于本发明实践的其他纳米颗粒还包括但不限于zns、zno、ti、tio2、sn、sno2、si、sio2、fe、fe+4、ag、cu、ni、al、钢、钴铬合金、cd、钛合金、agi、agbr、hgi2、pbs、pbse、znte、cdte、in2s3、in2se3、cd3p2、cd3as2、inas和gaas。制备zns、zno、tio2、agi、agbr、hgi2、pbs、pbse、znte、cdte、in2s3、in2se3、cd3p2、cd3as2、inas和gaas纳米颗粒的方法也是本领域已知的。参见例如weller,angew.chem.int.ed.engl.,32,41(1993);henglein,top.curr.chem.,143,113(1988);henglein,chem.rev.,89,1861(1989);brus,appl.phys.a.,53,465(1991);bahncmann,在photochemicalconversionandstorageofsolarenergy(pelizetti和schiavello编辑1991)中,第251页;wang和herron,j.phys.chem.,95,525(1991);olshavsky,等人,j.am.chem.soc.,112,9438(1990);ushida等人,j.phys.chem.,95,5382(1992)。

在实践中,提供了使用具有与其附着的寡核苷酸的任何合适的颗粒来增加细胞摄取且抑制基因表达的方法,所述寡核苷酸不干扰复合物形成,即与靶多核苷酸的杂交。颗粒的尺寸、形状和化学组成有助于所得到的寡核苷酸功能化的纳米颗粒的性质。这些性质包括例如光学性质、光电性能、电化学性质、电子性质、各种溶液中的稳定性、磁性、以及孔和通道尺寸变化。考虑具有不同尺寸、形状和/或化学组成的颗粒混合物的使用,以及具有均匀尺寸、形状和化学组成的纳米颗粒的使用。合适的颗粒的例子包括但不限于纳米粒子颗粒、聚集物颗粒、各向同性颗粒(例如球形颗粒)和各向异性颗粒(例如非球形杆、四面体、棱柱体)和核-壳颗粒,例如于2002年12月28日提交的美国专利申请序列号10/034,451和于2002年12月28日提交的国际申请号pct/us01/50825中所述的颗粒,所述专利的公开内容以引用的方式全文并入。

制备金属、半导体和磁性纳米颗粒的方法是本领域众所周知的。参见例如,schmid,g.(编辑)clustersandcolloids(vch,weinheim,1994);hayat,m.a.(编辑)colloidalgold:principles,methods,andapplications(academicpress,sandiego,1991);massart,r.,ieeetransactionsonmagnetics,17,1247(1981);ahmadi,t.s.等人,science,272,1924(1996);henglein,a.等人,j.phys.chem.,99,14129(1995);curtis,a.c.,等人,angew.chem.int.ed.engl.,27,1530(1988)。所制备的聚氰基丙烯酸烷基酯纳米颗粒的制备在fattal等人,j.controlledrelease(1998)53:137-143和美国专利号4,489,055中描述。用于制备包含聚(d-glucaramidoamine)的纳米颗粒的方法在liu等人,j.am.chem.soc.(2004)126:7422-7423中描述。包含聚合的甲基丙烯酸甲酯(mma)的纳米颗粒的制备描述在tondelli等人,nucl.acidsres.(1998)26:5425-5431中描述,并且树枝状聚合物纳米颗粒的制备在例如kukowska-latallo等人,proc.natl.acad.sci.usa(1996)93:4897-4902(starburst聚酰胺-胺树枝状聚合物)中描述。

合适的纳米颗粒也从例如tedpella,inc.(金)、amershamcorporation(金)和nanoprobes,inc.(金)商购可得。

还如美国专利申请号20030147966中所述的,包含本文所述材料的纳米颗粒是商购可得的,或它们可由溶液中的逐步成核(例如通过胶体反应),或者通过各种物理和化学气相沉积工艺例如溅射沉积来产生。参见例如havashi,(1987)vac.sci.technol.july/august1987,a5(4):1375-84;hayashi,(1987)physicstoday,december1987,第44-60页;mrsbulletin,january1990,第16-47页。

如在美国专利申请号20030147966中进一步描述的,使用本领域已知的方法,使用haucl4和柠檬酸还原剂产生考虑的纳米颗粒。参见例如marinakos等人,(1999)adv.mater.11:34-37;marinakos等人,(1998)chem.mater.10:1214-19;enustun&turkevich,(1963)j.am.chem.soc.85:3317。具有约140nm的分散聚集物粒径的氧化锡纳米颗粒从日本chiba的vacuummetallurgicalco.,ltd.商购可得。各种组成和尺寸范围的其他商购可得的纳米颗粒可例如得自burlingame,calif的vectorlaboratories,inc.。

纳米颗粒的尺寸范围可为平均直径约1nm至约250nm、平均直径约1nm至约240nm、平均直径约1nm至约230nm、平均直径约1nm至约220nm、平均直径约1nm至约210nm、平均直径约1nm至约200nm、平均直径约1nm至约190nm、平均直径约1nm至约180nm、平均直径约1nm至约170nm、平均直径约1nm至约160nm、平均直径约1nm至约150nm、平均直径约1nm至约140nm、平均直径约1nm至约130nm、平均直径约1nm至约120nm、平均直径约1nm至约110nm、平均直径约1nm至约100nm、平均直径约1nm至约90nm、平均直径约1nm至约80nm、平均直径约1nm至约70nm、平均直径约1nm至约60nm、平均直径约1nm至约50nm、平均直径约1nm至约40nm、平均直径约1nm至约30nm、或平均直径约1nm至约20nm、平均直径约1nm至约10nm。在其他方面,纳米颗粒的尺寸为约5nm至约150nm(平均直径)、约5至约50nm、约10至约30nm、约10至150nm、约10至约100nm、或约10至约50nm。纳米颗粒的尺寸为约5nm至约150nm(平均直径)、约30至约100nm、约40至约80nm。在方法中使用的纳米颗粒的尺寸如通过其特定用途或应用的要求而变。尺寸的变化有利地用于优化纳米颗粒的某些物理特征,例如光学性质或可如本文所述功能化的表面积的量。

寡核苷酸

如本文使用的,术语“核苷酸”或其复数与本文所讨论的和本领域另外已知的修饰形式是可互换的。在某些情况下,本领域使用术语“核碱基”,其包含天然存在的核苷酸和包括经修饰的核苷酸的非天然存在的核苷酸。因此,核苷酸或核碱基意指天然存在的核碱基a、g、c、t和u。非天然存在的核碱基包括例如且不限于黄嘌呤、二氨基嘌呤、8-氧代-n6-甲基腺嘌呤、7-脱氮黄嘌呤、7-脱氮鸟嘌呤、n4,n4-乙醇基胞嘧啶、n′,n′-乙醇基-2,6-二氨基嘌呤、5-甲基胞嘧啶(mc)、5-(c3-c6)-炔基-胞嘧啶、5-氟尿嘧啶、5-溴尿嘧啶、假异胞嘧啶、2-羟基-5-甲基-4-三唑并吡啶、异胞嘧啶、异鸟氨酸、肌苷以及在benner等人,美国专利号5,432,272以及susanm.freier和karl-heinzaltmann,1997,nucleicacidsresearch,第25卷:第4429-4443页中描述的“非天然存在的”核碱基。术语“核碱基”还不仅包括已知的嘌呤和嘧啶杂环,还包括其杂环类似物和互变异构体。进一步的天然和非天然存在的核碱基包括下述中公开的那些核碱基:美国专利号3,687,808(merigan等人),sanghvi在antisenseresearchandapplication的第15章中,s.t.crooke和b.lebleu编辑,crcpress,1993,以及englisch等人,1991,angewandtechemie,国际版本,30:613-722(尤其参见第622和623页,以及conciseencyclopediaofpolymerscienceandengineering,j.i.kroschwitzed.,johnwiley&sons,1990,第858-859页,cook,anti-cancerdrugdesign1991,6,585-607中,所述参考文献各自以引用的方式全文并入本文)。在各个方面,多核苷酸还包括一种或多种“核苷碱基”或“碱基单元”,其是一类非天然存在的核苷酸,其包括化合物例如可如核碱基起作用的杂环化合物,包括在最经典意义上并非核苷碱基,但充当核苷碱基的某些“通用碱基”。通用碱基包括3-硝基吡咯,任选取代的吲哚(例如5-硝基吲哚)和任选取代的次黄嘌呤。其他期望的通用碱基包括吡咯、二唑或三唑衍生物,包括本领域已知的那些通用碱基。

经修饰的核苷酸在ep1072679和wo97/12896中描述,所述专利的公开内容以引用的方式并入本文。经修饰的核碱基包括但不限于5-甲基胞嘧啶(5-me-c)、5-羟甲基胞嘧啶,黄嘌呤,次黄嘌呤,2-氨基腺嘌呤,腺嘌呤和鸟嘌呤的6-甲基和其他烷基衍生物,腺嘌呤和鸟嘌呤的2-丙基和其他烷基衍生物,2-硫代尿嘧啶,2-硫代胸腺嘧啶和2-硫代胞嘧啶,5-卤代尿嘧啶和胞嘧啶,5-丙炔基尿嘧啶和胞嘧啶以及嘧啶碱基的其他炔基衍生物,6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶,5-尿嘧啶(假尿嘧啶),4-硫代尿嘧啶,8-卤代、8-氨基、8-硫醇、8-硫烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤,5-卤素、特别是5-溴、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶,7-甲基鸟嘌呤和7-甲基腺嘌呤,2-f-腺嘌呤,2-氨基腺嘌呤,8-氮杂鸟嘌呤和8-氮杂腺嘌呤,7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。进一步的经修饰的碱基包括三环嘧啶例如吩噁嗪胞苷(1h-嘧啶并[5,4-b][1,4]苯并噁嗪-2(3h)-酮)、吩噻嗪胞苷(1h-嘧啶并[5,4-b][1,4]苯并噻嗪-2(3h)-酮)、g夹例如取代的吩噁嗪胞苷(例如9-(2-氨基乙氧基)-h-嘧啶并[5,4-b][1,4]苯并噁嗪-(3h)-酮)、咔唑胞苷(2h-嘧啶并[4,5-b]吲哚-2-酮)、吡啶并吲哚胞苷(h-吡啶并[3′,2′:4,5]吡咯并[2,3-d]嘧啶-2-酮)。经修饰的碱基还可包括其中嘌呤或嘧啶碱被其他杂环替代的那些碱基,例如7-脱氮腺嘌呤、7-脱氮鸟苷、2-氨基吡啶和2-吡啶酮。另外的核碱基包括美国专利号3,687,808中公开的那些核碱基,theconciseencyclopediaofpolymerscienceandengineering,第858-859页,kroschwitz,j.i.,编辑johnwiley&sons,1990中公开的那些核碱基,由englisch等人,1991,angewandtechemie,国际版本,30:613公开的那些核碱基,以及由sanghvi,y.s.,第15章,antisenseresearchandapplications,第289-302页,crooke,s.t.和lebleu,b.,编辑,crcpress,1993公开的那些核碱基。这些碱基中的某些碱基可用于增加结合亲和力,并且包括5-取代嘧啶,6-氮杂嘧啶以及n-2、n-6和o-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。5-甲基胞嘧啶取代已显示使核酸双链体稳定性提高0.6-1.2℃,并且在某些方面与2′-o-甲氧基乙基糖修饰相结合。参见美国专利号3,687,808,美国专利号4,845,205;5,130,302;5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121,5,596,091;5,614,617;5,645,985;5,830,653;5,763,588;6,005,096;5,750,692和5,681,941,所述专利的公开内容以引用的方式并入本文。

制备预定序列的多核苷酸的方法是众所周知的。参见例如sambrook等人,molecularcloning:alaboratorymanual(第2版1989)和f.eckstein(编辑)oligonucleotidesandanalogues,第1版(oxforduniversitypress,newyork,1991)。固相合成方法对于聚核糖核苷酸和聚脱氧核糖核苷酸两者均为优选的(合成dna的众所周知的方法也可用于合成rna)。聚核糖核苷酸也可酶促制备。非天然存在的核碱基也可掺入多核苷酸内。参见例如美国专利号7,223,833;katz,j.am.chem.soc.,74:2238(1951);yamane等人,j.am.chem.soc.,83:2599(1961);kosturko等人,biochemistry,13:3949(1974);thomas,j.am.chem.soc.,76:6032(1954);zhang等人,j.am.chem.soc.,127:74-75(2005);和zimmermann等人,j.am.chem.soc.,124:13684-13685(2002)。

所提供的如本文定义的用多核苷酸或其修饰形式和结构域功能化的纳米颗粒一般包含长度约5个核苷酸至约100个核苷酸的多核苷酸。更具体而言,纳米颗粒用多核苷酸功能化,所述多核苷酸长度约5至约90个核苷酸、长度约5至约80个核苷酸、长度约5至约70个核苷酸、长度约5至约60个核苷酸、长度约5至约50个核苷酸、长度约5至约45个核苷酸、长度约5至约40个核苷酸、长度约5至约35个核苷酸、长度约5至约30个核苷酸、长度约5至约25个核苷酸、长度约5至约20个核苷酸、长度约5至约15个核苷酸、长度约5至约10个核苷酸,以及具体公开至多核苷酸能够实现所需结果的尺寸长度的所有多核苷酸中间体。相应地,考虑了长度5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、约125、约150、约175、约200、约250、约300、约350、约400、约450、约500个或更多个核苷酸的多核苷酸。

在一些实施例中,附着到纳米颗粒的多核苷酸是dna。当dna附着到纳米颗粒时,在一些实施例中,dna由这样的序列组成,所述序列与多核苷酸的靶区域充分互补,使得附着到纳米颗粒的dna寡核苷酸与靶多核苷酸发生杂交,由此将靶多核苷酸与纳米颗粒结合。在各个方面,dna是单链或双链的,只要双链分子还包括与靶多核苷酸的单链区域杂交的单链区域。在一些方面,在纳米颗粒上功能化的寡核苷酸的杂交可与双链靶多核苷酸形成三链体结构。在另一个方面,可通过将在纳米颗粒上功能化的双链寡核苷酸与单链靶多核苷酸杂交来形成三链体结构。

在一些实施例中,本公开内容考虑附着至纳米颗粒的多核苷酸是rna。在一些方面,rna是小干扰rna(sirna)。

如本文定义的,寡核苷酸还包括适体。一般而言,适体是能够与靶配体紧密结合并且谨慎区分靶配体的核酸或肽结合种类[yan等人,rnabiol.6(3)316-320(2009),其以引用的方式全文并入本文]。在一些实施例中,适体可通过称为通过指数富集的配体系统进化(selex)方法的技术获得[tuerk等人,science249:505-10(1990),美国专利号5,270,163和美国专利号5,637,459,所述参考文献各自以引用的方式全文并入本文]。核酸适体的一般讨论在例如且不限于nucleicacidandpeptideaptamers:methodsandprotocols(mayer编辑,humanapress,2009)和crawford等人,briefingsinfunctionalgenomicsandproteomics2(1):72-79(2003)中发现。适体的另外讨论,包括但不限于rna适体的选择、dna适体的选择、能够共价连接到靶蛋白的适体的选择、经修饰的适体文库的使用、以及适体作为诊断剂和治疗剂的用途在由molekulyarnayabiologiya,第34卷,no.6,2000,第1097-1113页翻译的kopylov等人,molecularbiology34(6):940-954(2000)中提供,所述参考文献以引用的方式全文并入本文。在各个方面,适体为长度约10至约100个核苷酸、或长度约100至约500个核苷酸。适体的生产和使用是本领域普通技术人员已知的。

在一些方面,多个寡核苷酸被功能化至纳米颗粒。在各个方面,多个寡核苷酸各自具有相同的序列,而在其他方面,一个或多个寡核苷酸具有不同的序列。在进一步的方面,多个寡核苷酸串联排列并且由间隔物分离。间隔物在本文下文中更详细地描述。

考虑用于附着至纳米颗粒的多核苷酸包括调节从靶多核苷酸表达的基因产物的表达的多核苷酸。这样的多核苷酸包括如本文下文定义的dna、rna及其修饰形式。相应地,在多个方面而非限制性地,考虑了与靶多核苷酸杂交并且引发靶多核苷酸的转录或翻译降低的多核苷酸,与双链多核苷酸杂交并抑制转录的三螺旋形成多核苷酸,以及与靶多核苷酸杂交且抑制翻译的核酶。

在各个方面,如果靶向特异性多核苷酸,则单一功能化寡核苷酸-纳米颗粒组合物具有结合相同转录物的多个拷贝的能力。在一个方面,提供了用相同的多核苷酸功能化的纳米颗粒,即每个多核苷酸具有相同的长度和相同的序列。在其他方面,纳米颗粒用两个或更多个不相同的多核苷酸进行功能化,即所附着的多核苷酸中的至少一个与至少一个其他附着的多核苷酸不同之处在于它具有不同的长度和/或不同的序列。在其中不同的多核苷酸附着到纳米颗粒的方面,这些不同的多核苷酸结合相同的单个靶多核苷酸但在不同的位置处,或结合编码不同基因产物的不同靶多核苷酸。

结构域

如本文所述,其为寡核苷酸功能化的纳米颗粒的部分的结构域显示影响纳米颗粒被细胞摄取的效率。相应地,结构域增加或(通过结构域的缺乏)降低效率。如本文使用的,“效率”指细胞中/通过细胞的纳米颗粒摄取的数目、量或速率。因为进入和离开细胞的纳米颗粒的过程是动态过程,所以可通过摄取更多的纳米颗粒或通过保留进入细胞的那些纳米颗粒更长的时间段来提高效率。类似地,可通过摄取更少的纳米颗粒或通过保留进入细胞的那些纳米颗粒更短的时间段来降低效率。

在一些方面,结构域位于寡核苷酸的末端处。在一些实施例中,结构域位于寡核苷酸的5′末端处,并且在进一步的实施例中,结构域位于寡核苷酸的3′末端处。

在一些实施例中,结构域位于未功能化至纳米颗粒的寡核苷酸的末端处。换言之,在这些实施例中,结构域位于对于纳米颗粒表面远侧的寡核苷酸的末端处。在进一步的实施例中,结构域位于对于纳米颗粒表面远侧的寡核苷酸的末端处,并且结构域也不与任何其他分子附着。

在一些方面,结构域与寡核苷酸连续/共线。在一些方面,结构域位于寡核苷酸内的内部区域处。在进一步的方面,结构域位于附着至纳米颗粒的第二寡核苷酸上。在一个方面,在功能化至纳米颗粒的寡核苷酸中存在多于一个结构域。相应地,在一些方面,多于一个结构域串联或个别地存在于寡核苷酸的5′末端处、和/或3′末端处、和/或内部区域处。

在另一个方面,在一些实施例中,考虑将结构域作为与寡核苷酸分开的实体附着至纳米颗粒,即在一些实施例中,结构域直接附着到纳米颗粒,与寡核苷酸分开。

进一步考虑,在一些实施例中,寡核苷酸包含位于本文所述位置中的一个或多个处的多于一个结构域。

在一些实施例中,结构域提高了寡核苷酸功能化的纳米颗粒通过细胞的摄取效率。在各种实施例中,结构域为长度约2至约1000、约2至约500、约2至约100、约2至约50、约2至约30、约2至约20、约2至约10、约5至约100、约5至约50、约5至约30、约5至约20、约5至约10、约10至约100、约10至约50、约10至约30、约10至约20、约10至约15、约20至约100、约20至约50、约20至约40、约20至约30个核苷酸。在进一步的实施例中,结构域为长度小于100、小于80、小于60、小于50、小于40、小于30、小于20、小于10、或小于5个核苷酸。如本文公开的,该结构域包含鸟苷酸核苷酸(聚g)序列。在各个方面,结构域包含两个鸟苷酸。在进一步的方面,结构域包含至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少11个、至少12个、至少13个、至少14个、至少15个、至少16个、至少17个、至少18个、至少19个、至少20个、至少21个、至少22个、至少23个、至少24个、至少25个、至少26个、至少27个、至少28个、至少29个、至少30个、至少31个、至少32个、至少33个、至少34个、至少35个、至少36个、至少37个、至少38个、至少39个、至少40个、至少41个、至少42个、至少43个、至少44个、至少45个、至少46个、至少47个、至少48个、至少49个、至少50个、至少55个、至少60个、至少65个、至少70个、至少75个、至少80个、至少85个、至少90个、至少95个、至少100个、至少125个、至少150个、至少175个、至少200个、至少250个、至少300个、至少350个、至少400个、至少450个、至少500个或更多个鸟苷酸核苷酸。

在本公开内容的各个方面和实施例中,结构域包含为至少约50%但小于100%鸟苷酸核苷酸的序列。因此,在一些实施例中,结构域包含为至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%或至少95%鸟苷酸核苷酸的序列。在进一步的实施例中,结构域包含小于55%、小于60%、小于65%、小于70%、小于75%、小于80%、小于85%、小于90%、或小于95%鸟苷酸核苷酸的序列。在再进一步的实施例中,结构域包含约50%至99%、约60%至99%、约65%至99%、约70%至99%、约75%至95%、约80%至99%、约85%至99%、约90%至约99%或约95%至约99%鸟苷酸核苷酸的序列。在一些实施例中,结构域包含为99%鸟苷酸核苷酸的序列。均聚鸟苷酸序列,即为100%鸟苷酸的序列,未被考虑用作本文的结构域。

因此,鉴于结构域的潜在的核苷酸长度和结构域中存在的各种百分比的鸟苷酸核苷酸,各自如上所述,考虑到结构域的剩余核苷酸序列(即,并非鸟苷酸但是结构域的部分的核苷酸序列)是任何核苷酸或其修饰形式。例如且不限于,一些实施例中的结构域是(ggx)n序列,其中x是腺苷酸、胸苷酸、尿苷酸,胞苷酸(或其修饰形式),并且n是约1至约500。在一些实施例中,x是鸟苷酸(条件是在这样的实施例中,结构域不是均聚的鸟苷酸序列)。在一些实施例中,n是1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20。

在一些实施例中,考虑用寡核苷酸和结构域功能化的纳米颗粒被细胞摄取的效率高于用相同寡核苷酸功能化但缺乏结构域的纳米颗粒。在一些方面,用寡核苷酸和结构域功能化的纳米颗粒被细胞摄取比用相同寡核苷酸功能化但缺乏结构域的纳米颗粒更有效1%。在各个方面,用寡核苷酸和结构域功能化的纳米颗粒被细胞摄取比用相同寡核苷酸功能化但缺乏结构域的纳米颗粒更有效2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%。或是约2倍、约3倍、约4倍、约5倍、约6倍、约7倍、约8倍、约9倍、约l0倍、约20倍、约30倍、约40倍、约50倍、约100倍、约150倍、约200倍、约250倍、约300倍、约350倍、约400倍、约450倍、约500倍、约550倍、约600倍、约650倍、约700倍、约750倍、约800倍、约850倍、约900倍、约950倍、约1000倍、约1500倍、约2000倍、约2500倍、约3000倍、约3500倍、约4000倍、约4500倍、约5000倍、约5500倍、约6000倍、约6500倍、约7000倍、约7500倍、约8000倍、约8500倍、约9000倍、约9500倍、约10000倍高或更高。

在一些实施例中,结构域的缺乏降低寡核苷酸功能化的纳米颗粒通过细胞的摄取效率。在一些实施例中,考虑用寡核苷酸功能化但缺乏结构域的纳米颗粒被细胞摄取的效率低于具有比用包含结构域的相同寡核苷酸功能化的纳米颗粒。在一些方面,用寡核苷酸功能化但缺乏结构域的纳米颗粒被细胞摄取的效率比用包含该结构域的相同寡核苷酸功能化的纳米颗粒低1%。在各个方面,用寡核苷酸功能化但缺乏结构域的纳米颗粒被细胞摄取的效率比用包含该结构域的相同寡核苷酸功能化的纳米颗粒低2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或是约2倍、约3倍、约4倍、约5倍、约6倍、约7倍、约8倍、约9倍、约10倍、约20倍、约30倍、约40倍、约50倍、约100倍、约150倍、约200倍、约250倍、约300倍、约350倍、约400倍、约450倍、约500倍、约550倍、约600倍、约650倍、约700倍、约750倍、约800倍、约850倍、约900倍、约950倍、约1000倍、约1500倍、约2000倍、约2500倍、约3000倍、约3500倍、约4000倍、约4500倍、约5000倍、约5500倍、约6000倍、约6500倍、约7000倍、约7500倍、约8000倍、约8500倍、约9000倍、约9500倍、约10000倍低或更低。

经修饰的寡核苷酸

如上文讨论的,经修饰的寡核苷酸被考虑用于功能化纳米颗粒。在各个方面,在纳米颗粒上功能化的寡核苷酸被完全修饰或部分修饰。因此,在各个方面,多核苷酸中的核苷酸单元的一个或多个或所有糖和/或一个或多个或所有核苷酸间键合被“非天然存在的”基团替代。

在一个方面,该实施例考虑了肽核酸(pna)。在pna化合物中,多核苷酸的糖主链被含酰胺的主链替代。参见例如美国专利号5,539,082;5,714,331;和5,719,262,以及nielsen等人,science,1991,254,1497-1500,所述参考文献的公开内容以引用的方式并入本文。

对于所公开的多核苷酸考虑的核苷酸和非天然核苷酸之间的其他键合包括下述中所述的那些键合:美国专利号4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,658,873;5,670,633;5,792,747;和5,700,920;美国专利公开号20040219565;国际专利公开号wo98/39352和wo99/14226;mesmaeker等人,currentopinioninstructuralbiology5:343-355(1995)以及susanm.freier和karl-heinzaltmann,nucleicacidsresearch,25:4429-4443(1997),所述参考文献的公开内容以引用的方式并入本文。

寡核苷酸的具体例子包括含有经修饰的主链或非天然核苷间键合的那些寡核苷酸。具有经修饰的主链的寡核苷酸包括在主链中保留磷原子的那些寡核苷酸和在主链中不具有磷原子的那些寡核苷酸。在其核苷间主链中不具有磷原子的经修饰的寡核苷酸视为在“寡核苷酸”的含义内。

含有磷原子的经修饰的寡核苷酸主链包括例如硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其他烷基膦酸酯(包括3′-亚烷基膦酸酯、5′-亚烷基膦酸酯和手性膦酸酯)、次膦酸酯、氨基磷酸酯包括3′-氨基氨基磷酸酯和氨基烷基氨基磷酸酯、硫羰基氨基磷酸酯、硫羰基烷基膦酸酯、硫羰基烷基磷酸三酯、具有正常3′-5′键合的硒代磷酸酯和硼烷磷酸酯、这些的2′-5′键合的类似物、以及具有反转极性的那些,其中一个或多个核苷酸间键合为3′至3′、5′至5′或2′至2′键合。还考虑的是具有反转极性的多核苷酸,其包含在最3′核苷酸间键合处的单个3′至3′键合,即可为无碱基(核苷酸缺失或在其位置中具有羟基)的单个反转核苷残基。还考虑了盐、混合盐和游离酸形式。

教导上述含磷键合的制备的代表性美国专利包括美国专利号3,687,808;4,469,863;4,476,301;5,023,243;5,177,196;5,188,897;5,264,423;5,276,019;5,278,302;5,286,717;5,321,131;5,399,676;5,405,939;5,453,496;5,455,233;5,466,677;5,476,925;5,519,126;5,536,821;5,541,306;5,550,111;5,563,253;5,571,799;5,587,361;5,194,599;5,565,555;5,527,899;5,721,218;5,672,697和5,625,050,所述专利的公开内容以引用的方式并入本文。

不包括磷原子的经修饰的多核苷酸主链具有由短链烷基或环烷基核苷间键合、混合杂原子和烷基或环烷基核苷间键合、或一个或多个短链杂原子或杂环核苷间键合形成的主链。这些包括具有下述的那些:吗啉键合;硅氧烷主链;硫化物、亚砜和砜主链;甲酰乙酰基和硫代甲酰乙酰基主链;亚甲基甲酰乙酰基和硫代甲酰乙酰基主链;核糖乙酰基主链;含烯烃主链;氨基磺酸盐主链;亚甲基亚氨基和亚甲基肼基主链;磺酸盐和磺酰胺主链;酰胺主链;以及具有混合的n、o、s和ch2组分部分的其他。在另外其他实施例中,提供了具有硫代磷酸酯主链的多核苷酸和具有杂原子主链的寡核苷酸,并且该寡核苷酸包括美国专利号5,489,677和5,602,240中所述的-ch2-nh-o-ch2-、-ch2-n(ch3)-o-ch2-、-ch2-o-n(ch3)-ch2-、-ch2-n(ch3)-n(ch3)-ch2-和-o-n(ch3)-ch2-ch2-。参见例如美国专利号5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033;5,264,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,610,289;5,602,240;5,608,046;5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;5,792,608;5,646,269和5,677,439,所述专利的公开内容以引用的方式全文并入本文。

在各种形式中,寡核苷酸中的两个连续单体之间的键合由选自-ch2-、-o-、-s-、-nrh-、>c=o、>c=nrh、>c=s、-si(r″)2-、-so-、-s(o)2-、-p(o)2-、-po(bh3)-、-p(o,s)-、-p(s)2-、-po(r″)-、-po(och3)-和-po(nhrh)-的2至4个,优选3个基团/原子组成,其中rh选自氢和c1-4-烷基,并且r″选自c1-6-烷基和苯基。这些键合的举例说明性例子是-ch2-ch2-ch2-、-ch2-co-ch2-、-ch2-choh-ch2-、-o-ch2-o-、-o-ch2-ch2-、-o-ch2-ch=(当用作与连续单体的键合时包括r5)、-ch2-ch2-o-、-nrh-ch2-ch2-、-ch2-ch2-nrh-、-ch2-nrh-ch2--、-o-ch2-ch2-nrh-、-nrh-co-o-、-nrh-co-nrh-、-nrh-cs-nrh-、-nrh-c(=nrh)-nrh-、-nrh-co-ch2-nrh-o-co-o-、-o-co-ch2-o-、-o-ch2-co-o-、-ch2-co-nrh-、-o-co-nrh-、-nrh-co-ch2-、-o-ch2-co-nrh-、-o-ch2-ch2-nrh-、-ch=n-o-、-ch2-nrh-o-、-ch2-o-n=(当用作与连续单体的键合时包括r5)、-ch2-o-nrh-、-co-nrh-ch2-、-ch2-nrh-o-、-ch2-nrh-co-、-o-nrh-ch2-、-o-nrh、-o-ch2-s-、-s-ch2-o-、-ch2-ch2-s-、-o-ch2-ch2-s-、-s-ch2-ch=(当用作与连续单体的键合时包括r5)、-s-ch2-ch2-、-s-ch2-ch2--o-、-s-ch2-ch2-s-、-ch2-s-ch2-、-ch2-so-ch2-、-ch2-so2-ch2-、-o-so-o-、-o-s(o)2-o-、-o-s(o)2-ch2-、-o-s(o)2-nrh-、-nrh-s(o)2-ch2-;-o-s(o)2-ch2-、-o-p(o)2-o-、-o-p(o,s)-o-、-o-p(s)2-o-、-s-p(o)2-o-、-s-p(o,s)-o-、-s-p(s)2-o-、-o-p(o)2-s-、-o-p(o,s)-s-、-o-p(s)2-s-、-s-p(o)2-s-、-s-p(o,s)-s-、-s-p(s)2-s-、-o-po(r″)-o-、-o-po(och3)-o-、-o-po(och2ch3)-o-、-o-po(och2ch2s-r)-o-、-o-po(bh3)-o-、-o-po(nhrn)-o-、-o-p(o)2-nrhh-、-nrh-p(o)2-o-、-o-p(o,nrh)-o-、-ch2-p(o)2-o-、-o-p(o)2-ch2-和-o-si(r″)2-o-;在其中考虑了-ch2-co-nrh-、-ch2-nrh-o-、-s-ch2-o-、-o-p(o)2-o-o-p(-o,s)-o-、-o-p(s)2-o-、-nrhp(o)2-o-、-o-p(o,nrh)-o-、-o-po(r″)-o-、-o-po(ch3)-o-和-o-po(nhrn)-o-,其中rh选自氢和c1-4-烷基,并且r″选自c1-6-烷基和苯基。进一步的举例说明性实例在mesmaeker等人,1995,currentopinioninstructuralbiology,5:343-355以及susanm.freier和karl-heinzaltmann,1997,nucleicacidsresearch,第25卷:第4429-4443页中给出。

多核苷酸的另外其他修饰形式在美国专利申请号20040219565中详细描述,所述专利的公开内容以引用的方式全文并入本文。

经修饰的多核苷酸还可含有一个或多个取代的糖部分。在某些方面,多核苷酸在2′位置处包含下述之一:oh;f;o-、s-或n-烷基;o-、s-或n-烯基;o-、s-或n-炔基;或o-烷基-o-烷基,其中烷基、烯基和炔基可为取代或未取代的c1至c10烷基或c2至c10烯基和炔基。其他实施例包括o[(ch2)no]mch3、o(ch2)noch3、o(ch2)nnh2、o(ch2)nch3、o(ch2)nonh2和o(ch2)non[(ch2)nch3]2,其中n和m为1至约10。其他多核苷酸在2′位置处包含下述之一:c1至c10低级烷基、取代的低级烷基、烯基、炔基、烷芳基、芳烷基、o-烷芳基或o-芳烷基、sh、sch3、ocn、cl、br、cn、cf3、ocf3、soch3、so2ch3、ono2、no2、n3、nh2、杂环烷基、杂环烷芳基、氨基烷基氨基、多烷基氨基、取代的甲硅烷基、rna切割基团、报道基团、嵌入剂、用于改善多核苷酸的药代动力学性质的基团、或用于改善多核苷酸的药效学性质的基团、以及具有相似性质的其他取代基。在一个方面,修饰包括2′-甲氧基乙氧基(2′-o-ch2ch2och3,也称为2′-o-(2-甲氧基乙基)或2′-moe)(martin等人,1995,helv.chim.acta,78:486-504)即烷氧基烷氧基。其他修饰包括2′-二甲基氨基氧基乙氧基,即o(ch2)2on(ch3)2基团,也称为2′-dmaoe,以及2′-二甲基氨基乙氧基乙氧基(本领域也称为2′-o-二甲基-氨基-乙氧基-乙基或2′-dmaeoe),即2′-o-ch2-o-ch2-n(ch3)2。

另外其他的修饰包括2′-甲氧基(2′-o-ch3)、2′-氨基丙氧基(2′-och2ch2ch2nh2)、2′-烯丙基(2′-ch2-ch=ch2)、2′-o-烯丙基(2′-o-ch2-ch=ch2)和2′-氟(2′-f)。2′-修饰可在阿拉伯糖(上)位置或核糖(下)位置中。在一个方面,2′-阿拉伯糖修饰是2′-f。类似的修饰也可在多核苷酸上的其他位置处作出,例如在3′末端核苷酸上的糖的3′位置处或2′-5′连接的多核苷酸中和在5′末端核苷酸的5′位置处。多核苷酸还可具有糖模拟物,例如环丁基部分代替戊呋糖基糖。参见例如美国专利号4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,658,873;5,670,633;5,792,747;和5,700,920,所述专利的公开内容以引用的方式全文并入本文。

在一个方面,糖的修饰包括锁核酸(lna),其中2′-羟基连接到糖环的3′或4′碳原子,由此形成双环糖部分。该键合在某些方面是桥接2′氧原子和4′碳原子的亚甲基(-ch2-)n基团,其中n为1或2。lna及其制备在wo98/39352和wo99/14226中描述,所述专利的公开内容以引用的方式并入本文。

与纳米颗粒的寡核苷酸附着

考虑用于该方法的寡核苷酸包括通过任何方式与纳米颗粒结合的寡核苷酸。不管寡核苷酸通过其与纳米颗粒附着的方式,通过5′键合、3′键合、某种类型的内部键合或这些附着的任何组合来实现在各个方面的附着。

附着方法是本领域普通技术人员已知的,并且在美国公开号2009/0209629中描述,所述专利以引用的方式全文并入本文。将rna附着到纳米颗粒的方法一般在pct/us2009/65822中描述,所述专利以引用的方式全文并入本文。

因此提供了具有与其附着的寡核苷酸的纳米颗粒,其中进一步包含结构域的寡核苷酸与纳米颗粒结合。

间隔物

在某些方面,考虑了功能化纳米颗粒,其包括其中寡核苷酸和结构域通过间隔物附着到纳米颗粒的那些纳米颗粒。如本文使用的,“间隔物”意指这样的部分,其不参与调节基因表达本身,但作用于增加纳米颗粒和功能性寡核苷酸之间的距离,或者当以多个拷贝附着至纳米颗粒时增加各个寡核苷酸之间的距离。因此,考虑将间隔物串联定位在各个寡核苷酸之间,无论寡核苷酸具有相同的序列还是具有不同的序列。在其中结构域直接附着到纳米颗粒的本发明的方面,结构域任选地通过间隔物功能化至纳米颗粒。在另一个方面,结构域在与间隔物末端相对的寡核苷酸末端上。在其中串联的结构域功能化至纳米颗粒的方面,间隔物任选地在串联结构中的一些或全部结构域单元之间。在一个方面,当存在时,间隔物是有机部分。在另一个方面,间隔物是聚合物,包括但不限于水溶性聚合物、核酸、多肽、寡糖、碳水化合物、脂质、乙二醇或其组合。

在某些方面,多核苷酸具有它通过其与纳米颗粒共价结合的间隔物。这些多核苷酸是与上文描述相同的多核苷酸。由于间隔物与纳米颗粒的结合,多核苷酸与纳米颗粒的表面间隔开,并且对于与其靶的杂交更容易接近。在间隔物是多核苷酸的情况下,在各种实施例中,间隔物的长度至少约10个核苷酸、10-30个核苷酸或甚至大于30个核苷酸。间隔物可具有不干扰多核苷酸变得与纳米颗粒或靶多核苷酸结合的能力的任何序列。在某些方面,多核苷酸间隔物的碱基全部是腺苷酸、全部是胸苷酸、全部是胞苷酸、全部是鸟苷酸、全部是尿苷酸、或全部是一些其他经修饰的碱基。相应地,在其中间隔物由所有鸟苷酸组成的一些方面,考虑间隔物可如本文所述充当结构域。

表面密度

本文提供的纳米颗粒具有在纳米颗粒的表面上的多核苷酸的填充密度,其在各个方面都足以导致纳米颗粒之间和单个纳米颗粒上的多核苷酸链之间的协同行为。在另一个方面,在纳米颗粒之间的协同行为增加了多核苷酸对核酸酶降解的抗性。在另外一个方面,通过细胞的纳米颗粒摄取受与纳米颗粒结合的多核苷酸密度的影响。如以引用的方式全文并入本文的美国专利申请公开号2008/0306016中所述,在纳米颗粒的表面上较高密度的多核苷酸与通过细胞的纳米颗粒的增加摄取有关。本公开内容提供了其中由于纳米颗粒表面上更高密度的多核苷酸而增加的纳米颗粒摄取与本文所述的结构域的存在组合起作用的实施例。例如且不限于,在纳米颗粒表面上具有给定密度的多核苷酸的纳米颗粒(其中纳米颗粒还包含如本文公开的聚g结构域),将证明相对于在纳米颗粒表面上具有相同密度的多核苷酸的纳米颗粒(其中纳米颗粒缺乏聚g结构域)通过细胞的功能化纳米颗粒的摄取增加。在各个方面,还包含聚g结构域的功能化纳米颗粒通过细胞的摄取增加相对于缺乏聚g结构域的功能化纳米颗粒为1%。在进一步的方面,还包含聚g结构域的功能化纳米颗粒通过细胞的摄取增加相对于缺乏聚g结构域的功能化纳米颗粒为2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或是约2倍、约3倍、约4倍、约5倍、约6倍、约7倍、约8倍、约9倍、约10倍、约20倍、约30倍、约40倍、约50倍、约100倍、约150倍、约200倍、约250倍、约300倍、约350倍、约400倍、约450倍、约500倍、约550倍、约600倍、约650倍、约700倍、约750倍、约800倍、约850倍、约900倍、约950倍、约1000倍、约1500倍、约2000倍、约2500倍、约3000倍、约3500倍、约4000倍、约4500倍、约5000倍、约5500倍、约6000倍、约6500倍、约7000倍、约7500倍、约8000倍、约8500倍、约9000倍、约9500倍、约10000倍高或更高。

足以使纳米颗粒稳定的表面密度和对于纳米颗粒和多核苷酸的所需组合获得它必要的条件可凭经验来确定。一般地,至少约2pmole/cm2的表面密度将足以提供稳定的纳米颗粒-寡核苷酸组合物。在一些方面,表面密度为至少15pmole/cm2。还提供了其中多核苷酸以下述表面密度与纳米颗粒结合的方法:至少2pmol/cm2、至少3pmol/cm2、至少4pmol/cm2、至少5pmol/cm2、至少6pmol/cm2、至少7pmol/cm2、至少8pmol/cm2、至少9pmol/cm2、至少10pmol/cm2、至少约15pmol/cm2、至少约19pmol/cm2、至少约20pmol/cm2、至少约25pmol/cm2、至少约30pmol/cm2、至少约35pmol/cm2、至少约40pmol/cm2、至少约45pmol/cm2、至少约50pmol/cm2、至少约55pmol/cm2、至少约60pmol/cm2、至少约65pmol/cm2、至少约70pmol/cm2、至少约75pmol/cm2、至少约80pmol/cm2、至少约85pmol/cm2、至少约90pmol/cm2、至少约95pmol/cm2、至少约100pmol/cm2、至少约125pmol/cm2、至少约150pmol/cm2、至少约175pmol/cm2、至少约200pmol/cm2、至少约250pmol/cm2、至少约300pmol/cm2、至少约350pmol/cm2、至少约400pmol/cm2、至少约450pmol/cm2、至少约500pmol/cm2、至少约550pmol/cm2、至少约600pmol/cm2、至少约650pmol/cm2、至少约700pmol/cm2、至少约750pmol/cm2、至少约800pmol/cm2、至少约850pmol/cm2、至少约900pmol/cm2、至少约950pmol/cm2、至少约1000pmol/cm2或更多。

寡核苷酸靶序列和杂交

在一些方面,本公开内容提供了靶向特异性核酸的方法。可靶向任何类型的核酸,并且所述方法可用于例如基因表达的治疗性调节(参见例如美国专利申请公开号2009/0209629,其公开内容以引用的方式并入本文)。可通过本发明的方法靶向的核酸的例子包括但不限于基因(例如,与特定疾病相关的基因)、细菌rna或dna、病毒rna、或mrna、rna或单链核酸。

术语“起始密码子区”和“翻译起始密码子区”指包含从翻译起始密码子开始的在任一方向(即5′或3′)上的连续核苷酸的mrna或基因的一部分。类似地,术语“终止密码子区”和“翻译终止密码子区”指包含从翻译终止密码子开始的在任一方向(即,5′或3′)上的连续核苷酸的这种mrna或基因的一部分。因此,“起始密码子区域”(或“翻译起始密码子区域”)和“终止密码子区域”(或“翻译终止密码子区域”)都是可用功能化纳米颗粒上的寡核苷酸有效靶向的区域。

其他靶区域包括5′非翻译区(5′utr),从翻译起始密码子开始的在5′方向上的mrna的一部分,包括5′帽位点和mrna的翻译起始密码子之间的核苷酸(或基因上的相应核苷酸),以及3′非翻译区(3′utr),从翻译终止密码子开始的在3′方向上的mrna的一部分,包括翻译终止密码子和mrna的3′末端之间的核苷酸(或基因上的相应核苷酸)。mrna的5′帽位点包含经由5′-5′三磷酸键合连接到mrna的最5′残基的n7-甲基化鸟苷残基。mrna的5′帽区域被认为包括5′帽结构本身以及与帽位点相邻的前50个核苷酸。

对于原核靶核酸,在各个方面,核酸是由基因组dna转录的rna。对于真核靶核酸,核酸是动物核酸、植物核酸、真菌核酸包括酵母核酸。如上文,靶核酸是由基因组dna序列转录的rna。在某些方面,靶核酸是线粒体核酸。对于病毒靶核酸,核酸是病毒基因组rna或由病毒基因组dna转录的rna。

所提供的用于抑制基因产物表达的方法包括这样的方法,其中与不存在寡核苷酸功能化的纳米颗粒的基因产物表达相比,靶基因产物的表达被抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%或100%。换言之,所提供的方法包括导致靶基因产物表达的基本上任何程度的抑制的那些方法。

抑制程度从体液样品或活组织检查样品或通过本领域众所周知的成像技术在体内进行测定。可替代地,在细胞培养测定中测定抑制程度,一般作为来源于使用特定类型的纳米颗粒和特定寡核苷酸在体内可预期的抑制程度的可预测量度。

实例

调查了球形核酸纳米颗粒缀合物(sna)的序列依赖性细胞摄取。该过程通过与a类清道夫受体(sr-a)相互作用和质膜微囊介导的胞吞作用而发生。已知线型聚(鸟苷酸)(聚g)是sr-a的天然配体。下文描述的实例测试了具有较高g含量的sna是否能够以比由其他核苷酸组成的sna更大的量进入细胞,并且像这样根据组成成分寡核苷酸序列测量sna的细胞内化。如下所示,具有富集g含量的sna显示最高的细胞摄取。接下来,将小分子(喜树碱)与sna化学缀合,以产生药物-sna缀合物,并且观察到聚gsna将大多数喜树碱递送至细胞,并且在癌细胞中具有最高的细胞毒性。本文提供的数据阐明了用于增强球形核酸的细胞内转运的重要设计考虑。

在四种细胞类型a549(人肺腺癌上皮)、nih-3t3(小鼠成纤维细胞)、c166(小鼠内皮)和hacat(人角质形成细胞)中调查富含g的sna的增强的细胞摄取。另外,通过设计负载有dna-化学治疗缀合物的sna,研究了序列依赖性细胞摄取的后果,并且与富含a、t、s的sna相比,用富含g的sna增加了喜树碱化学治疗分子递送至a549细胞和后续细胞毒性。

实例1

sna上的核碱基类型决定了金纳米颗粒的表面上的dna寡核苷酸壳的负载和厚度。

首先,通过将相同量的不同核碱基类型的烷基硫醇修饰的30-碱基对长的单链dna寡核苷酸(ssdna)(图1a;关于序列信息参见下表1)加入柠檬酸盐封端的10纳米(nm)直径金纳米颗粒(aunp)的水性悬浮液内,来制备由不同核碱基类型(a、t、c或g)组成的sna。为了制备富含c(聚csna)和g(聚gsna)的sna,沿着c和g的线型聚合物以规律间隔有意地插入t,分别获得(cct)10和(ggt)10的序列。对于聚csna和聚gsna,这些设计特征减弱了由于i-基序[gehring等人,nature363:561-565(1993)]和g-四链体[sen等人,nature334:364-366(1988)]形成而难以合成的合成聚c和聚g序列的挑战。相反,a和t的线型聚合物不会自然地折叠成稳定的二级结构,当制备富含a(聚asna)和t(聚tsna)的sna时,不需要用另一种核碱基稀释a和t的线型聚合物。通过动态光散射测量,所有sna均具有22±4nm的流体动力学直径,提示关于寡核苷酸壳5-8nm的厚度(图2)。厚度的变化可能是由于负载的变化(参见下文)。通过uv-vis光谱法,所有的sna一般在大小上是单分散的,并且与未经修饰的aunp相比(524nm相对于520nm),显示出在表面等离子体峰中大约4nm的红移,这是由于在寡核苷酸壳的共价附着后的局部折射率的变化[kumar等人,natprotoc3:314-320(2008)](图3)。然后通过制备其寡核苷酸在其5′末端处含有cy5荧光团的sna,根据核碱基类型测量寡核苷酸负载(图4)。鉴于30个碱基的恒定寡核苷酸长度,富含嘧啶碱基(即c和t)的sna具有显著更高的寡核苷酸负载,由此聚tsna和聚csna分别具有大约180个ssdna和大约140个ssdna/aunp。相比之下,富含嘌呤碱基的sna具有较低的寡核苷酸负载:聚gsna和聚asna分别只有大约75个ssdna和大约45个ssdna/aunp(图1a)。

表1.sna纳米颗粒缀合物及其dna寡核苷酸序列的列表。制备由表1中列出的dna寡核苷酸组成的sna,以分别使用icp-ms和tem检查核碱基类型对其细胞摄取动力学和细胞内分布的作用(图5)。图2和图3呈现了这些sna的流体动力学尺寸和吸收光谱的dls和uv-vis光谱数据。图1中的tem成像数据揭示了sna的形态。

为了通过透射电子显微镜检查(tem)直接显现寡核苷酸壳,利用了用于sna的乙酸双氧铀染色方案[huxley等人,jbiophysbiochemcytol11:273-296(1961)]。与负载数据一致,聚tsna的寡核苷酸覆盖率在所有测试的核碱基类型中最密集,如在aunp的整个圆周上通过其干燥厚度为4-6nm的均匀寡核苷酸壳证明的(图1b)。chen等人使用单分子fret(smfret)和小角度x射线散射(saxs),以证明在生理水平的盐(150mmnacl)的存在下,40个碱基长的单链聚tdna(t40)的端对端距离为大约6.6nm[chen等人,procnatlacadsciu.s.a.109:799-804(2012)]。因此,如通过tem图像揭示的聚tsna的干燥壳厚度提示,当它们径向延伸远离aunp的中心时,聚tdna链接近由aunp的弯曲表面提供的最大负载。聚asna具有厚度仅1-2nm的最薄的寡核苷酸壳,但它们的壳仍是均匀的。鉴于其中等寡核苷酸负载,聚csna和聚gsna具有2-4nm厚的寡核苷酸壳,但是它们的壳不像聚tsna和聚asna那样均匀。尽管这种技术受到干燥影响,但数据与来自寡核苷酸负载研究的结果一致(图1a)。简言之,寡核苷酸负载和tem成像数据与文献先例一致,即嘧啶碱基(c和t)比其嘌呤配对物(a和g)更不强烈地吸附至金表面demers等人,jamchemsoc124:11248-11249(2002);hurst等人,78,8313-8318(2006);storhoff等人,langmuir18:6666-6670(2002);kimura-suda等人,journaloftheamericanchemicalsociety125:9014-9015(2003);opdahl等人,procnatlacadsciu.s.a.104:9-14(2007)],支持了前者延伸远离金表面而后者与表面相互作用的观点。

实例2

聚gsna在所有测试的核碱基类型中以最高量进入多种哺乳动物细胞类型。

接下来,通过电感耦合等离子体质谱法(icp-ms)监测不同核碱基类型的sna的细胞摄取动力学。选择c166细胞是因为其表达sr-a[choi等人,procnatlacadsciu.s.a.110:7625-7630(2013)],sr-a是介导sna的细胞摄取的关键受体(图5a)。在两小时温育后,聚gsna显示出在所有测试的核碱基类型中最高水平的细胞结合,累积5×105个颗粒/细胞。与聚gsna形成对比,聚tsna显示超过5倍低的细胞结合,是所有核碱基类型中细胞结合的最低水平。与聚tsna和聚gsna相比,聚a和聚csna显示出中等水平的细胞结合。类似的数据呈现于图13中。还参见图12,其证明了聚gsna显示比聚a、聚t和聚csna更高的与c166细胞的细胞结合。经修饰的elisa测定显示聚gsna证明与重组a类清道夫受体(sr-a)的最高结合,sr-a负责聚gsna增加的细胞结合。

然而,icp-ms,允许敏感定量与细胞结合的金的大量含量的技术,不提供关于sna的细胞内分布的任何信息。因此,tem用于确定sna是进入细胞还是仅与细胞膜结合(图5b)。与细胞一起温育2小时后,由所有核碱基类型组成的sna可进入c166细胞,如通过其在细胞溶质或初级内体内的累积所证明的。与icp-ms数据一致,代表性tem图像显示聚gsna在所有核碱基类型中是细胞中最丰富的,在颗粒簇数目/细胞的横截面积和颗粒数目/簇(通常>100个sna/簇)两个方面。相比之下,尽管tem图像不允许精确定量细胞中的颗粒,但聚asna、聚csna和聚tsna以比聚gsna显著更小的量(<20个sna/簇)进入细胞。

总之,当组成成分寡核苷酸链保持恒定在30个碱基长时,比其他核碱基类型(即a、c、t)更高部分的g的掺入使sna对c166细胞的递送达到最大。为了确定这种g依赖性摄取是否仅适用于c166细胞,对于三种其他哺乳动物细胞类型,即hacat、3t3和a549,进一步跟踪sna的细胞摄取动力学(图5c)。这些细胞系连同c166,具有一系列的sr-a的表达水平;以表达水平的递减次序,它们是hacat、c166、3t3和a549[choi等人,procnatlacadsciu.s.a.110:7625-7630(2013)]。与c166细胞的摄取数据一致,聚gsna证明对于这些细胞类型的最大的结合程度,显示出比由其他核碱基类型组成的sna的4-10倍高的细胞结合。值得注意的是,聚gsna的细胞结合也与sr-a的表达水平正相关;当与相同浓度的聚gsna一起温育时,hacat、3t3和a549细胞分别显示出最高、中等和最低的细胞结合。因此,g的掺入以与sr-a的表达水平相关的方式使sna对多种哺乳动物细胞类型的递送达到最大。另外,这些数据显示当核碱基类型不保持恒定时,寡核苷酸负载不决定细胞摄取动力学;尽管它们的寡核苷酸负载较低,但聚gsna以比聚tsna更高的量进入细胞。

实例3

不管核组成如何,聚g壳使细胞内递送达到最大。

为了证明与聚a、聚t和聚csna相比,聚gsna的聚g壳促进了增加的细胞摄取,合成了具有不同核组成的富含t的sna和聚gsna,5nmaunp或硒化镉(cdse)量子点(qd)(关于序列信息参见表2)。制备由表2中列出的寡核苷酸组成的5纳米aunp-sna和qd-sna,以研究聚g壳对不同核组成的sna的细胞摄取的作用(图6)。所有序列均为28个碱基长,并且以二苯并环辛基(dbco)基团封端。使用先前描述的策略合成aunp-sna和qd-sna[zhang等人,natmater12:741-746(2013),其以引用的方式全文并入本文]。在一组实验中,用等浓度的富含t的qd-sna和聚gaunp-sna处理c166细胞。在另一组实验中,用等浓度的富含t的aunp-sna和聚gqd-sna处理细胞。然后使用共聚焦显微镜检查来跟踪进入细胞的qd的荧光信号。用富含t的qd-sna和聚gaunp-sna处理的c166细胞显示非常少的细胞内荧光。然而,用富含t的aunp-sna和聚gqd-sna处理的c166细胞显示显著更高的细胞内荧光(图6a),指示具有聚g壳的sna进入c166细胞内的更高摄取。为了进一步证实,icp-ms用于分析用单独的富含t的aunp-sna或qd-sna、单独的聚gaunp-sna或qd-sna、富含t的aunp-sna和聚gqd-sna的组合、以及富含t的qd-sna和聚gaunp-sna的组合处理的c166细胞中的au含量和cd含量。用聚gaunp-sna处理的c166细胞具有的au含量是用富含t的aunp-sna处理的细胞的3倍。相比之下,用聚gqd-sna处理的细胞显示的cd含量是用富含t的qd-sna处理的细胞的三倍(图6b)。用聚gaunp-sna和富含t的qd-sna处理的细胞具有与cd含量相比更高的au含量,并且对于用富含t的aunp-sna和聚gqd-sna处理的细胞,这种趋势是相反的(图6b)。这种竞争性细胞摄取测定显示,具有聚g壳的sna优先进入细胞,而不管核组成如何,指示聚g壳对细胞表面受体具有更大的亲和力。

表2.sna纳米颗粒缀合物及其dna寡核苷酸序列的列表。

实例4

寡核苷酸的最外周大约10个碱基决定了sna的细胞摄取。

为了从几何角度来表征细胞摄取性质,调查了显著促成sna的细胞摄取的dna寡核苷酸的部分。再次,比较了当所有组成成分寡核苷酸保持恒定在30个碱基时sna的细胞结合(关于序列信息参见表3)。制备由表3中列出的寡核苷酸组成的sna,以探测核苷酸位置对sna的细胞摄取的作用(图7)。所有序列均为30个碱基长,并且在3′末端处含有最少6个胸苷酸(t)残基。在3′末端处的聚(t)基序允许寡核苷酸在aunp的表面上几乎恒定的负载,而不依赖于序列。寡核苷酸的部分不含任何核碱基;通过使用dspacerce亚磷酰胺(d;具有核糖单元和磷酸盐主链两者)或spacer亚磷酰胺c3(c;仅具有磷酸盐主链)来制备这些无碱基区域。

首先,通过icp-ms比较了聚tsna以及含有不同量的在5′末端处的g(以重复ggt单元的形式)和在3′末端处的t的sna之间的细胞结合。在dna寡核苷酸的3′末端处的聚t区段允许在aunp的表面上几乎恒定的寡核苷酸负载。一般而言,sna的细胞结合随着在组成成分寡核苷酸的5′末端处的g含量增加而增加(图7a)。看起来需要在组成成分寡核苷酸的5′末端处的最少四个ggt重复,以显著增强细胞结合;与聚tsna相比,两个ggt重复的添加并不显著增加细胞结合。

d=具有核糖单元和磷酸盐主链两者的无碱基位点

c=仅具有磷酸盐主链的无碱基位点

表3.sna纳米颗粒缀合物及其dna寡核苷酸序列的列表

还比较了由ggt重复在5′末端处暴露或埋在链中间的寡核苷酸组成的sna的细胞结合(参见表3中的序列信息)。当与其中ggt重复在5′末端处暴露的情况相比时,在5′末端上放置t12基序以将ggt重复埋在dna寡核苷酸链的中间使细胞结合降低大约70%,有效地遏制了ggt重复对sna的细胞摄取的优异作用(图7b)。这些观察显示在30个碱基长的组成成分dna寡核苷酸的5′末端处的大约10个碱基主要决定了sna的细胞摄取性质。除了经由引入更多的g增加聚tsna的细胞摄取之外,还探测了与聚tsna的细胞摄取最相关的sna纳米结构的一部分。为此,构建了在组成成分dna寡核苷酸的5′末端处含有不同长度的无碱基间隔物的sna(参见表3中的序列信息)。这些无碱基间隔物包括不包含核碱基的dspacer(glenresearch)和既不具有核碱基也不具有环结构的c3间隔物(glenresearch)。具有较高无碱基间隔物含量的sna显示与聚tsna相比低大约75%的细胞结合(图7c和7d),当将多于10个无碱基间隔物单元添加到5′末端时其被拉平。再次,这些数据证明在sna纳米颗粒的最外围部分处暴露的组成成分寡核苷酸链的大约三分之一(在5′末端处的总共30个碱基中的10个)在确定其细胞结合中是几何学上最必需的。它们还再次肯定核碱基而不是磷酸盐主链或核糖单元是决定sna的细胞结合的生化活性组分。

实例5

聚gsna可使小分子化学治疗剂(例如喜树碱)对癌细胞的细胞内递送达到最大。

除通过icp-ms测量和tem成像提供的经验数据之外,还通过证明含有药物的sna的细胞摄取的增加对应于其针对癌细胞的细胞毒性的增加,来提供聚gsna在所有核碱基类型中最有效地进入哺乳动物细胞的功能证据。作为概念证明,通过将喜树碱(cpt)(小分子化学治疗剂)共价附着到其组成成分寡核苷酸的最外围位置,并且随后根据核碱基类型检查其杀死癌细胞的能力,制备了含有喜树碱的sna(cpt-sna)。选择a549人肺腺癌上皮细胞(如图5c中讨论的)作为模型细胞系,因为它们的sr-a和窖蛋白-1的低表达,这两者都是sna的细胞摄取的必需蛋白质[choi等人,procnatlacadsciu.s.a.110:7625-7630(2013)]。鉴于通过a549细胞的sna细胞摄取的适度程度,任何可观察到的细胞毒性都突出了根据核碱基类型的cpt-sna效力。为了将cpt分子附着到dna链上,遵循文献先例以使cpt的-oh基团与含有叠氮化物的接头反应,以合成喜树碱-叠氮化物(cpt-n3)[parrish等人,bioconjugchem18:263-267(2007)]。无铜点击化学用于将cpt-n3直接偶联到双功能单链dna(ssdna)上,所述双功能单链dna具有在一个末端上的二苯并环辛基(dbco)基团以及在另一个末端上的硫醇基团。然后所得的缀合物喜树碱-dna-硫醇(cpt-dna-sh)可如先前所述共价附着到aunp的表面,获得cpt-sna(图8a和9)。

表4.序列如图9d所示。

使用该方法制备了cpt-聚asna、cpt-聚tsna、cpt-聚csna和cpt-聚gsna。鉴于聚tsna和聚csna的寡核苷酸负载显著高于聚asna和聚gsna的寡核苷酸负载量,用未经修饰的t30-sh链有意地稀释cpt-t30-sh链,并且用未经修饰的(cct)10-sh链稀释cpt-(cct)10-sh链,因为链被功能化到aunp上,以便获得在由所有核碱基类型组成的sna上的cpt分子的类似负载,这允许直接比较聚gsna的增强的细胞摄取对cpt递送的作用。实际上,喜树碱分子/颗粒的负载被确定为大致相等(大约55±15个cpt分子/aunp)(图8b)。接下来通过使用icp-ms测量与细胞结合的金含量来研究核碱基类型对通过a549细胞的cpt-sna摄取的作用。在温育9小时和18小时后,与由其他核碱基类型组成的cpt-sna相比,cpt-聚gsna显示与a549细胞6-9倍高的结合。这一观察加强了下述结论:在aunp的表面上共价功能化的dna寡核苷酸的10个最外围碱基在决定sna的细胞摄取性质方面是最显著的。即,放置在sna外周处的小分子药物并不显著干扰dna寡核苷酸与细胞表面sr-a之间的相互作用。使cpt-sna与a549细胞进一步温育18小时,用新鲜的无纳米颗粒培养基补充,并且允许生长另外54小时。在72小时后,与细胞结合的金含量类似于在18小时后与细胞结合的金含量,暗示cpt-sna几乎没有明显的胞吐作用(图8c)。除了通过icp-ms跟踪cpt-sna的aunp核之外,通过共聚焦成像显现a549细胞中的cpt分布,利用了在440nm处cpt分子的荧光发射[zamai等人,molcancerther2:29-40(2003)]。在使cpt-sna与a549细胞一起温育18小时后,去除颗粒,用新鲜培养基补充,并且在处理后3和5天成像。在3天后,cpt-聚gsna显示在所有测试的核碱基类型中最高的cpt细胞内累积。在5天后,用cpt-聚gsna处理的细胞仍然显示最高的荧光,但荧光更为扩散(图8d)。基于icp-ms和共聚焦成像数据,并且不受理论的束缚,考虑cpt-sna在细胞中持续足够的时间段,以通过细胞内酯酶的作用逐渐释放cpt分子并且发挥细胞毒性效应[cheng等人,bioconjugchem14:1007-1017(2003)]。为了测试这点,将20nmcpt-sna(或等价地,大约1.1μmcpt分子)与不同的序列和a549细胞一起温育18小时,用新鲜培养基补充细胞,并且在几天后通过使用经修饰的mtt测定来测量其活力。在cpt-sna处理后4至7天之间,cpt-聚gsna比由其他核碱基类型组成的cpt-sna明显更细胞毒性。在7天后,与用由其他核碱基类型组成的cpt-sna处理的细胞的80-100%存活率相比,用cpt-聚gsna处理的细胞仅显示大约20%的细胞存活率(图8e)。作为阴性对照,a549细胞也与由所有核碱基类型组成的20nm无cpt的sna一起温育18小时,并且在处理后7天未观察到明显的细胞毒性(图10),证实了所观察到的通过cpt-sna处理诱导的细胞毒性源于所附着的cpt分子,而不是sna体系结构本身。

另外,在用cpt-sna处理后6天,用碘化丙啶染色细胞以检测cpt诱导的细胞凋亡。染色细胞的流式细胞术揭示cpt-(ggt)10sna是最细胞毒性的(图8f)。为了进一步确保cpt在细胞中是活性的,活化的半胱天冬酶3(已知由cpt活化的细胞凋亡信号传导蛋白)[stefanis等人,jneurosci19:6235-6247(1999)]的量在5天后通过elisa在细胞中进行测量。用cpt-聚gsna处理的细胞显示比用cpt-a30、cpt-t30和cpt-(cct)10sna处理的细胞更高量的活化的半胱天冬酶3(图11)。总之,cpt-聚gsna比由其他核碱基类型组成的cpt-sna明显更有效,如通过聚gsna增加的cpt对癌细胞的递送和增加的细胞毒性所证明的。这个实例强调了g依赖性递送的功能优点,并且证明了以更高效率递送其他治疗实体的潜力。

结论

由上述非限制性实例证明的是用于增加sna纳米颗粒缀合物进入细胞的摄取的方法。具有含有高g含量的三维寡核苷酸壳的sna以比主要由a、t和c组成的sna更高的量通过细胞内化。此外,富含g的sna可用于增强核酸和小分子药物两者的细胞内递送。这指示序列组成是除浓度之外的另一种可调谐性质,其可用于定制sna的细胞内递送。这种定制序列组成的策略是用于基于纳米颗粒的诊断和治疗应用的强大工具,因为它使得能够合理设计具有所需细胞摄取性质的纳米颗粒构建体。

实例6

材料和方法

下述材料和方法用于生成前述实例中所述的数据。

dna寡核苷酸的合成。使用标准固相合成和试剂(glenresearch)在mm48寡核苷酸合成仪(bioautomation)上合成dna。除非另有说明,否则所有dna均使用具有microsorbc18柱(varian)的prostarhplc(varian)进行纯化。表1含有dna的详细序列信息。

球形核酸(sna)纳米缀合物的制备。将硫醇化dna以1oddna/ml补充有0.1%tween20的10nmaunp的浓度加入10nm柠檬酸盐加帽的aunp中。在室温下搅拌1小时后,伴随nacl的逐渐加入经过6小时使溶液老化,以使最终的nacl浓度达到0.5m。使用50-kdaamiconmwco膜(millipore),经由针对nanopure水的透析,使功能化的aunp与游离dna链分离。通过在cary5000uv-vis分光光度计(agilent)上分别测量其在524nm和260nm处的消光来测定aunp和dna浓度。为了制备含有喜树碱的sna(cpt-sna),溶液用nacl经过5小时老化,以使最终的nacl浓度达到0.3m。

寡核苷酸负载的测量。将10微升(μl)10nmcy5标记的不同核碱基类型的sna加入100μl的1mdtt内。将混合物在40℃下伴随振荡温育15分钟,随后为以14000×g的离心,以去除任何金沉淀物。将100μl上清液置于96孔板中,并且使用synergyh4multimodemicroplatereader(biotek)测量荧光信号(激发:633nm;发射滤光片:660-710nm)。通过与校准标准曲线比较来确定寡核苷酸的浓度。将寡核苷酸浓度除以aunp浓度(通过uv-vis光谱法在520nm处测量的)获得寡核苷酸负载。

寡核苷酸壳的显现。将20μl100nmsna滴铸到涂布有碳和formvar(electronmicroscopysciences)的每个辉光放电的200目铜网格上。干燥后,将20μl的2%乙酸双氧铀添加到网格上,以染色寡核苷酸壳1分钟。使用一张滤纸将过量的乙酸双氧铀吸掉。使用hd-2300(hitachi)显微镜在tem模式下在80kv的束电压下使干燥的网格成像。oriussc1000ccd相机(gatan)用于记录图像。

细胞摄取动力学。提前12小时以5×104个细胞/孔的群接种在24孔板中,将c166(小鼠内皮)、3t3(小鼠成纤维细胞)、hacat(人角质形成细胞)或a549(人肺腺癌上皮)细胞在37℃和5%co2下与0.3mlsna(在optimem中10nm)/孔一起温育。在不同的时间点取出sna,随后为optimem冲洗,受胰蛋白酶作用用于使用血细胞计数器计数,并且以8000rpm离心5分钟以形成团块。细胞团块在室温(rt)下用0.3ml浓hno3中的3%hcl消化过夜,用于后续icp-ms分析。

icp-ms。在加入5μl5ppm铟(内部标准)和5ml基质溶液(2%hcl和2%hno3)后,在扣除未经处理的细胞的本底金含量后,通过xseriesiiicp-ms(thermofisher)测量所得溶液的au-197含量。报告的值表示来自三次独立实验的平均值的平均值±se。

tem。将细胞团块在0.2ml在50mm磷酸钠缓冲液(ph=8)中的熔融2%琼脂糖中在40℃下混合5分钟。细胞-琼脂糖混合物在rt下使用玻璃移液管轻轻地清除到水中,以形成包覆的面条形果冻。在该琼脂糖果冻中埋入,将细胞固定在100mm二甲胂酸钠缓冲液(ph=7.4)中的2.5%戊二醛中,用1%oso4以及0.9%oso4和0.3%k4fe(cn)6染色,其中所有步骤均在4℃下进行2小时。在用乙醇和环氧丙烷逐渐脱水后,将细胞团块包埋在epon812树脂(electronmicroscopysciences)中。将80纳米厚的切片沉积到200目铜网格(ems)上,并且用2%乙酸双氧铀(spisupplies)和reynolds柠檬酸铅染色,用于使用80kv的束电压在jem1230显微镜(jeol)下显现。oriussc1000ccd相机(gatan)用于记录图像。

量子点和金纳米颗粒sna的合成。代替将dna链直接共价附着到纳米颗粒表面,首先用具有叠氮化物的两亲性聚合物涂布cdse量子点和5nm金纳米颗粒,然后使用应变促进的叠氮化物-炔环加成将dna偶联到聚合物涂布的颗粒。简言之,商购可得的疏水-配体加帽的纳米颗粒首先用含有疏水性烷基链和亲水性羧酸盐和叠氮化物修饰的乙二醇基团两者的两亲聚合物功能化,以将颗粒溶解在水性溶剂中。然后通过叠氮化物-炔点击化学用二苯并环辛基(dbco)-封端的dna链功能化颗粒,以在纳米颗粒周围产生致密的dna壳。

喜树碱-叠氮化物的制备。喜树碱-叠氮化物(cpt-n3)的制备由先前公开的程序修改和修饰[parrish等人,bioconjugatechem.18:263-267(2006)]。向具有搅拌器的经烘干的50ml圆底烧瓶中加入喜树碱(200mg,0.54mmol)、6-叠氮基己酸(170mg,1.08mmol)、4-二甲基氨基吡啶(8mg)和干燥二氯甲烷(10ml)。将悬浮液冷却至0℃,并且加入1,3-二环己基碳二亚胺(220mg,1.08mmol)。将反应混合物在惰性大气下搅拌12小时,加热至rt,然后倾入100ml乙醚内。将醚悬浮液冷却至0℃以沉淀二环己基脲(dcu),并且通过真空过滤去除固体。将滤液冷却至-40℃,并且收集所得到的黄色沉淀物,并且由甲醇重结晶,以得到20-o-(6-叠氮基己酰)喜树碱(108mg)。回收的dcu用甲醇反复洗涤,获得另外一批产物(120mg;总得率228mg,87%)。

喜树碱-dna-硫醇(cpt-dna-sh)缀合物的制备。通过使用dbco-teg亚磷酰胺(glenresearch,10-1941)的固态合成,制备在其5′末端处全部具有二苯并环辛基(dbco)基团的各种序列的单链dna(图9d)。通过收集在310nm处具有dbco吸收峰的级分,使用1200serieshplc(agilent)进行dna-dbco缀合物的纯化。为了通过无铜点击化学将cpt部分附着到dna,将80nmol的dna-dbco和3mg的cpt-叠氮化物(大约100倍过量)溶解于1.5ml的无水二甲基亚砜中。将反应在40℃下连续振荡18小时。这之后,向混合物中加入3.5ml去离子水以沉淀出过量的cpt,随后加入5ml乙酸乙酯以去除cpt。液-液萃取过程再重复四次。将水相(dmso/水中的dna-cpt)冷冻干燥,以回收产物,其化学种类通过maldi-tof证实。

共焦显微镜检查。接种在35mmfluorodish(worldprecisioninstruments)中,将a549细胞与20nm在optimem中的cpt-sna一起温育18小时。从细胞中取出cpt-sna,并且替换为完全dmem(补充有10%胎牛血清和1%青霉素/链霉素的dmem)共3或5天。经处理的细胞用pbs冲洗,在pbs中的3.7%多聚甲醛中固定15分钟,并且用hoechst核染剂染色,用于在zeisslsm510倒置共焦扫描显微镜下成像。cpt的激发波长和发射波长分别为370nm和440nm。

mtt测定。以104个细胞/孔的群接种在24孔板中,将a549细胞与0.3mlsna(在optimem中20nm)一起温育18小时。这之后,从细胞中取出sna,然后将其与1ml完全dmem一起温育。在不同持续时间后,将20μlmtt原液(pbs中的5mg/mlmtt;molecularprobes)加入与300μl完全dmem预温育的细胞的每个孔内。在2小时后,向每孔中还加入300μlsds溶液(在50%二甲基甲酰胺中200mg/ml),随后为充分抽吸以使细胞重悬浮。在温育过夜后,将细胞裂解产物以14000×g离心10分钟,以去除任何金聚集物。使用synergyh4multimodemicroplatereader(biotek),测定从细胞裂解产物收集的上清液级分在620nm处的吸光度。报告的值表示来自三次独立实验的平均值的平均值±se。

流式细胞术。接种在6孔板中,a549细胞与1mlsna(在optimem中20nm)一起温育18小时。在处理后,去除cpt-sna,并且使细胞在完全dmem上生长126小时。然后使细胞受胰蛋白酶作用,洗涤并且悬浮于0.5mlpbs中。将0.5ml3.7%多聚甲醛加入来自每个孔的细胞悬浮液中15分钟。在两次pbs冲洗后,使用1ml在pbs工作溶液(50mg/ml)中的碘化丙啶(santacruzbiotechnology,sc-3541)染色溶液来染色细胞。染色样品在4℃下贮存,并且在流式细胞术分析前保护免受光照。使用bdlsrii流式细胞仪测量10,000个细胞的荧光强度。

化学品。6-叠氮基己酸购自emdmillipore(billerica,ma)。cdse量子点购自oceannanotech。十二烷基硫醇功能化的金纳米颗粒购自nanoprobes。dbco-nhs酯购自clickchemistrytools。所有其他试剂购自sigma-aldrich(st.louis,mo),并且按原样使用。

动态光散射。使用nanozetasizer(malverninstruments)进行测量,使用0.47作为aunp的折射率。流体动力学直径(hd)测量从数量平均值得出。每个直方图表示六次重复测量后aunp的尺寸分布。

maldi-tofms。在采用2,5-二羟基苯乙酮(dhap)作为基质材料的brukerautoflexiiimaldi-tof质谱仪上,收集基质辅助激光解吸/电离飞行时间(maldi-tof)数据。

1hnmr。在brukeravance400mhznmr光谱仪上记录1hnmr光谱。1hnmr光谱内部参考氘代溶剂中的残留质子信号。

活化的半胱天冬酶3的检测。将a549细胞以100,000个细胞/孔的密度在6孔板中铺平板,并且用在optimem中的20nmcpt-sna处理。在18小时后,用pbs洗涤细胞,并且还与完全dmem(补充有10%胎牛血清和1%链霉素/青霉素)一起温育。在6天后,将细胞裂解并提取蛋白质。根据制造商的说明书(cellsignaling7190s),通过elisa检测活化的半胱天冬酶3的相对水平。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1